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ABSTRACT
In this paper we describe several novel sparsification techniques
used in a Fast Stochastic Integral Equation Solver to compute the
mean value and the variance of capacitance of 3D interconnects
with random surface roughness. With the combination of these nu-
merical techniques, the computational cost has been reduced from
O(N4) to O(Nlog2(N)), where N is the number of panels used for
the discretization of nominal smooth surfaces. Numerical exper-
iments show that the proposed numerical techniques are accurate
and efficient.

1. INTRODUCTION
The surfaces of some interconnects, particularly the off-chip ones,
are far from perfectly smooth. The topological features may have
peak to valley distances larger than five microns [1, 2]. It has been
shown by measurements that the surface roughness can result in an
increase of resistance by as much as 50% at microwave frequencies
[1]. Theoretical investigation in [3, 4] correlates very well with
this measurement-based observation. It is shown in [5, 6] that the
capacitance is also affected significantly by surface roughness.

A straightforward approach to model surface roughness is the
Monte Carlo process. An ensemble of surface realizations are gen-
erated using a height probability distribution and the height spectral
density. The governing equations are then solved for each realiza-
tion. Due to the fine details in the random profile of rough surfaces,
a rather refined discretization has to be used. In addition, the Monte
Carlo approach typically needs many thousands of solves to get sta-
tistically accurate results.

A non-Monte-Carlo method, the Stochastic Integral Equation
(SIE) Method, was proposed in [7] to address these difficulties.
The SIE method can compute the mean and the variance of 3D
capacitance with just one solve and it only discretizes the nominal
smooth surfaces. A crucial assumption, the uncorrelatedness be-
tween charge density and Green’s function, is first used in [7] to
avoid the classical problem of how to express the average of the
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Figure 1: One conductor over a ground plane. The top and the
bottom surfaces are rough and the side walls are smooth.

product of two random functions [8]. Then a second-order correc-
tion scheme based on the Taylor expansion is used to compensate
for the error introduced by the uncorrelatedness assumption. How-
ever, this leads to a method with O(N4) overall computational com-
plexity, where N is the number of panels on the nominal smooth
surfaces.

In this paper, we propose several novel matrix sparsification tech-
niques. The combination of these techniques substantially reduces
the computational cost from O(N4) to O(Nlog2(N)). For conve-
nience of notation, we will use the name Direct Stochastic Integral
Equation Solver for the method in [7], and Fast Stochastic Integral
Equation Solver (FastSies) for the ideas presented in this paper.
2. DIRECT SIE SOLVER
In this section, we briefly review the direct Stochastic Integral Equa-
tion Solver proposed in [7]. For the sake of clarity, we use a simple
2D capacitance problem, a single conductor over a ground plane
shown in figure 1, to explain the basic ideas in [7].

Taking the ensemble average on both sides of the governing equa-
tion for the capacitance extraction problem, and assuming that the
charge density distribution is uncorrelated to Green’s function, we
obtain
∫

˜∂D1

dl̃(x′,y′)
< ρ̃(x′,y′) >

ε0
< G̃(x′,y′;x,y) >= 1, (x,y) ∈ ˜∂D1,

(1)
where < G̃(x′,y′;x,y) > is the ensemble average Green’s function
[7], and ˜∂D1 is the nominal smooth surface of the conductor in
figure 1. We can use a standard technique such as Galerkin to dis-
cretize (1) and obtain

[Ā] < ρ̃(0) >= L̃, (2)

where

Āk, j =
∫

∆̃k

dl̃(x,y)
∫

∆̃ j

dl̃(x′,y′) < G̃(x′,y′;x,y) > (3)
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and the entries of vector L̃ in (2) are the size of panels, such as ∆̃k
and ∆̃ j, on the nominal smooth surfaces. One of the main contribu-
tions in [7] is to demonstrate that the uncorrelatedness assumption
only produces a zero-th order term in the Taylor expansion of the
actual mean charge density. This is why we use < ρ̃(0) > instead
of < ρ̃ > in (2). A second-order term is used in [7] to compensate
for the error introduced by the uncorrelatedness assumption. Hence
the mean capacitance is

< C > = L̃T < ρ̃ >� L̃T (< ρ̃(0) > + < ρ̃(2) >)

= < C(0) > + < C(2) >, (4)

where the zero-th order mean capacitance < C(0) > can be eas-
ily computed from the solution of (2). It is shown in [7] that the
second-order term < C(2) > is

< C(2) > � trace(Ā−T B), (5)

and the variance is

Var{C} � < ρ̃(0) > B < ρ̃(0) >, (6)

where



b1
b2
...

bN


 =




F11 · · · F1N

...
. . .

...
FN1 · · · FNN







< ρ̃(0)
1 >< ρ̃(0) >

< ρ̃(0)
2 >< ρ̃(0) >

...

< ρ̃(0)
N >< ρ̃(0) >



(7)

Fi j
nm = < (Ai j− Āi j)(Amn− Āmn) >

= < Ai jAmn >−Āi jĀmn, i, j,m,n,= 1,2, ...,N, (8)

bi is the i-th column of matrix B, Ai j and Amn are the entries of the
system matrix from the original governing integral equation before
the ensemble average is taken in (1), and N is the number of panels
used to discretize the nominal smooth surface.

