
An SoC Design Methodology Using FPGAs and
Embedded Microprocessors

Nobuyuki Ohba
ooba@jp.ibm.com

Kohji Takano
chano@jp.ibm.com

IBM Research, Tokyo Research Laboratory, IBM Japan Ltd.
1623-14 Shimotsuruma, Yamato city, Kanagawa, Japan

ABSTRACT
In System on Chip (SoC) design, growing design complexity has
forced designers to start designs at higher abstraction levels. This
paper proposes an SoC design methodology that makes full use of
FPGA capabilities. Design modules in different abstraction levels
are all combined and run together in an FPGA prototyping system
that fully emulates the target SoC. The higher abstraction level
design modules run on microprocessors embedded in the FPGAs,
while lower-level synthesizable RTL design modules are directly
mapped onto FPGA reconfigurable cells. We made a hardware
wrapper that gets the embedded microprocessors to interface with
the fully synthesized modules through IBM CoreConnect buses.
Using this methodology, we developed an image processor SoC
with cryptographic functions, and we verified the design by
running real firmware and application programs. For the designs
that are too large to be fit into an FPGA, dynamic reconfiguration
method is used.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – Verification.

General Terms
Design, Verification.

Keywords
SoC, ASIC, FPGA prototyping, and mixed-level verification.

1. INTRODUCTION
Thanks to progress in the silicon technologies, many more gates
can be integrated into System On Chip (SoC), which increases
performance and reliability while reducing overall system costs.
However, as design complexity increases, well-organized
consistent design and effective verification have become
indispensable for reducing the time to launch the products into the
market.

For SoC design, a top-down design approach is commonly used to

maintain design consistency from the system level to the net-list
level. The target design is first modeled at the top abstraction level,
called the specification level, where the designers describe what
the chip does. The top design is gradually broken down from the
application level to the register transfer level in order to make it
easier for the designers to check the equivalence of the designs in
adjacent levels, that is, transaction level, cycle accurate level, and
register transfer level, as shown in Table 1.

To complete the design and verification more quickly, system-
level design and hardware/software co-verification are used.
FPGA-based systems have become popular in co-verification and
rapid prototyping [1] [2] [3] [4]. Mapping the entire design of the
target SoC into an FPGA gives an accurate and fast representation,
but it is not always an easy job because:
• The target SoC may consist of two or more functional

modules that are written at different abstraction levels in the
course of different development phases. Only synthesizable
modules can be mapped into an FPGA and run for debugging.
In conventional methods, modules written at the system or
behavior levels should be run on a host workstation and be
interfaced to the hardware prototyping system. Overhead of
the data exchange between the host workstation and the
hardware prototype often limits the verification speed.

• An Instruction Set Simulator (ISS) is important for making the
debugging operation effective. In many cases, however, it is
still too slow to run real applications.

• Very large designs cannot be fit into FPGAs.

This paper presents a design methodology that addresses these
problems, and shows the development procedure for an image
processing SoC as an example.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.

Table 1. Abstraction levels

Abstraction
level

Definition Timing Implementation

Specification
level

Concept right Untimed Software

Transaction
level

Architecture
right

Timed
/untimed

Software

Cycle
accurate level

Micro-
architecture right

Timed Software

Register
transfer level

Implementation
right

Timed Hardware

45.3

747

2. DESIGN METHODOLOGY
2.1 Hybrid-Level Design and Verification
For SoC development, we make full use of the FPGA capabilities
for the design and verification processes. Modules designed at
different abstraction levels are implemented into FPGAs,
interfaced with each other, and run together to emulate the target
SoC. For our designs to date, we have used the Xilinx Virtex-II Pro
FPGA [5], which has multiple PowerPC hardware cores. The
modules designed at higher levels are run on PowerPC cores, and
those at lower levels, such as the register transfer and netlist levels,
are directly mapped to the FPGA cells. To seamlessly
interconnect the modules from different levels, we have made a
hardware wrapper for the PowerPC cores.

The design work of the processor was carried out in a fully top-
down manner. Here we describe the procedure step by step

2.2 Specification Level Design
The target SoC is first described at the specification level. The
design is created and verified by using a host PC/workstation, and
then transferred to the FPGA prototyping system so that it can
be run on the PowerPC hardware cores embedded in the FPGAs,
as shown in Figure 1.

