
Throughput Optimal Task Allocation under Thermal
Constraints for Multi-core Processors ∗

Vinay Hanumaiah‡, Ravishankar Rao§, Sarma Vrudhula‡, and Karam S. Chatha‡
‡Computer Science and Engineering Department, Arizona State University, Tempe, AZ 85287, USA

§Synopsys, Inc., Mountain View, CA 94043, USA
‡{vinayh, vrudhula, kchatha}@asu.edu

§ravirao@asu.edu

ABSTRACT
It is known that temperature gradients and thermal hotspots
affect the reliability of microprocessors. Temperature is also
an important constraint when maximizing the performance
of processors. Although DVFS and DFS can be used to ex-
tract higher performance from temperature and power con-
strained single core processors, the full potential of multi-
core performance cannot be exploited without the use of
thread migration or task-to-core allocation schemes. In this
paper, we formulate the problem of throughput-optimal task
allocation on thermally constrained multi-core processors,
and present a novel solution that includes optimal speed
throttling. We show that the algorithms are implementable
in real time and can be implemented in operating system’s
dynamic scheduling policy. The method presented here can
result in a significant improvement in throughput over ex-
isting methods (5X over a naive scheme).

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—modeling techniques, performance attributes; B.8.2
[Performance and Reliability]: Performance Analysis
and Design Aids

General Terms
Algorithms, Performance, Design, Theory

Keywords
Thermal management, multi-core processors, task alloca-
tion, optimal throughput, thread migration

1. INTRODUCTION
∗This work was supported in part by NSF grant CSR-EHS
0509540, Consortium for Embedded Systems grant DWS
0086, and by a grant from Science Foundation Arizona
(SFAz) and Stardust Foundation.

While the processor industry is aggressively scaling the
number of cores on processors [3], power and thermal con-
straints pose a significant challenge to future multi-core pro-
cessors. Currently, there are up to 64 cores available com-
mercially on a single die [6]. The trend towards multi-core
strategy is motivated by the fact that multi-cores can achieve
higher performance at reduced core speeds by exploiting
thread-level parallelism within a given power budget. How-
ever there are many challenges that need to be addressed
in order to have hundreds or even thousands of cores in the
near future [3]. The die temperature has to be maintained
below the specified maximum temperature for safe and reli-
able operation of the processor. Cost and volume constrains
the packaging and cooling solutions, and this necessitates
the need to incorporate the Dynamic Thermal Management
(DTM) techniques.

The traditional focus of performance optimization has been
to maximize performance subject to constraints on power or
energy consumption. This is a different and easier prob-
lem than optimizing performance under thermal constraints
because the power budget is a single upper bound on the
total power consumed by all units in all cores, whereas the
thermal constraint is an upper bound that must be satis-
fied by each and every unit. Moreover, the relation between
power and speed is a much simpler one (simple algebraic)
than the temperature-speed relation (requires solution to
hundreds of equations). Thus the traditional power manage-
ment techniques such as Dynamic Frequency Scaling (DFS)
and Dynamic Voltage and Frequency Scaling (DVFS) must
also account for temperature.

1.1 Related Work
While there are DTM methods to guarantee optimal per-

formance in case of single core processors, the same is not
true in the case of multi-core processors, because of the
larger dimension of the problem. Local optimization for a
single core is not necessarily optimal for a multi-core pro-
cessor [20]. Apart from speed and voltage control, task mi-
gration or task-to-core allocation provides an additional di-
mension for performance optimization. Although a signifi-
cant body of research has recently started on the problems
of performance optimization of multi-cores under thermal
constraints [5, 8, 10, 13], there are no optimal methods that
incorporate task-to-core allocation.

A detailed comparison of various techniques aimed at gen-
eral purpose, single core processors appears in [4]. The prob-
lem of optimal speed control for a sequence of tasks on a
single core was addressed in [19]. DVFS with thermal con-