Equation (8) implies that the size of matrix F is N2×N2. This
means that calculating all bi in (7) needs O(N4) work. In addition,
since both Ā and B are dense, calculation of < C(2) > in (5) needs
O(N3) work. And finally, calculating Var{C} in (6) needs O(N2)
work. All these make it very time-consuming to use the Direct
Stochastic Integral Equation Solver in [7] to analyze even a simple
3D structure.

3. OUTLINE OF FASTSIES
In order to make the Stochastic Integral Equation Method efficient
enough to model rough surfaces of realistic 3D structures, we have
proposed three steps to reduce the overall computational complex-
ity from O(N4) to O(Nlog2(N)). The outline of these steps are
enumerated in this section. The details will be given in the sections
that follow.

1. Sparsification of Ā and Ā−T

If we use Galerkin method to discretize the integral operator
in (1), then matrix Ā in (2) and its inverse Ā−1 in (5) are
symmetric. Hence in the remaining part of this paper, we
will make no distinction between Ā−T and Ā−1.

We directly apply the Hierarchical Matrix method in [9, 10]
to find a sparse representation for Ā and Ā−1 in O(Nlog(N))
and O(Nlog2(N)) time, respectively.

2. Sparsification of matrix B and F
We first reduce the number of nonzeros in matrix F from
O(N4) to O(N3) by exploiting the fact that the correlation

length on rough surfaces is much shorter than typical feature
sizes of interconnects. In view of (7), this implies that the
cost of computing B has been reduced from O(N4) to O(N3).
We then propose a novel combined sampling technique in-
spired by the Hierarchical Matrix method to reduce the work
needed for B from O(N3) to O(Nlog2(N)) and obtain a Hi-
erarchical Matrix representation of B.

3. Compute trace(Ā−1B)
Using the Hierarchical Matrix representation of Ā−1 and B,
we can compute <C(2) > in (5) and Var{C} in (6) in O(Nlog(N))
time.

4. SPARSIFICATION OF Ā AND Ā−1

Though the evaluation of the ensemble average Green’s function
< G̃(x′,y′;x,y) > in (1) for each pair of source point and evaluation
point involves a two-fold ensemble average integral [7], it turns out
that < G̃(x′,y′;x,y) > is still a rather smooth function of (x′,y′) and
(x,y) on the nominal smooth surfaces, just like an ordinary Green’s
function. Hence one can directly use existing fast integral equation
solvers such as Fast Multipole [11], Hierarchical SVD [12], Pre-
corrected FFT [13] and Hierarchical Matrix (H-matrix) method [9,
10] to calculate the zero-th order mean charge density < ρ̃(0) > in
(2).

However, when it comes to the sparse representation of Ā−1, the
options are very limited. It is shown in [9, 10] that the H-matrix
method can be used to construct an accurate sparse representation
of the inverse of a discretized integral operator in O(Nlog2(N))
time. The accuracy can be good enough to solve equations like (2)
directly. A somewhat similar idea is also used in [14]. The sparse
representation of matrix inverse only has O(Nlog(N)) nonzeros
and is derived from the sparse representation of the original ma-
trix. It is for this reason that we have decided to use the H-matrix
method to sparsify both Ā and Ā−1 in this paper. In the follow-
ing we review one of the key steps in the H-matrix method, the
low-rank decomposition. This is also used in the Hierarchical SVD
method [12].

A numerically low-rank matrix Q can be written as [10, 12]

Q�W TV, Q ∈ R M×M , W,V ∈ R r×M , (9)

where r is the approximate numerical rank of Q. A number of
heuristics to construct this WV decomposition have been proposed,
such as the rank-revealing QR decomposition in [12] and the adap-
tive low-rank approximation in [15]. We do not intend to repeat
these two algorithms here. But it suffices to point out that both
methods need access to r columns and r rows of matrix Q in (9)
and both methods have been claimed to access only O(Nlog(N))
entries in a hierarchically low-rank matrix of size N×N in order to
construct its sparse representation.

5. SPARSIFICATION OF MATRIX B AND F
We have made two basic assumptions about the profile of rough
surfaces.

1. There is no over-hang, i.e., the height fluctuation is a single-
value function of the location on the nominal smooth surface.
We believe this assumption is very reasonable given the sur-
face roughness is mainly caused by electro-deposition [1].

2. The profile is described by the stationary Gaussian stochas-
tic process. To our best knowledge, little data is available
to determine the most appropriate mathematical models for
rough surfaces of 3D interconnects. The stationary Gaussian
stochastic process has been used extensively in rough surface
scattering [16] perhaps for its mathematical simplicity.
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5.1 Exploit the Short Correlation Length
We again use the simple 2D example shown in figure 1 to explain
the basic idea. As it will become clear soon, this idea can be easily
extended to 3D cases.