However, it is not always possible to make the design at the
specification level run on the embedded PowerPCs, because the
entire design might be too large or complex to fit into the
embedded PowerPCs. In addition, some designs may need specific
libraries to be linked. For this reason, the full design transfer to the
embedded FPGA for this level is optional.

2.3 Transaction Level Design
Modules are then described at the transaction level, and simulated
on the PowerPC hardware cores in the FPGA. Figure 2 is an
example how the transaction-level modules are mapped into the
FPGA, which is assumed to have three PowerPC cores.

PowerPC A works as the microcontroller of the SoC. The
transaction-level design modules are simulated by PowerPCs B

and C, which are attached to the system bus through hardware
wrappers. Two modules at the register transfer level are attached
to the system bus. The hardware wrapper executes a request-
acknowledge type of handshake with the other modules via the
systems bus. It also communicates with the associated PowerPC
through some hardware registers implemented in the hardware
wrapper. For example, when the hardware wrapper receives a read
request from another module, it generates an interrupt for the
PowerPC. The PowerPC takes the appropriate action and stores
the requested data in a register in the hardware wrapper. The
hardware wrapper then returns the acknowledge signal with the
read data to the requester.

Each PowerPC core uses dedicated memory to store the
instruction code and data. In this example, PowerPCs A and B
uses large memory devices outside of the FPGA, while PowerPC
C uses the FPGA’s faster embedded memory.

PowerPC cores are controlled by using the RISCWatch debugger
via the IEEE 1149.1 (JTAG) interface [6]. The source-level
debugger and processor-control features provide designers with
the tools needed to develop and debug hardware and software
quickly and efficiently. All of the registers in the hardware
wrapper are accessible to the RISCWatch debugger, so that the
engineer can easily trace and debug the design.

 Figure 1. Specification level design

PowerPC
A

PowerPC
B

PowerPC
C Register-transfer-level

design

Microcontroller

Transaction-level design

Hardware wrapper

Register-transfer-level
design

Transaction-level design

Hardware wrapper

RAM

RAM
RAM

FPGA

System bus

Figure 2. Transaction-level design modules coexisting with register-transfer-level design modules

PowerPC

FPGA

RAM

Specification level design

Software simulator on
a host PC/workstation

Optional

748

2.4 Cycle Accurate Level Design
To run cycle-accurate-level modules on the PowerPC hardware
core, we must make them keep pace with other modules written at
different levels. When each PowerPC completes the simulation job
for a cycle, it asserts the cycle complete signal to the clock pacer,
as shown in Figure 3. The clock pacer checks if all of the jobs that
must be executed in the cycle are done, and asserts the step
forward signal to all of the modules. After the modules receive the
step forward signal, they start the job in the next cycle.

In our current implementation, the PowerPC cores run at 280
MHz, and therefore the simulation runs of the cycle-accurate-level
design modules are not as fast as on a cutting-edge microprocessor,
which could run at 3 GHz or faster. However, we still find this
approach useful for the SoC design, because: 1) the PowerPC is
tightly coupled with the other modules within the FPGA and thus
the overhead of the handshake is minimal, and 2) it gives a smooth
transition from the transaction-level design to the register-transfer-
level design.

2.5 Register Transfer Level Design
Register-transfer-level design modules are fully synthesized and
mapped into the FPGA. Figure 4 is an example of a chip-level
design, which has a microcontroller and four modules at the
register transfer level. It works as a full prototype chip of the
target SoC.

2.6 Advantages
In addition to the verification speed, the proposed methodology
has the following advantages:

• Design modules from different levels can be combined and run
together on the prototyping system.

• The design work can be effectively shared by two or more
designers, since the interfaces between modules are clearly
defined and the combination of components at multiple levels
can be executed at a time.

• The development and test of the software can be started at the
system integration level even in the phase where register-
transfer-level designs are not available for all the components.
Using the proposed mixed-level verification method, the
system level verification can be started earlier, and thus the
number of bugs remaining after the sign-off will be decreased.

