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ABSTRACT 
In System on Chip (SoC) design, growing design complexity has 
forced designers to start designs at higher abstraction levels. This 
paper proposes an SoC design methodology that makes full use of 
FPGA capabilities. Design modules in different abstraction levels 
are all combined and run together in an FPGA prototyping system 
that fully emulates the target SoC. The higher abstraction level 
design modules run on microprocessors embedded in the FPGAs, 
while lower-level synthesizable RTL design modules are directly 
mapped onto FPGA reconfigurable cells. We made a hardware 
wrapper that gets the embedded microprocessors to interface with 
the fully synthesized modules through IBM CoreConnect buses. 
Using this methodology, we developed an image processor SoC 
with cryptographic functions, and we verified the design by 
running real firmware and application programs. For the designs 
that are too large to be fit into an FPGA, dynamic reconfiguration 
method is used.   

Categories and Subject Descriptors  
B.6.3 [Logic Design]: Design Aids – Verification. 

General Terms  
Design, Verification. 

Keywords  
SoC, ASIC, FPGA prototyping, and mixed-level verification. 

1. INTRODUCTION 
Thanks to progress in the silicon technologies, many more gates 
can be integrated into System On Chip (SoC), which increases 
performance and reliability while reducing overall system costs. 
However, as design complexity increases, well-organized 
consistent design and effective verification have become 
indispensable for reducing the time to launch the products into the 
market.  

For SoC design, a top-down design approach is commonly used to 

maintain design consistency from the system level to the net-list 
level. The target design is first modeled at the top abstraction level, 
called the specification level, where the designers describe what 
the chip does. The top design is gradually broken down from the 
application level to the register transfer level in order to make it 
easier for the designers to check the equivalence of the designs in 
adjacent levels, that is, transaction level, cycle accurate level, and 
register transfer level, as shown in Table 1. 

To complete the design and verification more quickly, system-
level design and hardware/software co-verification are used. 
FPGA-based systems have become popular in co-verification and 
rapid prototyping [1] [2] [3] [4]. Mapping the entire design of the 
target SoC into an FPGA gives an accurate and fast representation, 
but it is not always an easy job because: 
• The target SoC may consist of two or more functional 

modules that are written at different abstraction levels in the 
course of different development phases. Only synthesizable 
modules can be mapped into an FPGA and run for debugging. 
In conventional methods, modules written at the system or 
behavior levels should be run on a host workstation and be 
interfaced to the hardware prototyping system. Overhead of 
the data exchange between the host workstation and the 
hardware prototype often limits the verification speed.  

• An Instruction Set Simulator (ISS) is important for making the 
debugging operation effective. In many cases, however, it is 
still too slow to run real applications. 

• Very large designs cannot be fit into FPGAs. 

This paper presents a design methodology that addresses these 
problems, and shows the development procedure for an image 
processing SoC as an example. 
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Table 1. Abstraction levels 

Abstraction 
level 

Definition Timing Implementation 

Specification 
level 

Concept right Untimed Software 

Transaction 
level 

Architecture 
right 

Timed 
/untimed 

Software 

Cycle 
accurate level 

Micro-
architecture right 

Timed Software 

Register 
transfer level 

Implementation 
right 

Timed Hardware 

 

45.3

747



2. DESIGN METHODOLOGY 
2.1 Hybrid-Level Design and Verification 
For SoC development, we make full use of the FPGA capabilities 
for the design and verification processes. Modules designed at 
different abstraction levels are implemented into FPGAs, 
interfaced with each other, and run together to emulate the target 
SoC. For our designs to date, we have used the Xilinx Virtex-II Pro 
FPGA [5], which has multiple PowerPC hardware cores. The 
modules designed at higher levels are run on PowerPC cores, and 
those at lower levels, such as the register transfer and netlist levels, 
are directly mapped to the FPGA cells. To seamlessly 
interconnect the modules from different levels, we have made a 
hardware wrapper for the PowerPC cores. 

The design work of the processor was carried out in a fully top-
down manner. Here we describe the procedure step by step 

2.2 Specification Level Design 
The target SoC is first described at the specification level. The 
design is created and verified by using a host PC/workstation, and 
then transferred to the FPGA prototyping system so that it can 
be run on the PowerPC hardware cores embedded in the FPGAs, 
as shown in Figure 1. 

However, it is not always possible to make the design at the 
specification level run on the embedded PowerPCs, because the 
entire design might be too large or complex to fit into the 
embedded PowerPCs. In addition, some designs may need specific 
libraries to be linked. For this reason, the full design transfer to the 
embedded FPGA for this level is optional. 

2.3 Transaction Level Design 
Modules are then described at the transaction level, and simulated 
on the PowerPC hardware cores in the FPGA. Figure 2 is an 
example how the transaction-level modules are mapped into the 
FPGA, which is assumed to have three PowerPC cores. 