45.1

776

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC’09, July 26-31, 2009, San Francisco, California, USA
Copyright 2009 ACM 978-1-60558-497-3/09/07....10.00

straints for a periodic sequence of tasks on a single core was
addressed in [22]. In [12], the problem of off-line multi-core
speed control under thermal and power constraints is solved
through convex optimization. In [12, 22] the leakage depen-
dence on temperature, which substantially complicates the
temperature-power relation, is not considered. In [20], the
authors provided an online computational model to calcu-
late the speeds of cores, for both transient and steady-state
cases. Leakage dependence on temperature (LDT) is consid-
ered in [20] and an accurate thermal model (HotSpot [14])
is included. A comprehensive summary of thread migration
techniques is provided in [11, 13]. The authors of [8] pro-
posed a scheme called heat-and-run which moves threads
from over heated SMT cores to cooler cores for maximizing
performance. While this technique works when the num-
ber of tasks is less than number of cores and for processors
that have a temperature slack, it may not be optimal for
high performance processors where most of the cores operate
close to thermal maximum. In [5] various thermal manage-
ment techniques are studied, including OS based migration
controllers. They make use of multi-loop control, wherein
thread migration controls the outer loop, and DVFS makes
up the inner loop.

Previous studies on task migration methods [8,11,13] used
detailed cycle accurate simulators to determine the migra-
tion policies. The simulation times can be as large as tens
of hours. These are not suitable for thread assignment in
real time. Hence, there is a need to make use of accurate ar-
chitectural thermal models with suitable approximations so
that the run time of the algorithm is close to the migration
interval.

1.2 Main Contributions and Outline
In this paper we present a complete formulation of the

throughput-optimal task-to-core allocation problem under
thermal constraints. This turns out to be a computation-
ally expensive non-linear optimization problem, that cannot
be solved in real time. We then present a novel simplifica-
tion of the problem that allows us to compute the optimal
task assignment and throughput-optimal speed at the start
of each migration interval. This is then combined with a
throughput-optimal continuous speed function over the mi-
gration interval. The problem formulation includes a de-
tailed thermal model that accounts for thermal character-
istics of the functional units within each core, the thermal
interface material, the package and the intra-core and inter-
core heat flow. We demonstrate, through simulation, that
throughput improvements over a naive scheme can be as
high as 5X. The proposed algorithm is feasible for on-line
computation as it can be executed within a reasonable OS
scheduling interval of ≈ 5ms, for a large number of cores
and tasks (as much as 128 cores and 128 tasks).

The paper is organized as follows: Section 2 introduces
the system models and notations. It explains the HotSpot
model [14] and the piece-wise linear (PWL) model for decou-
pling LDT. The problem of transient throughput optimiza-
tion is introduced in Section 3. We also explain the structure
of the problem and assumptions made in order to reduce
the problem complexity. Section 4 contains a polynomial
time algorithm for maximizing the instantaneous through-
put. Finally Sections 5 and 6 present results and conclusion
respectively.

2. SYSTEM MODELS AND NOTATIONS

2.1 Performance Model
We consider a heterogeneous multi-core processor with a

queue containing nt non-identical tasks to be run on n cores.
We assume that each core i can be assigned an independent
speed si, which is normalized and can be continuously varied
over [0, 1]. We do not use dynamic voltage scaling in this
work for the following reasons: (i) speed control through
clock gating or fetch throttling can be activated with less
overhead, and (ii) supply voltages are already small and are
not expected to scale any further in future generations, and
this leaves a very small margins for scaling [21].

In our work we do not assume SMT (simultaneous multi-
threading) for the reasons of simplicity and also due to the
fact that simple single-context cores are expected to be more
power efficient [3]. We define the throughput of a multi-core
processor as the weighted sum of the speeds of all cores,
i.e. S =

R t

0
Σn

i=1wisi(t)dt. The weights could be the IPC
(instructions per clock cycle), the task priorities or any other
performance criterion that varies with tasks. For inactive
cores (those cores without tasks assigned), the weights wi =
0. When IPCs are used as weights, the throughput reduces
to instructions per second.

We assume that the threads run for a duration of at least
the die thermal constant (around few milliseconds). Class A
and Class B of NAS benchmarks [1] fall into this category.
This allows the thermal die capacitances to saturate and
hence they can be ignored without any significant loss of
accuracy.

2.2 Power and Thermal Models
We use the latest HotSpot thermal RC circuit model [14]

to model the thermal behavior of a processor. HotSpot uses
the duality between heat flow and electrical circuit phenom-
ena. Heat transfer and retaining capacity are represented by
resistances and capacitances respectively, while the heat gen-
erating sources are modeled through current sources. Fig-
ure 1 taken from [18] shows HotSpot thermal model for a
four core processor. Each core on the die is divided into sev-
eral blocks (4 shown), with the same division being applied
to the Thermal Interface Material (TIM). The heat spreader
and the heat sink are divided into a number of blocks as
shown. For a processor with n cores and m functional units
for each core, there will be nm blocks in the die, another nm
blocks in the TIM and 14 blocks in the package according to
HotSpot-4 model [14], for a total of N = 2nm + 14 blocks.