3. DESIGN EXAMPLE
3.1 Image Processor with Cryptographic
Functions
This section shows the development procedure using an example.
The target SoC is an image processor with cryptographic
functions. Figure 5 is the block diagram of the SoC. The
microcontroller is an IBM PowerPC 405, which is interconnected
with a memory interface, an MPEG encoder/decoder, and a
DES/AES cryptographic engine through the Processor Local Bus

(PLB). The PLB is connected to the On-chip Peripheral Bus
(OPB) via the PLB/OPB bridge. An RSA/ECC cryptographic
engine, random number generator, and general-purpose I/O (GPIO)
are connected to the OPB.

3.2 Design Procedure
We used a top-down design approach, in which the target design is
gradually broken down from the specification level to the register-
transfer level, makes it easier for the designers to check the
equivalence of the designs in adjacent levels. We used C++ and
VHDL for modeling the processor to maintain the design
consistency in the top-down design approach.

The development process proceeds through four levels, as shown
in Figure 6.

• Specification level: The target SoC is an image processor with
cryptographic functions. The image processing is based on the
MPEG4 standard. The cryptography is used for Secure

PowerPC
B

PowerPC
C Register-transfer-level

design

Cycle-accurate-
level design Hardware wrapper

Register-transfer-level
design

Cycle-accurate
-level design

Hardware
wrapper

Clock pacer

Step forward

Cycle complete

FPGA

Figure 3. Cycle-accurate-level design modules

PowerPC
A

Microcontroller

RAM

FPGA

System bus

Register-transfer-
level design

Register-transfer
-level design

Register-transfer
-level design

Register-transfer
-level design

Figure 4. PowerPC and register transfer level design modules

749

Socket Layer protocol (SSL) and data encryption. RSA/ECC
and DES/AES are the core functions for SSL. The functions
are written in C++.

• Transaction level: We looked through the C++ source code of
the applications, and analyzed where and how the image and
cryptography operations should be implemented in the
hardware engines. From the functional perspective, we
decomposed each cryptographic function into hardware basic
blocks, such as a controller (sequencer), arithmetic calculator,
and memory.

• Cycle accurate level: All the basic entities are synchronized

with the global clock. It should be noted that the models at the
above levels are event-driven; the models at this level, on the
other hand, are clock-driven. The modules are further broken
down to basic entities. The controller is implemented with
registers, decoders, finite state machines (FSM), and counters.
The arithmetic operators involve adders, multipliers, selectors,
and registers. The memory consists of conventional memory
devices and possibly high-speed caches. The conditional
branches, such as ‘if’ and ‘loop’ statements, in the C++ code
are translated into the equivalent code that can be
straightforwardly implemented on hardware.

MPEG
encoder

MPEG
decoder

PowerPC 405

Memory
interface

Off-chip Memory

(DDR SDRAM)

RSA/ECC engine

PLB

OPB

GPIO

SOC
DES/AES engine

Random number
generator (RNG)

PLB/OPB
bridge

Figure 5. Block diagram of the image processor with cryptographic functions

Transaction level

Cycle accurate level

Register transfer level

RSA
control

ECC
control

MOD
control

Basic
control Memory

RSA/ECC

Arithmetic

AES MPEG Interface

Registers

FSMsDecoders

Counters

Adders

Multipliers

Registers

Selectors

Memory

Cache

Registers FSMs

Decoders

Counters

Adders Multipliers

Registers

Selectors
Memory

Cache Clock

Coding style: C/C++

Coding style: C/C++

Coding style: VHDL

Specification level

Image processor with cryptographic functions

Coding style: C/C++

Figure 6. Design levels

750

• Register transfer level: The C++ design is translated into HDL.
We wrote a simple Perl script that translates an FSM in C++
to the equivalent VHDL code. A program for fully automatic
translation from C++ to VHDL is under development. The
design of this level is fully synthesizable, and therefore can be
directly implemented in an FPGA.

The most challenging part of the development was the logic
verification, because:

• Public key cryptography (e.g., RSA and ECC) requires a large
number of clock cycles to complete one calculation. A 2,048-
bit RSA calculation, for example, takes more than 100,000,000
clock cycles. It takes substantial time to verify these
operations with software simulators. In fact, a software
simulation of this RSA computation requires several days to
complete even a single test case. In addition, to make the
intermediate state of the signals traceable after the simulation,
the signal state at each clock cycle must be recorded in storage,
such as a hard disk. The designer must provide substantial
amounts of disk space, or must reduce the number of signals
to be traced. In addition, most commercial EDA simulation
tools allow only one simulation to run per license. During a
long simulation, the designer cannot run other simulations and
this makes the design work inefficient.