The joint p.d.f of stationary Gaussian stochastic processes is the
joint normal, and its Gaussian correlation function is [17]

C(ξ) = exp(− ξ2

η2 ), (10)

where η is correlation length. In this section we show how to spar-
sify matrix F by using the fact that the correlation function drops
exponentially fast with the increase of distance between two points
on the same rough surface.

There are four panels involved in the expression for Fi j
mn in (8).

Here we focus on the case where these panels are all on the top
side of the conductor in figure 1 and hence the height fluctuation of
all four panels is along the y direction. Other cases can be treated
similarly. Hence we have

< Ai jAmn > =
∫

∆̃i

dxi

∫

∆̃ j

dx j

∫

∆̃m

dxm

∫

∆̃n

dxn

∫ +∞

−∞
dhi

∫ +∞

−∞
dh j

∫ +∞

−∞
dhm

∫ +∞

−∞
dhn

P4(hi,h j,hm,hn;xi,x j,xm,xn)
G(x j,b+h j;xi,b+hi)G(xn,b+hn;xm,b+hm)

�
∫ +∞

−∞
dhi

∫ +∞

−∞
dh j

∫ +∞

−∞
dhm

∫ +∞

−∞
dhn

P4(hi,h j,hm,hn; x̄i, x̄ j, x̄m, x̄n)Ai jAmn, (11)

where (x̄i,b),(x̄ j,b),(x̄m,b),(x̄n,b) are the nominal position of the
centroids of panels i, j,m and n, and hi,h j,hm,hn are the height fluc-
tuations. The approximate equality is due to the change of order in
panel integration and ensemble average integration. Function P4 is
the joint Gaussian distribution. To facilitate the following discus-
sion, we define respectively set near(i) and set f ar(i) as

near(i) = {panel k | |x̄i− x̄k| ≤ 3η} (12)

f ar(i) = {panel k | |x̄i− x̄k|> 3η}. (13)

where x̄i and x̄k are respectively the centroids of panel i and k. It is
straightforward to show that

j ∈ near(i)⇒ i ∈ near( j) (14)

j ∈ f ar(i)⇒ i ∈ f ar( j). (15)

In addition, it is also easy to show that

n ∈ near( j), i ∈ f ar( j)⇒ i ∈ f ar(n) (16)

is almost always true. In view of (10), we have

j ∈ f ar{i}⇒ |x̄i− x̄ j| ≥ 3η

⇒ C(|x̄i− x̄ j|)≤ 1.24×10−4⇒C(|x̄i− x̄ j|)� 0. (17)

Therefore,




m ∈ f ar{i}
n ∈ f ar{i}
m ∈ f ar{ j}
n ∈ f ar{ j}

⇒





C(|x̄i− x̄m|)� 0
C(|x̄i− x̄n|)� 0
C(|x̄ j− x̄m|)� 0
C(|x̄ j− x̄n|)� 0

. (18)

In other words, the height fluctuations hi and h j are approximately
uncorrelated to hm and hn. Since their joint p.d.f P4 is Gaussian,
hi and h j are approximately independent of hm and hn. Hence Ai j ,
a function of hi and h j , is approximately independent of Amn, a
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Figure 2: Typical sparsity pattern of the sparsified matrix Fi j.
Here the total number of panels is 50, i = 34 and j = 14, and
a rough surface segment of 3η long contains p = 2 panels. The
nonzero entries are categorized into three regions marked by +
(region I), o (region II) and ∗ (region III), respectively.

function of hm and hn [17]. Therefore, we have < Ai jAmn >�<

Ai j >< Amn >= Āi jĀmn and Fi j
nm � 0 immediately follows from

(8).
It should be pointed out that (18) would be exact if panel pair i

and j are on the top surface of the conductor in figure 1 and panel
pair m and n are on the bottom surface, or if they are on differ-
ent conductor surfaces in the case of multiple conductors. For 3D
interconnects with multiple conductors, this is expected to be the
majority case. Hence the error introduced by this scheme is quite
insignificant.

We assume that a rough surface segment of 3η long contains
at most p panels. Since η is independent of the total number of
panels, so is p. The approximation in (18) implies that there are
at most 4p + 2 non-zero rows and columns in each sparsified Fi j.
A typical sparsity pattern of the sparsified matrix Fi j is shown in
figure 2, where it is assumed that the indexes of the spatially close
panels are also close to each other. The natural panel ordering for
2D structures always satisfies this. However, a panel ordering for
3D surfaces may not. But this does not change the fact that matrix
Fi j can be approximated by a sparse matrix. Now it is clear that the
sparsified matrix block Fi j has O(N) non-zero entries and the total
number of non-zero entries in the sparsified matrix F is O(N3).