Execution of various tasks on cores creates a spatial and
temporal distribution of temperature on the die. Spatial
variations arise due to different circuit styles, their size, dif-
ferent core speeds, activity factor of tasks, etc., whereas,
temporal variations arise due to the time-varying nature
of the code and core speeds, context switching among the
threads, etc. The system power and temperature vectors1

are represented by P and T respectively. The power P is
the sum of the dynamic power component Pd and the leak-
age power component Ps. The dynamic power depends only
on speed s(t), whereas the leakage power depends only on
temperature T(t). Hence P = f(s(t),T(t)).

The relationship between the temperature vector T and

1All vectors are assumed to be column vectors and variables
in bold represent matrices.

777

1 2
34

56
7 8

910
11 12

13 14
1516

17 18
1920

2122
23 24

2526
27 28

29 30
3132

Spreader
layer

33

34

35

37
36

Heat sink
(+convection)

layer

38

39

40

41
42

43

44

45 46

Thermal interface
material layer

Die layer

Internal ambient

Figure 1: HotSpot thermal model for a four core
processor [18].

the power vector P is given by the following dynamic state-
space differential equation [7, 16]:

dT

dt
= AT + BP(s,T, t) (1)

Given a floorplan of a multi-core processor, the N × N
(N = 2nm + 14) matrices, A and B are determined from
HotSpot [7, 14] model. The vectors P and T are of length
N . However P only has nm non-zero components because
the remaining blocks of the TIM and the package do not
generate heat.

In order to decouple the cyclic dependency between power
and temperature, we need to linearize the non-linear relation
between leakage and temperature. From [20], we note that
the leakage power can be represented as Ps = Ps0+GLDTT,
where GLDT is a matrix whose elements represent the slopes
of the power-temperature curve. Let us define Pmax

d as
the vector of maximum power dissipation when s = 1n×1

(constant vector of 1’s). The dynamic power is given by
Pd(s) = diag(Pmax

d)Xs, where X is given by,

X(i, j) =

j
1, if block i belongs to core j and i ≤ nm,
0, otherwise,

The state space equation (1) can now be re-written in
standard state space form as follows:

dT

dt
= AT + B(Pd(s) + Ps0 + GLDTT)

= ÂT + B(Pd(s) + Ps0) (2)

where Â � A + BGLDT.

3. PROBLEM DEFINITION
Given a heterogeneous multi-core processor with n cores,

a weight vector w, power vectors Pmax
d (of all tasks) and

Ps0, conductance matrix G and spreader temperature Tspr,
find an optimal allocation of nt (non-identical) tasks on n
cores with optimal speeds of operation such that the total

throughput defined by 1
ts

R ts

0
wT s(t)dt is maximized over the

migration interval [t0, ts], subject to the constraints that the
temperature of no functional block is greater than the allowed
maximum temperature Tmax and frequency ranges over [0,
1].

max
s(t),M

1
ts

R ts

0
wT s(t) dt, (3)

s.t. dT
dt

= ÂT + B(Pmax
dt MT s(t) + Ps0), (4)

nX
i=1

M(i, j) = 1, j ∈ {1, . . . , nt}, (5)

ntX
j=1

M(i, j) = 1, i ∈ {1, . . . , n}, (6)

M(i, j) ∈ {0, 1}, i ∈ {1, . . . , n}, j ∈ {1, . . . , nt}, (7)

T(0) = T0, (8)

T(t) ≤ Tmax, ∀ 0 ≤ t ≤ ts, (9)

0n×1 ≤ s(t) ≤ 1n×1, ∀ 0 ≤ t ≤ ts (10)

where, Pmax
dt is a matrix whose columns contain Pmax

d of nt

tasks and is of dimension N × nt. T0 is the vector of initial
temperatures. M is the mapping/allocation matrix of size
n× nt. The elements of M are defined as follows:

M(i, j) =

j
1, if task j is assigned to core i,
0, otherwise,

Equation (4) represents a time-dependent non-linear con-
straint involving variables s(t) and M. Performing non-
linear optimization in real time is computationally not prac-
tical. This motivates us to simplify the problem as follows.