• In the gate-level design, we would like to test the correctness
of the circuit. The term “correctness” here means that the
circuit gives correct answers for all the possible inputs AES
and RSA/ECC use operations on Galois Fields, and those
operations require complex hardware circuits.

• A practical secure operation is composed of several
cryptographic calculations. An SSL session, for example,
contains several public-key and common-key encryptions and
decryptions. It is conceivable that many variations of the
combinations of cryptographic operations could be used, and
they could require billions of clock cycles to complete.

• The cryptographic operations should be encapsulated within
the chip for two reasons: (1) to reduce the load on the host
microprocessor, and (2) to keep the secret information inside
the chip. The interaction between the control software and the
cryptographic processor should be kept as limited as possible.

The basic algorithms implemented in the core are modular
exponentiation for the RSA operation and EC scalar multiplication
over GF(p) for the ECC operation. The RSA and ECC operations
were modeled, designed, and verified using C++. However, it is
difficult to make the RTL design directly from the specification-
level C++ model, because the C++ model is composed of many
complex control sequences and data manipulations. Therefore, the
design methodology presented in the previous section was used to
create the RTL design from the cycle-accurate-level C++ model.

All of the data input and output operations for the classes are
modeled as method calls, and the data values are stored in private

variables. At the register transfer level, these method calls are
translated into signal entity descriptions of HDL, and private
variables are mapped to register descriptions. Each class has only
one method that executes all of the operations specified in the
class.

3.3 Verification
To boost the speed of the verification, we implemented the
RSA/ECC core in the FPGA. Table 2 shows the number of clock
cycles, the software simulation time, and the FPGA emulation
time. The software simulations were performed with Model
Technology ModelSim SE version 5.4 running on IBM
Intellistation MPRO (2 GHz Pentium IV, Windows 2000
Professional). The FPGA emulations were done with the Xilinx
FPGA XC2VP20 running at 33 MHz.

The FPGA emulations are about 100,000 times faster than the
software simulations, and thus make the debugging very efficient.

Although the FPGA prototyping system offers powerful design
aids, the user needs to pay attention to the following points:
• The setup and hold timings of the FPGA are obviously

different from those of a real ASIC. Intensive timing
simulations and actual chip tests must be incorporated.

• The FPGA behavior does not always turn out to be identical
to the SoC. For example, technology -specific macros, such as
PLL, tend to behave differently in an FPGA and an SoC.

3.4 Dynamic Reconfiguration
Since the FPGA has a limited capacity, the target design modules
that can be fit into a single FPGA are limited. In fact, we could not
fit all of the modules shown in Figure 5 into one FPGA. For this
reason, we had to verify each module in a different phase.

We use a new debugging scheme, called dynamic FPGA
reconfiguration, which configures and reconfigures the FPGA on-
the-fly during the emulation. Figure 7 shows an example of the
scheme. The FPGA board is installed in a PCI slot of the host PC,
and controlled by a debugging program running on the host PC.
The debugging control program has the XVF player [7], with
which the main control program configures the FPGA through the
configuration cable attached to the parallel port of the host PC.

Table 2. Number of cycles, software simulation time, and
FPGA emulation time for RSA calculations

Operation
Number
of cycles

Software
simulatio
n

FPGA
emulation

1,024-bit RSA with
a 32-bit core

4 million 6 to 7
hours

0.3 seconds

2,048-bit RSA with
a 32-bit core

32 million 2 to 3 days 3 seconds

1,024-bit RSA with
a 16-bit core

16 million 1 day 1.5 seconds

2,048-bit RSA with
a 16-bit core

102
million

1 week 10 seconds

751

The verification procedure is:

1. The debugging control program downloads the RNG (random
number generator) core to FPGA.

2. The debugging control program starts the RNG function. The
FPGA generates a random number, stores it in memory, and
sets a flag in the PCI interface.