5.2 Combined Sampling to Sparsify B

As will be shown in section 6, a sparse representation of matrix B
is essential to efficiently compute trace(Ā−1B). However, finding
this representation is unconventional because matrix B is not from
a discretized integral operator, as shown in (7) and (8). It is shown
in the appendix that the matrix entry Bim scales approximately as

1
rim

when m∈ f ar(i), where rim is the distance between panels i and
m. This implies that it is possible to use either the H-matrix [10] or
the hierarchical SVD [12] to sparsify matrix B. In view of (7), each
column vector bi is

bi =
N

∑
j=1

Fi j < ρ(0) >< ρ(0)
j >

=
[

f i1 f i2 · · · f iN
]
< ρ(0) >,

= [M(i)] < ρ(0) > (19)

where

f i j = Fi j < ρ(0) >, j = 1,2, · · · ,N. (20)
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As will be shown in the appendix, matrix entry M(i)
m j also scales

approximately as 1
rm j

when m∈ f ar( j). So we can construct the H-

matrix for M(i) and calculate M(i) < ρ(0) > in O(Nlog(N)) time.
But in constructing the H-matrix for B, usually only a small fraction
of bi is sampled. Unfortunately, calculation of even a small frac-
tion of bi still involves H-matrix construction for the whole matrix
M(i), which takes O(Nlog(N)) time. 1 Hence the total time would
be O(N2log(N)) if the H-matrix of the whole matrix M(i) is con-
structed for i = 1,2, ...,N.

In this section, we propose a so-called combined sampling pro-
cess to substantially reduce this cost. The key idea is to combine
small segments of vector bi for different i into a long vector and
compute this long vector in one go. In order to focus our attention
on the main ideas, we deliberately use a trivially simple example in
this section to explain this combined sampling process. As it turns
out, the algorithm directly extends to more general cases.

5.2.1 Standard sampling process
Assume that matrix B has a two-level H-matrix representation shown
in figure 3, where Ri(i = 1,2, ...,6) are low-rank matrices and Di(i =
1,2,3,4) are full-rank matrices. Further more, assume that the size
of matrix B is N×N = 32× 32 and the rank of all Ri is the same
r = 2. Consequently, the size of matrix Di is 8× 8. It should be
pointed out that the actual values of N and r are unimportant, we
use them here just for convenience of notation.

Each low-rank block Ri in figure 3 is decomposed in the WV
form shown in (9). It should be noted that this decomposition is
not unique, one can scale W with an arbitrary factor α and scale V
with 1

α . For simplicity, we assume here that both W and V have
been normalized such that the decomposition is unique. It is easy
to check that 




Q1 = QT
2

Q1 = W T
1 V1

Q2 = W T
2 V2

⇒
{

W1 = V2
V1 = W2.

(21)

In view of (7) and (8), it is relatively straightforward to check that
matrix B is symmetric. Therefore, the low-rank blocks in figure 3
satisfy R1 = RT

2 , R3 = RT
4 and R5 = RT

6 . Let the WV decomposition
of Ri(i = 1,2, ...,6) be

Ri = W T
i Vi, Ri ∈ R 8×8, Wi,Vi ∈ R 2×8, i = 1,2,3,4. (22)

Ri = W T
i Vi, Ri ∈ R 16×16, Wi,Vi ∈ R 2×16, i = 5,6. (23)

In view of (21), we have

V1 = W2,V2 = W1 (24)

V3 = W4,V4 = W3 (25)

V5 = W6,V6 = W5. (26)

Hence we only need matrices Wi(i = 1,2, ...,6). Matrices Vi(i =
1,2, ...,6) are redundant.
1Suppose we want to compute y = Ax, where A corresponds to
a discretized integral operator with 1

r kernel. It is interesting
that all well-known fast solver algorithms can not do better than
O(N) when only one entry of y is needed, despite the fact that all
these algorithms can compute the whole vector y with N entries
in O(N) or O(Nlog(N)) time. The multipole expansion in Fast
Multipole Method, sampling in hierarchical SVD, panel clustering
in H-matrix method, and direct matrix setup in Pre-corrected FFT
method involve all N source panels, regardless of how many en-
tries in y are to be computed. This initialization cost is amortized
over all N entries of y. But if only a small number of entries in y is
needed, then the overhead of initial setup is as expensive as direct
calculation of those few entries in y.

D1 R1

R2
R5

R6
R3

R4

D2

D3

D4

Figure 3: Two-level H-matrix representation of matrix B. Ri is
the low-rank matrix and Di is the full-rank matrix.

5.2.2 Combined sampling process
In order to obtain each Di, we need to compute 8 column vectors in
B. Hence to get all Di(i = 1,2,3,4), we effectively have to compute
the whole matrix B. Consider putting Di into a big matrix as follow

T1 =




D1
D2
D3
D4


 =




b̃1 b̃2 · · · b̃8
b̃9 b̃10 · · · b̃16
b̃17 b̃18 · · · b̃24
b̃25 b̃26 · · · b̃32


 , (27)

where b̃i is one quarter of bi with suitably selected entries. For
example, b̃1 = b1(1 : 8), b̃9 = b9(9 : 16), b̃17 = b17(17 : 24) and
b̃25 = b25(25 : 32). Here, we have used Matlab matrix notation.
Clearly, the size of matrix T1 is 32×8. Therefore, instead of sam-
pling the whole matrix B, we only need to compute 8 column vec-
tors in T1.