Problem Simplification: Owing to penalty of high mi-
gration overhead, the task allocation is done once in tens of
milliseconds. A significant simplification is obtained if we
restrict the problem to finding an allocation that maximizes
the instantaneous throughput at the start of the migration
interval. Then with those corresponding initial speeds, we
can find the throughput-optimal speed curve over the migra-
tion interval. Letting s0 denote the vector of initial speeds
at the start of a migration interval, the objective will be to
maximize the weighted sum of initial speeds, wT s0. In or-
der to solve for the initial speeds s0, we need to decouple
the dependence of M on s0 and vice-versa. In the following
sections we show how to decouple the above dependency by
making a few simple, but realistic assumptions.

4. OPTIMAL PLACEMENT ALGORITHM

4.1 Structure of HotSpot Conductance Matrix
We build multi-core floorplan from single core floorplans

with L2 caches surrounding these cores. Intel Core 2 Duo
processor has a similar floorplan. Given the geometric floor-
plan, one can calculate the conductance matrix G using
HotSpot thermal circuit model. Figure 2 taken from [18]
shows the sparsity plot of the conductance matrix for the
dual core Alpha processor constructed as explained above.
A dot in the plot corresponds to a non zero entry in the
matrix. We can see in the figure that most of the entries
are concentrated along the diagonal blocks of the core and
the TIM. The size of the blocks correspond to the number
of functional blocks m. These square diagonal blocks repre-
sent the lateral resistances of the core and TIM. The sets of

778

dots running in parallel to the main diagonal represent the
vertical resistances connecting the die and the TIM layers.
The vertical resistances between the TIM and the spreader
are shown by the vertical and the horizontal strip of dots in
the figure.

Caches separate the cores and they tend to be the coolest
parts of the die as they have larger die area and the result-
ing low power density and temperature [9]. This results in
smaller lateral resistances between cores as seen in Figure 2.

20 40 60 80

10

20

30

40

50

60

70

80

90

Core 1

Core 2

Core 1

Core 2

Spreader
Heatsink

Core 1 Core 2 Core 1 Core 2

Sp
re

ad
er

H
ea

ts
in

k

Vertical resistances
between die and TIM

Vertical
resistances

between TIM
and spreader

Lateral resistances
within die

Lateral resistance
between cores

Lateral
resistances

within TIM,
core 1

Vertical and
lateral

resistances
in spreader

and heatsink
layers

Die

Die

TIM

TIM

Figure 2: Plot of conductance matrix sparsity for
the constructed dual core Alpha floor plan [18].

Figure 3 taken from [18] shows the various components
of the conductance matrix shown in Figure 2. The diag-
onal components of the matrix are named Gdie and Gtim

corresponding to the die and the TIM sections of the chip.
The vertical conductances connecting the die to the TIM
are denoted by Gdie-tim and Gtim-die, which are identical as
it is the same conductance that connects both the die and
the TIM layer. Gtim-spr and Gspr-tim denote the conduc-
tances connecting the spreader and the TIM layer. Finally
the conductances in the package are denoted by Gpkg.

Gtim2-die2

Gtim1-die1

Gdie2-tim2

Gdie1

Gdie2

Gtim1

Gtim2

� 0

� 0

Gdie1-tim1

0

0

0

0

� 0

� 0

Gspr-tim1

0 0 0 0

0

0

0

0

Gtim1-spr

Gpkg

Core 1

Core 2

Core 1

Core 2

Heatsink

Core 1 Core 2 Core 1 Core 2

Spreader

Sp
re

ad
er

Heatsink

Gtim2-spr

Gspr-tim2

Die

TIM

Die TIM

Figure 3: Components of the thermal conductance
matrix G for the constructed Alpha dual core [18].

We make following observations based on the conductance
matrix shown in Figure 3:

• There are fewer lateral resistances between cores and
since the cores are surrounded by caches, the heat flow

between the cores can be neglected (as caches are the
cooler parts of the chip).

• The lateral thermal resistances are nearly four times
higher than the vertical resistances in the die and the
TIM layers [19]. Thus majority of the heat flow occurs
through the vertical resistances. Also since the vertical
thermal gradient is larger between the spreader and
the TIM than across the die, we can ignore the lateral
resistances.