PowerPC A works as the microcontroller of the SoC. The 
transaction-level design modules are simulated by PowerPCs B 

and C, which are attached to the system bus through hardware 
wrappers. Two modules at the register transfer level are attached 
to the system bus. The hardware wrapper executes a request-
acknowledge type of handshake with the other modules via the 
systems bus. It also communicates with the associated PowerPC 
through some hardware registers implemented in the hardware 
wrapper. For example, when the hardware wrapper receives a read 
request from another module, it generates an interrupt for the 
PowerPC. The PowerPC takes the appropriate action and stores 
the requested data in a register in the hardware wrapper. The 
hardware wrapper then returns the acknowledge signal with the 
read data to the requester. 

Each PowerPC core uses dedicated memory to store the 
instruction code and data. In this example, PowerPCs A and B 
uses large memory devices outside of the FPGA, while PowerPC 
C uses the FPGA’s faster embedded memory. 

PowerPC cores are controlled by using the RISCWatch debugger 
via the IEEE 1149.1 (JTAG) interface [6]. The source-level 
debugger and processor-control features provide designers with 
the tools needed to develop and debug hardware and software 
quickly and efficiently. All of the registers in the hardware 
wrapper are accessible to the RISCWatch debugger, so that the 
engineer can easily trace and debug the design. 

 Figure 1. Specification level design 
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2.4 Cycle Accurate Level Design 
To run cycle-accurate-level modules on the PowerPC hardware 
core, we must make them keep pace with other modules written at 
different levels. When each PowerPC completes the simulation job 
for a cycle, it asserts the cycle complete signal to the clock pacer, 
as shown in Figure 3. The clock pacer checks if all of the jobs that 
must be executed in the cycle are done, and asserts the step 
forward signal to all of the modules. After the modules receive the 
step forward signal, they start the job in the next cycle. 

In our current implementation, the PowerPC cores run at 280 
MHz, and therefore the simulation runs of the cycle-accurate-level 
design modules are not as fast as on a cutting-edge microprocessor, 
which could run at 3 GHz or faster. However, we still find this 
approach useful for the SoC design, because: 1) the PowerPC is 
tightly coupled with the other modules within the FPGA and thus 
the overhead of the handshake is minimal, and 2) it gives a smooth 
transition from the transaction-level design to the register-transfer-
level design. 

2.5 Register Transfer Level Design 
Register-transfer-level design modules are fully synthesized and 
mapped into the FPGA. Figure 4 is an example of a chip-level 
design, which has a microcontroller and four modules at the 
register transfer level. It works as a full prototype chip of the 
target SoC. 

2.6 Advantages 
In addition to the verification speed, the proposed methodology 
has the following advantages: 

• Design modules from different levels can be combined and run 
together on the prototyping system. 

• The design work can be effectively shared by two or more 
designers, since the interfaces between modules are clearly 
defined and the combination of components at multiple levels 
can be executed at a time. 

• The development and test of the software can be started at the 
system integration level even in the phase where register-
transfer-level designs are not available for all the components. 
Using the proposed mixed-level verification method, the 
system level verification can be started earlier, and thus the 
number of bugs remaining after the sign-off will be decreased. 

3. DESIGN EXAMPLE 
3.1 Image Processor with Cryptographic 
Functions 
This section shows the development procedure using an example. 
The target SoC is an image processor with cryptographic 
functions. Figure 5 is the block diagram of the SoC. The 
microcontroller is an IBM PowerPC 405, which is interconnected 
with a memory interface, an MPEG encoder/decoder, and a 
DES/AES cryptographic engine through the Processor Local Bus 

(PLB). The PLB is connected to the On-chip Peripheral Bus 
(OPB) via the PLB/OPB bridge. An RSA/ECC cryptographic 
engine, random number generator, and general-purpose I/O (GPIO) 
are connected to the OPB. 

3.2 Design Procedure 
We used a top-down design approach, in which the target design is 
gradually broken down from the specification level to the register-
transfer level, makes it easier for the designers to check the 
equivalence of the designs in adjacent levels. We used C++ and 
VHDL for modeling the processor to maintain the design 
consistency in the top-down design approach. 

The development process proceeds through four levels, as shown 
in Figure 6. 

• Specification level: The target SoC is an image processor with 
cryptographic functions. The image processing is based on the 
MPEG4 standard. The cryptography is used for Secure 
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Socket Layer protocol (SSL) and data encryption. RSA/ECC 
and DES/AES are the core functions for SSL. The functions 
are written in C++. 