As explained before, to obtain the low-rank representation of
Ri, we need to sample two column vectors in B. Consider putting
Ri(i = 1,2,3,4) into a big matrix as

T2 =




R1
R2
R3
R4


 =




W T
1 V1

W T
2 V2

W T
3 V3

W T
4 V4


 . (28)

To obtain Wi(i = 1,2,3,4), we just need to compute

S1 =




b̃9 b̃10
b̃1 b̃2
b̃25 b̃26
b̃17 b̃18


 , (29)

where b̃i is again one quarter of bi with suitably selected entries.
The sampling column indexes such as 9,10,1,2 and so on should be
carefully picked using the algorithms in [12, 15]. These specific
numbers are used here just for illustration purpose. Therefore, in-
stead of sampling a total of 8 column vectors in matrix B, we only
need to compute 2 column vectors in S1.

Finally, to obtain the low-rank representation of Ri(i = 5,6), we
need to sample two column vectors in B. Consider putting Ri(i =
5,6) into a big matrix as

T3 =
[

R5
R6

]
=

[
W T

5 V5
W T

6 V6

]
. (30)

To obtain Wi(i = 5,6), we just need to compute

S2 =
[

b̃17 b̃18
b̃1 b̃2

]
, (31)

where b̃i is one half of bi with suitably selected entries. Therefore,
instead of sampling a total of 4 column vectors in matrix B, we only
need to compute 2 column vectors in S2.
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Figure 4: Location of sampled columns in matrix B and their
compressed-row format. Due to symmetry of B, only columns
need to be sampled.
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Figure 5: Relation between column sampling for B (on m− i
plane) and the hierarchical structure of M̃ (on m− j plane).
Each slice on m− j plane represents one matrix M̃ and is to
be multiplied with < ρ(0) > to obtain the corresponding sam-
pled column on m− i plane . The number of slices is equal to
the number of sampled columns in figure 4.

In view of (19), the combined sampling in (27), (29) and (31)
boils down to computing a combined vector in the form of

b̃ =




b̃α
b̃β
...

b̃γ


 =




M̃(α)

M̃(β)

...
M̃(γ)


 < ρ(0) >= M̃ < ρ̃(0) >, (32)

where α, β and γ represent the column indexes in (27), (29) and
(31), and M̃(α), M̃(β) and M̃(γ) are respectively a part of M(α), M(β)

and M(γ) defined in (7) with suitably selected rows. As will be
shown in the appendix, matrix entry M̃m j scales approximately as

1
rm j

when m ∈ f ar( j), just like matrix entry M(i)
m j . Hence the H-

matrix method can be used to calculate b̃ in O(Nlog(N)) time. This
immediately implies that the low-rank representation for Ri in (22)
and (23) and the small full-rank matrices Di in (27) can be com-
puted efficiently.

5.2.3 A graphical interpretation of the combined sam-
pling process

In summary, in order to construct the two-level H-matrix of B in
figure 3, we need to compute T1 in (27), S1 in (29) and S2 in (31), a
total of 12 column vectors. Each one of these 12 column vectors in-
volves the H-matrix construction of a matrix M̃. It should be noted
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Figure 6: Location of sampled columns and rows in matrix M̃
(front m− j plane) and their relation to entries in matrix Fi j.
Each “thread” along index n direction represents one row in
matrix Fi j . The entry M̃m j in the shaded region on the m− j
plane is the result of inner product between the “thread” and
< ρ(0) >. Notice that most of the “threads” only have a small
number of nonzeros, as implied by figure 2.

that matrix M̃ is asymmetric. Hence unlike treatment of matrix B
in section 5.2.1, we have to access 12 columns and 12 rows in M̃
to construct its H-matrix.

The column sampling of matrix B is shown in figure 4. Figure
5 shows the relation between column sampling for B and the H-
matrix of M̃. And figure 6 shows the sampled entries in matrix M̃
and their relation to the entries of matrix Fi j. These are three main
components in the combined sampling process.

By definition, the number of non-zeros in figure 4 is equal to the
number of sampling entries in the Hierarchical SVD or H-matrix.
It has been shown that this number is O(Nlog(N)) [12, 10]. Since
there is no empty row in figure 4 and each row has roughly the same
number of non-zeros, the average number of nonzeros per row or
the number of columns in the compressed-row format in figure 4
is O(log(N)). This is the total number of matrices M̃ in figure 6.
Construction of the H-matrix representation for each M̃ as well as
carrying out the matrix-vector product M(i) < ρ(0) > in (19) needs
O(Nlog(N)) work. Hence the total work is O(Nlog2N).