• The TIM has lower thermal conductance than the sili-
con, which further reduces the heat flow in that layer.

Based on the above observations, we neglect the sparse blocks
of the matrix corresponding to inter-core die and TIM resis-
tances.

4.2 Computation of Die Temperatures
The total power dissipation in the processor is given by:

GT = Pd(s) + GLDT T + Ps0 (11)

Using Kirchhoff’s current law for the die and TIM layers, the
following equation can be derived for core i running task j:

Gdie,iTdie,i+Gdie-tim,iTtim,i = sijP
max
d,j +GLDT,iTdie,i+Ps0,i

(12)

Gtim-die,iTdie,i + Gtim,iTtim,i + Gtim-spr,iTspr = 0. (13)

Tspr is the scalar temperature of the spreader center. Given
Pmax

di
for task j and Tspr, we can find the maximum opera-

tional frequency sij of any core i. Let,

Kg,i = Gdie,i −Gdie-tim,iG
−1
tim,iGdie-tim,i −GLDT,i (14)

Kp,i = Gdie-tim,iG
−1
tim,iGtim-spr,iTspr + Ps0,i. (15)

Let Tdie,ij be the die temperature of core i when executing
task j at the maximum speed and is given by:

Tdie,ij = K−1
g,iKp,i + Kg,isijP

max
d,j . (16)

Note that we need not be concerned with Ttim, since the
hottest blocks will be part of the die. Now the problem
stated in Section 3 can be re-stated as follows:

max
s,M

wT s, (17)

s.t. Tdie,i = K−1
g,iKp,i + Kg,isiP

max
dt M(i)T ,

∀i ∈ {1, . . . , n} (18)
nX

i=1

M(i, j) = 1, j ∈ {1, . . . , nt}, (19)

ntX
j=1

M(i, j) = 1, i ∈ {1, . . . , n}, (20)

M(i, j) ∈ {0, 1}, i ∈ {1, . . . , n}, j ∈ {1, . . . , nt}, (21)

Tspr = Tspr,0, (22)

Tdie,i ≤ Tmax, (23)

0n×1 ≤ s ≤ 1n×1 (24)

where, M(i) refers to the ith row of the matrix M.
Equation (18) allows us to compute the speed si for a

core i running task j independent of other tasks running
on the remaining cores. The maximum of Tdie,ij should be
less than the maximum allowed temperature Tmax. Thus

779

the hottest functional unit determines the maximum speed
of operation for a given task j on core i. The hottest unit
h is given by the row corresponding to the rowh(Tdie,ij) =
max(Tdie,ij). The speed sij is given by:

sij =

(
Tmax−rowh(K−1

g,iKp,i)

Kg,iP
max
d,j

, max(Tmax
die,ij) ≥ Tmax,

1, otherwise,
(25)

This removal of dependency allows us to compute the speeds
of a core for all available tasks and similarly for all other
cores. Thus we can construct a matrix of speeds S whose
elements are sij , where i, j refer to the core and task number
respectively. We refere to this matrix as the speed matrix.

Given the above speed matrix we need to find an optimal
task-to-core allocation. This problem can be formally stated
as shown below:

max
M

X
MT S, (26)

s.t.

nX
i=1

M(i, j) = 1, j ∈ {1, . . . , nt}, (27)

ntX
j=1

M(i, j) = 1, i ∈ {1, . . . , n}, (28)

M(i, j) ∈ {0, 1}, i ∈ {1, . . . , n}, j ∈ {1, . . . , nt}. (29)
This is a linear assignment problem and can be efficiently
solved in polynomial time using Munkres algorithm [17].
The time complexity of this algorithm is O((nnt)

3). Once
the allocation is known along with the optimal initial speeds
s0, the speed profile for the core i for the migration interval
[to, tf] is given by [20]:

si(t) = si0e
−t/τi + si,ss[1− e−t/τi]. (30)

where the τi is the time constant for the core i. The steady
state speeds si,ss and time constants τi are determined by
solving the linear and non-linear program described in [20].