• Transaction level: We looked through the C++ source code of 
the applications, and analyzed where and how the image and 
cryptography operations should be implemented in the 
hardware engines. From the functional perspective, we 
decomposed each cryptographic function into hardware basic 
blocks, such as a controller (sequencer), arithmetic calculator, 
and memory. 

• Cycle accurate level: All the basic entities are synchronized 

with the global clock. It should be noted that the models at the 
above levels are event-driven; the models at this level, on the 
other hand, are clock-driven. The modules are further broken 
down to basic entities. The controller is implemented with 
registers, decoders, finite state machines (FSM), and counters. 
The arithmetic operators involve adders, multipliers, selectors, 
and registers. The memory consists of conventional memory 
devices and possibly high-speed caches. The conditional 
branches, such as ‘if’ and ‘loop’ statements, in the C++ code 
are translated into the equivalent code that can be 
straightforwardly implemented on hardware. 

MPEG 
encoder 

MPEG 
decoder 

PowerPC 405 

 

Memory 
interface 

Off-chip Memory 

(DDR SDRAM) 

RSA/ECC engine 

PLB

OPB 

GPIO 

SOC 
DES/AES engine 

Random number 
generator (RNG) 

PLB/OPB 
bridge 

Figure 5. Block diagram of the image processor with cryptographic functions  

 

Transaction level 

Cycle accurate level 

Register transfer level 

RSA 
control 

ECC 
control 

MOD 
control 

Basic 
control Memory 

RSA/ECC 

Arithmetic 

AES MPEG Interface 

Registers 

FSMsDecoders 

Counters 

Adders 

Multipliers 

Registers 

Selectors 

Memory 

Cache 

Registers FSMs

Decoders 

Counters  

Adders Multipliers 

Registers 

Selectors 
Memory 

Cache Clock 

Coding style: C/C++ 

Coding style: C/C++ 

Coding style: VHDL 

Specification level 

Image processor with cryptographic functions 

Coding style: C/C++ 

Figure 6. Design levels 

750



• Register transfer level: The C++ design is translated into HDL. 
We wrote a simple Perl script that translates an FSM in C++ 
to the equivalent VHDL code. A program for fully automatic 
translation from C++ to VHDL is under development. The 
design of this level is fully synthesizable, and therefore can be 
directly implemented in an FPGA. 

The most challenging part of the development was the logic 
verification, because: 

• Public key cryptography (e.g., RSA and ECC) requires a large 
number of clock cycles to complete one calculation. A 2,048-
bit RSA calculation, for example, takes more than 100,000,000 
clock cycles. It takes substantial time to verify these 
operations with software simulators. In fact, a software 
simulation of this RSA computation requires several days to 
complete even a single test case. In addition, to make the 
intermediate state of the signals traceable after the simulation, 
the signal state at each clock cycle must be recorded in storage, 
such as a hard disk. The designer must provide substantial 
amounts of disk space, or must reduce the number of signals 
to be traced. In addition, most commercial EDA simulation 
tools allow only one simulation to run per license. During a 
long simulation, the designer cannot run other simulations and 
this makes the design work inefficient. 

• In the gate-level design, we would like to test the correctness 
of the circuit. The term “correctness” here means that the 
circuit gives correct answers for all the possible inputs AES 
and RSA/ECC use operations on Galois Fields, and those 
operations require complex hardware circuits. 

• A practical secure operation is composed of several 
cryptographic calculations. An SSL session, for example, 
contains several public-key and common-key encryptions and 
decryptions. It is conceivable that many variations of the 
combinations of cryptographic operations could be used, and 
they could require billions of clock cycles to complete. 

• The cryptographic operations should be encapsulated within 
the chip for two reasons: (1) to reduce the load on the host 
microprocessor, and (2) to keep the secret information inside 
the chip. The interaction between the control software and the 
cryptographic processor should be kept as limited as possible. 

The basic algorithms implemented in the core are modular 
exponentiation for the RSA operation and EC scalar multiplication 
over GF(p) for the ECC operation. The RSA and ECC operations 
were modeled, designed, and verified using C++. However, it is 
difficult to make the RTL design directly from the specification-
level C++ model, because the C++ model is composed of many 
complex control sequences and data manipulations. Therefore, the 
design methodology presented in the previous section was used to 
create the RTL design from the cycle-accurate-level C++ model. 

All of the data input and output operations for the classes are 
modeled as method calls, and the data values are stored in private 

variables. At the register transfer level, these method calls are 
translated into signal entity descriptions of HDL, and private 
variables are mapped to register descriptions. Each class has only 
one method that executes all of the operations specified in the 
class. 

3.3 Verification 
To boost the speed of the verification, we implemented the 
RSA/ECC core in the FPGA. Table 2 shows the number of clock 
cycles, the software simulation time, and the FPGA emulation 
time. The software simulations were performed with Model 
Technology ModelSim SE version 5.4 running on IBM 
Intellistation MPRO (2 GHz Pentium IV, Windows 2000 
Professional). The FPGA emulations were done with the Xilinx 
FPGA XC2VP20 running at 33 MHz. 