6. COMPUTING T RACE(Ā−1B)
Having found the H-matrix representation for matrix Ā−1 and B, we
are ready to present an efficient algorithm to compute trace(Ā−1B).
As explained in [10], the clustering tree for Ā−1 is derived from that
for Ā. Because both Ā and B are derived from the same set of panels
on the same surfaces and the off-diagonal entries of both matrices
scale as 1

r , it is safe to assume that the panel clustering trees for
them are the same. Due to block matrix manipulation such as add,
multiplication and rank-k truncation, the clustering tree for Ā−1 can
be different from that of Ā at leaf level, though most of the two trees
should be the same. Hence matrix Ā−1 and B may or may not have
the same leaf blocks. We will cover both cases in this section.
Block partition We will first present a generic approach. Sup-
pose we want to compute trace(PQ) where P,Q ∈ R N×N and their
entries are arbitrary. Using a binary block partition, we have

trace(PQ) = trace(
[

P11 P12
P21 P22

][
Q11 Q12
Q21 Q22

]
)

= trace(
[

P11Q11 +P12Q21 ∗
∗ P21Q12 +P22Q22

]
)

= trace(P11Q11)+ trace(P12Q21)
+trace(P21Q12)+ trace(P22Q22). (33)

If we keep on recursively partitioning in this fashion, we can com-
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pute the result in O(N2) time. This, of course, is the same as when
we compute the trace directly. But we can do much better this way
if both P and Q have low-rank representations. Let Ps and Qs be
one of the sub-blocks at a certain level down to the partition tree,
just like P11 and Q11 in (33).
Low-rank matrix block times low-rank matrix block Assume
we have a low-rank representation for both Ps and Qs

Ps = UPV T
P , Ps ∈ R M×M , UP,VP ∈ R M×k

Qs = UQV T
Q , Qs ∈ R M×M , UQ,VQ ∈ R M×k, (34)

where M is the size of blocks Ps and Qs and k is the approximate
rank of Ps and Qs, then we have

trace(PsQs) = trace([UP(V T
P UQ)]V T

Q ). (35)

If we compute the trace in the order enforced by the parenthesis in
(35), then it only takes 2Mk2 +Mk work. This is comparable to the
cost of a matrix-vector product, 2Mk.
Low-rank matrix block times full-rank matrix block Assume
Ps is in low-rank representation as in (34) and Qs has full rank, then
we have

trace(PsQs) = trace(UP(V T
P Q)). (36)

It is easy to check that computing trace(PsQs) takes M2k + Mk
work. This is comparable to the cost of full-rank matrix-vector
product, M2. The same is true when the roles of Ps and Qs are
switched.
Full-rank matrix block times full-rank matrix block If both
Ps and Qs have full rank, the calculation of trace(PsQs) takes M2

work, same as the cost of full-rank matrix-vector product, M2.
Total cost It is shown in [9, 10] that the matrix vector prod-
uct takes O(Nlog(N)) work if the matrix is in H-Matrix form. As
shown above, the cost of computing trace is different from that of
matrix vector product by about a factor k. Since k << M in H-
matrix form and k is a constant independent of M, computing the
trace also takes O(Nlog(N)) work.

7. NUMERICAL RESULTS
In this section we use numerical experiments to separately test the
validity of the approximations made in each key step outlined in
section 3. All examples are run on a Pentium IV desktop PC with
2GB memory.
A) Sparsification of Ā and Ā−1 We can compute the zero-th or-
der mean capacitance by either solving (2) iteratively using the H-
matrix of Ā or by computing < ρ̃(0) >= Ā−1L̃ using the H-matrix
of Ā−1. To test the accuracy, we first analyze a small 1× 1mm
3D plate over a ground plane and compare the results in table 1 to
those in [7]. The good agreement confirms the accuracy of the H-
matrix construction for both Ā and Ā−1. For larger 3D plates of size
5× 5mm, 10× 10mm, 15× 15mm and 20× 20mm, the direct SIE
method in [7] becomes infeasible because it consumes more than
2GB memory. So we only compare the results obtained from solv-
ing (2) iteratively and computing < ρ̃(0) >= Ā−1L̃. This is shown
in table 2. The good agreement further confirms the accuracy of
the H-matrix for Ā−1 and hence it can be reliably used to compute
trace in (5).

The CPU time used for the sparsification of Ā and Ā−1 are plot-
ted against Nlog(N) and Nlog2(N) curves respectively in figure 7.
Clearly the CPU time grows as expected. It is worth noting that
the extra CPU time for constructing the H-matrix of Ā−1 is only a
small fraction of the CPU time for constructing the H-matrix of Ā.

We can certainly use Monte Carlo method to compute the mean
capacitance of the large 3D plates used in table 2. But due to fine
details on the rough surfaces, we have to use at least 8 panels per
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Figure 7: CPU time for sparsification of Ā (solid line with o)
and Ā−1 (dashed line with *), and for computing trace(ĀĀ−1)
(dotted line with diamond). The solid line and dotted line with-
out any symbol are the Nlog(N) curves normalized differently.
The dashed line without any symbol is the Nlog2(N) curve.