5. RESULTS
We used HotSpot thermal model to model the thermal be-

havior of the dual core Alpha 21264 processor constructed
as described in Section 4.1. To construct the thermal model
for the multi-core Alpha processor, we replicate the ther-
mal model of one single core processor to desired number of
cores by placing them side-by-side. The power numbers for
the tasks were generated by uniformly distributing the power
dissipation values obtained from SPEC benchmarks [2] us-
ing PTscalar tool [15]. We allowed a maximum temperature
of 110 ◦C and 130 W of dynamic power and 60 W of leakage
power. The maximum frequency of operation was set to 4
GHz. Spatial variation among cores is created by choosing
a mean leakage power and varying it over a uniform distri-
bution.

Chaparro et al. [10] have shown that performing thread
assignment often can degrade performance. In fact they
show that when the migration penalty is more than 2% of
the total performance, the throughput starts degrading. The
migration cost is assumed to be 40,000 cycles. For a 4GHz
processor this approximates to 10 μs. In order to keep the
migration penalty low and also since our tasks are assumed
to run for at least the die thermal time constant, we set the
migration interval to 10 ms or 40 million clock cycles . To

the best of our knowledge there are no available literature on
task-to-core allocation for thermally over constrained multi-
core processors and hence chose to compare with round robin
scheme.

5.1 Performance Comparison against Round
Robin Scheme

Figure 4 shows the plot of the throughput of optimal allo-
cation scheme versus round robin allocation for a four core
processor with eight tasks. The simulation is run for a du-
ration of 200 seconds with initial spreader temperature of
55 ◦C. The throughput between migrations is obtained by
exponentially throttling the initial speed as described in [20].
We see a large improvement in throughput achieved by our
optimal allocation algorithm. The throughput drops in both
procedures after a few seconds as the package temperature
increases necessitating the throttling of the cores and con-
tinues to drop until the cores attain the steady state speeds
after package time constant (≈ 100 s).

0 50 100 150 200
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Th
ro

ug
hp

ut
Time (sec)

Optimal allocation
Round robin allocation

Figure 4: Temporal performance of optimal alloca-
tion and round robin allocation schemes.

T
h

ro
u

g
h

p
u

t
Im

p
ro

ve
m

en
t

(%
)

Task to Core Ratio

10 20 30 40 50 60
0

100

200

300

400

500

Figure 5: Plot of performance of the algorithm ver-
sus processor utility factor

5.2 Effect of Number of Cores and Tasks
Figure 5 shows the performance of the algorithm in opti-

mally determining the allocation of tasks to cores against a
random allocation. The improvement is described in terms
of percentage throughput improvement and is plotted for
several task to core ratios. We see that our algorithm shows
a very high improvement when the processor utilization fac-
tor is very high. We see that the improvement can be as
high as 5X.

5.3 Effect on Temperature Gradient
Figure 6 shows the spatial spatial distribution of tem-

perature for a four core processor running optimal alloca-

780

96

100

102

104

106

108

98
95

100

105

110

95

100

105

110

I II

Figure 6: Spatial thermal map of 4-core processor
utilizing I. optimal, II. random allocation algorithm

tion algorithm versus random allocation. To obtain max-
imum performance the total power dissipation has to be
minimized and this fact is exploited by our procedure in
seeking higher performance, yet minimize power dissipation
and hence hotspots. The peaks in the plot represent the
hotspots. This example explains the effectiveness of the op-
timal against random allocation algorithm in reducing the
temperature deviation across the die.

5.4 Computation Time
Figure 7 shows the plot of the computation time for vari-

ous size of the speed matrix. The algorithm is implemented
in Matlab and is run on Intel core 2 duo at 2.16 GHz with
2GB RAM. The number of cells in the matrix is given by
the product of number of cores and number of tasks. We see
that the computation time is proportional to the number of
cells. (Note: The x-axis is logarithmic, while the y-axis is
linear). For the largest size of 16384 cells (128 cores and 128
tasks), the time needed to determine the optimal allocation
is around 200 ms. Assuming that if there is a core dedicated
to determine the allocation and the algorithm executed in
binary format, we can fairly assume an 100X speedup over
the Matlab implementation. This shows that even for a
large number of cores and tasks it is possible to determine
the allocation within the OS scheduling interval (≈ 5 ms).