3. After seeing the flag set by the FPGA, the debugging program
downloads the DES core to the FPGA.

4. The FPGA loads the random number to the DES core. In this
example, DES is used for smoothing the numbers and
generating a secret key. The FPGA stored the key in memory,
and sets the flag in the PCI interface.

5. After seeing the flag set by the FPGA, the debugging program
downloads the RSA core to the FPGA.

6. The FPGA encrypts the data with the key stored in memory.

The reconfiguration overhead of this procedure is acceptable, as it
takes less than a minute to reconfigure the FPGA.

This technique is effective not only for the verification of designs
that cannot be fit into an FPGA but also for reducing the cell
utilization of the FPGA. During the generation of the FPGA
configuration data, the FPGA design tool performs a “fitting” that
maps the netlist onto the cells. The fitting phase takes substantial
time if the design requires over 90% of the cells of the FPGA. It
often takes several hours to accomplish one such “fitting.” If the
design can be decomposed into smaller parts and each part can be
individually fit into the FPGA, the time for fitting is reduced.
Remember that in many cases just a few lines of the source code
are rewritten to correct a bug. It is not a good idea to do synthesis
and fitting over and over every time when only a few source lines
are rewritten. By decomposing the target design into smaller
modules, the time for the synthesis and fitting is greatly shortened.
Using the dynamic FPGA reconfiguration technique, the
decomposed parts are sequentially downloaded to the FPGA
during the emulation. This eventually improves the verification
efficiency.

4. CLOSING REMARKS
In this paper, we presented a design methodology that makes full
use of the FPGA and its embedded microprocessors. We used a
top-down design approach, in which the software models at the
specification level were decomposed into submodels at lower
levels until the register transfer level code was generated.
Cryptographic functions use complex operations and it was not
easy for us to make a bug-free circuit. RSA and ECC calculations
require a large number of clock cycles, and it would take a week to
complete the simulation of a single RSA computation. It would
take even more time to simulate the whole processor design
including the external interfaces. To make the design solid, we had
to run as many test cases as possible. To overcome these
difficulties, we used the FPGA intensively, with runnig the
software and hardware models at the same time.

In conclusion, the key of the successful design was the

collaboration of software simulation and hardware emulation. We
used the design methodology presented in the previous sections,
and, as a result, the design work was shortened to half of the
planned time.

5. REFERENCES
[1] Gschwind, M., Salapura, V. and Maurer, D.: "FPGA

prototyping of a RISC processor core for embedded
applications," IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Volume: 9 Issue: 2, pp. 241-250,
April 2001.

[2] J. Gateley, M. Blatt, D. Chen, S. Cooke, P. Desai, M.
Doreswamy, M. Elgood, G. Feierbach, T. Goldsbury, D.
Greenley, R. Joshi, M. Khosraviani, R. Kwong, M. Motwani,
C. Narasimhaiah, S. J. Nicolino Jr., T. Ozeki, G. Peterson, C.
Salzmann, N. Shayesteh, J. Whitman, and P. Wong,
"UltraSPARC-I emulation," Proceedings of 32nd Design
Automation Conf. San Francisco, CA: IEEE, June 1995.

[3] Roesler, E. and Nelson, B., "Debug Methods for Hybrid
CPU/FPGA Systems," Proceedings of 2002 IEEE
International Conference on Field Programmable Technology
(FPT) Hong Kong, China, pp. 16-18, December 2002.

[4] Pogodalla, F., Hersemeule, R., Coulomb, P., "Fast
prototyping: a system design flow for fast design,
prototyping and efficient IP reuse," Proceedings of the
Seventh International Workshop on Hardware/Software
Codesign, 1999 (CODES '99), pp. 69 –73, May 1999.

[5] Xilinx, Inc., "Virtex-II Pro Platform FPGA Data Sheet,"
January 2003.

[6] IBM, "RISCWatch Debugger for PowerPC Processors,"
Product brief, April 1996.

[7] Xilinx, Inc., "Xilinx In-System Programming Using an
Embedded Microcontroller," June 1999

Debugging
control program

PCI bus

[FPGA]
Image processor

with cryptographic
functions

XVF
player

Host PC

FPGA board

Configuration
cable

1 - RNG

2 - DES

3 - RSA FPGA is
configured
on the fly

PCI interface

Memory

Flag

Figure 7. Example of dynamic reconfiguration

752