The FPGA emulations are about 100,000 times faster than the 
software simulations, and thus make the debugging very efficient. 

Although the FPGA prototyping system offers powerful design 
aids, the user needs to pay attention to the following points: 
• The setup and hold timings of the FPGA are obviously 

different from those of a real ASIC. Intensive timing 
simulations and actual chip tests must be incorporated. 

• The FPGA behavior does not always turn out to be identical 
to the SoC. For example, technology -specific macros, such as 
PLL, tend to behave differently in an FPGA and an SoC. 

3.4 Dynamic Reconfiguration 
Since the FPGA has a limited capacity, the target design modules 
that can be fit into a single FPGA are limited. In fact, we could not 
fit all of the modules shown in Figure 5 into one FPGA. For this 
reason, we had to verify each module in a different phase. 

We use a new debugging scheme, called dynamic FPGA 
reconfiguration, which configures and reconfigures the FPGA on-
the-fly during the emulation. Figure 7 shows an example of the 
scheme. The FPGA board is installed in a PCI slot of the host PC, 
and controlled by a debugging program running on the host PC. 
The debugging control program has the XVF player [7], with 
which the main control program configures the FPGA through the 
configuration cable attached to the parallel port of the host PC. 

Table 2. Number of cycles, software simulation time, and 
FPGA emulation time for RSA calculations 

Operation 
Number 
of cycles 

Software 
simulatio
n 

FPGA 
emulation 

1,024-bit RSA with 
a 32-bit core 

4 million 6 to 7 
hours 

0.3 seconds 

2,048-bit RSA with 
a 32-bit core 

32 million 2 to 3 days 3 seconds 

1,024-bit RSA with 
a 16-bit core 

16 million 1 day 1.5 seconds 

2,048-bit RSA with 
a 16-bit core 

102 
million 

1 week 10 seconds 
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The verification procedure is: 

1. The debugging control program downloads the RNG (random 
number generator) core to FPGA. 

2. The debugging control program starts the RNG function. The 
FPGA generates a random number, stores it in memory, and 
sets a flag in the PCI interface. 

3. After seeing the flag set by the FPGA, the debugging program 
downloads the DES core to the FPGA. 

4. The FPGA loads the random number to the DES core. In this 
example, DES is used for smoothing the numbers and 
generating a secret key. The FPGA stored the key in memory, 
and sets the flag in the PCI interface. 

5. After seeing the flag set by the FPGA, the debugging program 
downloads the RSA core to the FPGA. 

6. The FPGA encrypts the data with the key stored in memory. 

The reconfiguration overhead of this procedure is acceptable, as it 
takes less than a minute to reconfigure the FPGA. 

This technique is effective not only for the verification of designs 
that cannot be fit into an FPGA but also for reducing the cell 
utilization of the FPGA. During the generation of the FPGA 
configuration data, the FPGA design tool performs a “fitting” that 
maps the netlist onto the cells. The fitting phase takes substantial 
time if the design requires over 90% of the cells of the FPGA. It 
often takes several hours to accomplish one such “fitting.” If the 
design can be decomposed into smaller parts and each part can be 
individually fit into the FPGA, the time for fitting is reduced. 
Remember that in many cases just a few lines of the source code 
are rewritten to correct a bug. It is not a good idea to do synthesis 
and fitting over and over every time when only a few source lines 
are rewritten. By decomposing the target design into smaller 
modules, the time for the synthesis and fitting is greatly shortened. 
Using the dynamic FPGA reconfiguration technique, the 
decomposed parts are sequentially downloaded to the FPGA 
during the emulation. This eventually improves the verification 
efficiency. 

4. CLOSING REMARKS 
In this paper, we presented a design methodology that makes full 
use of the FPGA and its embedded microprocessors. We used a 
top-down design approach, in which the software models at the 
specification level were decomposed into submodels at lower 
levels until the register transfer level code was generated. 
Cryptographic functions use complex operations and it was not 
easy for us to make a bug-free circuit. RSA and ECC calculations 
require a large number of clock cycles, and it would take a week to 
complete the simulation of a single RSA computation. It would 
take even more time to simulate the whole processor design 
including the external interfaces. To make the design solid, we had 
to run as many test cases as possible. To overcome these 
difficulties, we used the FPGA intensively, with runnig the 
software and hardware models at the same time. 

In conclusion, the key of the successful design was the 

collaboration of software simulation and hardware emulation. We 
used the design methodology presented in the previous sections, 
and, as a result, the design work was shortened to half of the 
planned time. 
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