4 16 64 256 1024 4096 16384
0

0.05

0.1

0.15

0.2

Number of cells

Tim
e (

se
c)

Figure 7: Plot of computation times as a function of
number of cells in the speed matrix

6. CONCLUSION
Although multi-core processors can deliver higher per-

formance, as they grow from tens to hundreds of cores,
their power dissipation will also increase proportionately.
With such large numbers of cores, it is unlikely that pack-
aging alone will be sufficient to remove the heat, and dy-
namic thermal management will have to be employed far
more frequently than with single core processors. In this

work, we have used the frequency scaling and task-to-core
allocation schemes of thermal management to optimally in-
crease the performance of multi-core processors under ther-
mal constraints. We formulated the combined problem as
a linear assignment problem and showed that significant
improvement in performance can be achieved over exist-
ing techniques (as high as 5X). The algorithm determines
the optimal task-to-core allocation and subsequent speed
control, accounting for the dependence of leakage on tem-
perature and using an accurate thermal model (HotSpot).
Finally, the proposed algorithm is sufficiently fast to be im-
plementable in real time, within the OS.

7. REFERENCES
[1] NAS Parallel Benchmarks.

http://www.nas.nasa.gov/Resources/Software/npb.html.

[2] SPEC CPU2000 Benchmarks.
http://www.spec.org/benchmarks.html.

[3] S. Borkar. Thousand core chips: A technology perspective. In
DAC, pages 746–749, 2007.

[4] D. Brooks and M. Martonosi. Dynamic thermal management
for high-performance microprocessors. In Proc. HPCA, pages
171–182, 2001.

[5] J. Donald and M. Martonosi. Techniques for multicore thermal
management: Classification and new exploration. SIGARCH
Comput. Archit. News, 34(2):78–88, 2006.

[6] D. Wentzlaff et al. On-chip interconnection architecture of the
Tile Processor. IEEE Micro, 27(5):15–31, 2007.

[7] K. Skadron et al. Control-theoretic techniques and thermal-RC
modeling for accurate and localized dynamic thermal
management. In Proc. HPCA’02, pages 17–28, 2002.

[8] M. D. Powell et al. Heat-and-run: Leveraging SMT and CMP
to manage power density through the operating system.
SIGOPS Oper. Syst. Rev., 38(5):260–270, 2004.

[9] M. Monchiero et al. Power/performance/thermal design-space
exploration for multicore architectures. IEEE Trans. Parallel
Distrib. Syst., 19(5):666–681, 2008.

[10] P. Chaparro et al. Understanding the thermal implications of
multicore architectures. TPDS, 18(8):1055–1065, 2007.

[11] P. Michaud et al. A study of thread migration in
temperature-constrained multicores. ACM Trans. Archit. Code
Optim., 4(2):9–1–9–28, 2007.

[12] S. Murali et al. Temperature-aware processor frequency
assignment for MPSoCs using convex optimization. In Proc.
CODES+ISSS, pages 111–116, 2007.

[13] T. Constantinou et al. Performance implications of single
thread migration on a chip multi-core. ACM SIGARCH,
33(4):80–91, 2005.

[14] W. Huang et al. An improved block-based thermal model in
hotspot 4.0 with granularity considerations. In WDDD, 2007.

[15] W. Liao et al. Temperature and supply voltage aware
performance and power modeling at microarchitecture level.
TCAD, 24(7):1042–1053, 2005.

[16] Y. Han et al. Temptor: A lightweight runtime temperature
monitoring tool using performance counters. In TACS, pages
17–28, 2006.

[17] J. Munkres. Algorithms for the assignment and transportation
problems. Journal of the Society for Industrial and Applied
Mathematics, 5(1):32–38, 1957.

[18] R. Rao. Fast and accurate techniques for early design space
exploration and dynamic thermal management of multi-core
processors. PhD thesis, Arizona State University, 2008.

[19] R. Rao and S. Vrudhula. Performance optimal processor
throttling under thermal constraints. In Proc. CASES, pages
257–266, 2007.

[20] R. Rao and S. Vrudhula. Efficient online computation of core
speeds to maximize the throughput of thermally constrained
multi-core processors. In Proc. ICCAD, pages 537–542, 2008.

[21] Y. Taur. CMOS design near the limit of scaling. IBM J. Res.
and Dev., 46(23):213–222, 2002.

[22] S. Zhang and K. S. Chatha. Approximation algorithm for the
temperature-aware scheduling problem. In Proc. ICCAD, pages
281–288, 2007.

781