Table 1: Zero-th order mean capacitance of a 1×1mm 3D plate
over a ground plane. Unit:pF

η σ SIE I [7] solve (2) iteratively < ρ̃(0) >= Ā−1L̃
0.1 0.1 63.850 63.899 63.860

correlation length. Assuming four thousand Monte Carlo simula-
tions are necessary to obtain statistically accurate results, none of
the large examples in table 2 can be completed in less than one
week, even if the H-matrix method is used as its core engine. It is
clear that FastSies is much more efficient than Monte Carlo method.
B) Exploit short correlation length We have analyzed the same
3D plate example in table 1 using the O(N3) algorithm covered in
section 5.1. This gives the more accurate mean capacitance with
the second-order term < C(2) > in (4). The results are compared
in table 3 to those obtained using the O(N4) algorithm presented
in [7] . It is clear that the approximation in 5.1 section introduces
very little error.
C) B is hierarchically low rank We use a circular wire over a
ground plane example directly from [7]. The singular values of the
4 sub-blocks of the matrix B are shown in figure 8. Furthermore,
the singular values of the 4 sub-blocks of the matrix block B11, a
sub-block of B, are shown in figure 9. It is clear that matrix B is
hierarchically low rank.
D) M̃ is hierarchically low rank We use the same circular wire
over a ground plane example as the previous example. As shown in
(32), the combined matrix M̃ consists of rows from different M(i).
We have filled three different combined matrices

M̃1 =




M̃(1)

M̃(17)

M̃(33)

M̃(49)


 M̃2 =




M̃(2)

M̃(18)

M̃(34)

M̃(50)


 M̃3 =




M̃(1)

M̃(2)

...
M̃(64)


 , (37)

where M̃3 is an extreme case in the sense that each of its rows is

Table 2: Zero-th order mean capacitance of a few large 3D
plates over a ground plane. Unit:pF. η = 0.1mm and σ = 0.1mm.

size #panel solve (2) iteratively < ρ̃(0) >= Ā−1L̃
5×5 3200 749.604 749.603
10×10 12800 2508.42 2508.44
15×15 28800 5246.21 5246.42
20×20 51200 8953.56 8954.01
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Figure 8: Distribution of the singular values of the four sub-
blocks of the matrix B, circular wire over a ground plane.
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Figure 9: Distribution of the singular values of the four sub-
blocks of the matrix B11, circular wire over a ground plane.

taken from a different M̃(i), i = 1,2, ...,64. The singular values of
the 4 sub-blocks of matrix M3 are shown in figure 10. The singular
values of the 4 sub-blocks of M11

3 , one of the diagonal blocks of
M3, are shown in figure 11. Clearly, matrix M̃3 is hierarchically
low-rank. Though not shown here, the same is true for matrices M̃1
and M̃2.
E) Compute trace in O(Nlog(N)) time A reliable way to check
the algorithm in section 6 is to use it to compute trace(ĀĀ−1). The
expected result is obviously the size of matrix Ā. Table 4 shows
the computational results and the CPU time is plotted in figure 7
against Nlog(N) curve. Clearly the algorithm is very accurate and
its CPU time grows as O(Nlog(N)).

8. CONCLUSIONS AND FUTURE WORK
We have proposed three key steps to reduce the computational com-
plexity of a previously proposed direct stochastic integral equa-
tion solver from O(N4) to O(Nlog2(N)). The accuracy and CPU
time of the key elements in each step have been individually vali-
dated by carefully designed numerical experiments. These experi-
ments clearly show that the ideas presented in this paper can enable
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Figure 10: Distribution of the singular values of the four sub-
blocks of the matrix M̃3.
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Figure 11: Distribution of the singular values of the four sub-
blocks of the matrix block M̃11

3 .

Table 3: Up to second-order mean capacitance of 3D plate
calculated with or without the approximation in section 5.1.
Unit:pF.

η σ Monte Carlo with without [7]
0.2 0.1 62.656(4000run) 62.87 62.706
0.1 0.1 66.237(4000run) 65.95 65.471

the new fast stochastic integral equation solver (FastSies) to attack
large and realistic problems.

Due to the close connection between the numerical techniques
for capacitance extraction and impedance extraction, as demon-
strated in [18, 12], we believe that the FastSies will be a very use-
ful tool in addressing the more complicated impedance extraction
problems in the presence of conductor surface roughness.
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APPENDIX
In this appendix, we show that the matrix entry Bim, or bi(m) in (19), scales
as 1

rmi
when m ∈ f ar(i), and M̃m j in (32) scales as 1

rm j
when m ∈ f ar( j).

The nonzero entries in figure 2 are categorized into three regions marked
by + (region I), o (region II) and ∗ (region III), respectively. These regions
are

1. Region I: { Horizontal sub-region | m ∈ near(i) and n ∈ f ar( j) } or
{ Vertical sub-region | m ∈ f ar( j) and n ∈ near(i) }

2. Region II: { Horizontal sub-region | m ∈ near( j) and n ∈ f ar(i) } or
{ Vertical sub-region | m ∈ f ar(i) and n ∈ near( j) }

3. Region III: { m ∈ near( j) and n ∈ near(i) } or { m ∈ near(i) and
n ∈ near( j) }

For a fixed panel i, it is obvious that most other panels belong to the set
f ar(i). Hence we only focus on matrix blocks Fi j with i ∈ f ar( j). Using
properties in (14)-(16), one can show that the regions I and II in these matrix
blocks satisfy

1. Region I: j ∈ f ar(i), j ∈ f ar(m) and j ∈ f ar(n)

2. Region II: i ∈ f ar( j), i ∈ f ar(m) and i ∈ f ar(n)

Following the same reasoning in (17)-(18), we immediately obtain

P4(hi,h j,hm,hn; x̄i, x̄ j, x̄m, x̄n)� P3(hi,hm,hn; x̄i, x̄m, x̄n)P1(h j) (38)

in region I, and

P4(hi,h j,hm,hn; x̄i, x̄ j, x̄m, x̄n)� P3(h j,hm,hn; x̄ j, x̄m, x̄n)P1(hi) (39)

in region II, where function P1 and P3 are Gaussian and joint Gaussian,
respectively . Let

Fi j = Hi j
1 +Hi j

2 +Hi j
3 (40)

where the entries in sparse matrices Hi j
1 , Hi j

2 and Hi j
3 respectively belong to

region I, II and III in figure 2. Since matrix Hi j
3 is very sparse and its entries

are usually one to two orders of magnitude smaller than those of Hi j
1 and

Hi j
2 , we neglect its contribution. In view of (20), we have

f i j � (Hi j
1 +Hi j

2 ) < ρ(0) >= f i j
1 + f i j

2 . (41)

We first focus on the vertical sub-region of region I. To conduct the asymp-
totic analysis, we only need to look at the off-diagonal entries i.e., m ∈

Table 5: Asymptotic behavior of terms in (41)
f i j
1 (m) f i j

2 (m)
rmi, m ∈ f ar(i) 1

rmi

1
rmi

rm j, m ∈ f ar( j) 1
rm j

1
rm j

f ar(n). By definition, we have n ∈ near(i) in the vertical sub-region of re-
gion I. From property (16) it is easy to check that this implies m ∈ f ar(i).
Similar to (38), we immediately obtain

P3(hi,hm,hn; x̄i, x̄m, x̄n)� P2(hi,hn; x̄i, x̄n)P1(hm). (42)

Substituting (42), (38) and (11) into (8) and in view of (40), we obtain

Hi j
1 (m,n) �

∫ +∞

−∞
dh jP1(h j)

∫ +∞

−∞
dhmP1(hm)

∫ +∞

−∞
dhi

∫ +∞

−∞
dhn

P2(hi,hn; x̄i, x̄n)Ai jAmn− Āi jĀmn (43)

for the vertical sub-region. Substituting (43) into (41), we obtain

f i j
1 (m) �

∫ +∞

−∞
dh jP1(h j)

∫ +∞

−∞
dhmP1(hm)

∫ +∞

−∞
dhiAi jV

i
m− Āi jV̄

i
m, (44)

where

V i
m = ∑

n∈near{i}

∫ +∞

−∞
dhnP2(hi,hn; x̄i, x̄n)Amn < ρ(0)

n > (45)

and

V̄ i
m = ∑

n∈near{i}
Āmn < ρ(0)

n > . (46)

We know the off-diagonal entries Amn and Āmn scales as 1
rmn

, where rmn is
the distance between panels m and n. Since n ∈ near{i} in (45), rni is very
small, as shown in (12). For the purpose of asymptotic analysis, panels n
and i can be considered as overlapping. Therefore, V i

m and V̄ i
m all scale as

1
rmi

. 2 This implies that f i j
1 (m) scales as 1

rmi
. The degeneration in (38) and

(42) makes f i j
1 (m) independent of rm j , as can be easily checked from (44).

Using the same analysis outlined above for the horizontal sub-region of
region I, one can also show that the corresponding entry f i j

1 (m) scales as
1

rm j
. By definition, m ∈ near(i) in the horizontal sub-region. So the asymp-

totic behavior of f i j
1 (m) in term of rmi is irrelevant here.

The actual asymptotic behavior of f i j
1 (m) is the total sum of the contri-

butions from both horizontal and vertical sub-regions. Hence f i j
1 (m) scales

as 1
rmi

(when m ∈ f ar(i)) and 1
rm j

(when m ∈ f ar( j)), respectively.

We have applied the same procedure to f i j
2 (m). The asymptotic behavior

of both f i j
1 (m) and f i j

2 (m) are listed in table 5.
In view of (19), the asymptotic behavior of Bim or bi(m) in terms of rmi

is the same as that of f i j
1 (m)+ f i j

2 (m). From table 5 it is clear Bim should
scale as 1

rmi
, except for the case where m ∈ near{i}. Hence matrix B is

hierarchically low rank, similar to a discretized integral operator with 1
r

kernel.
In view of (19) and (41), it is clear that the asymptotic behavior of M(i)

m j

in terms of rm j is the same as that of f i j
1 (m)+ f i j

2 (m). From table 5, M(i)
m j

should scale as 1
rm j

, except for the case where m ∈ near{ j}. Notice this is

independent of the index i, hence the combined matrix entry M̃m j should
also scale as 1

rm j
. In other words, matrix M̃ is hierarchically low rank,

similar to a discretized integral operator with 1
r kernel.

2The rapid variation in P2(hi,hn; x̄i, x̄n) has been absorbed into the
summation in (45) and becomes irrelevant.
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