Improved Logic Optimization Using Global Flow Analysis
Extended Abstract

Leonard Berman and Louise Trevillyan

IBM T. J. Watson Research Center
Yorktown Heights, New York 10598

Abstract

This paper is concerned with techniques for automatically reduc-
ing circuit size and improving testability. In an earlier paper [2],
we introduced a new method for circuit optimization based on
ideas of global flow analysis. In this paper, we describe two ex-
tensions to the method. The first is a basic improvement in the
primary result on which the earlier optimization was based, the
second extends the applicability of the method to “conditional”
optimizations as well. Together these enhancements result in im-
proved performance for the original algorithm, as well as the abil-
ity to handle designer specified “don’t cares” and redundancy
removal uniformly in the framework of a graph based synthesis
system such as LSS.

Overview

There are two basic approaches to multi-level design: 1) the
algebraic/boolean approach [6] , and 2) the graph-based ap-
proach [4]. Although systems generally incorporate ideas from
both approaches, it is fair to say that the boolean/algebraic
method typically represents a function as a directed acyclic graph
(dag) whose nodes compute arbitrary functions and performs opti-
mizations using factoring and 2-level minimization on the nodes.
On the other hand, the graph based approach represents a function
as a dag whose nodes compute simple functions and performs opti-
mizations using graph manipulation and data flow algorithms.
This paper describes a significant enhancement to an optimization
which belongs to the conceptual and algorithmic framework of the
graph based synthesis approach. We note that there has been
progress towards applying these ideas in the framework of alge-
braic synthesis[7].

In [2] the authors introduced a new circuit optimization which
used ideas from global flow analysis to optimize a circuit by first
computing circuit summary information and then using this infor-
mation via the MIN/CUT algorithm to reduce the number of
connections in a circuit. This paper describes improvements to
this method. There are two main contributions. The first is an
improvement of the main theorem of [2] which guaranteed that
the optimization was legal, i.e. that it left the function of the circuit
unchanged. The second contribution is a refinement of the
method that allows “conditional optimizations”! to be handled

These conditional optimizations include connection reduction optimiza-
tions which use designer specified output “don’t care” information [5]
(p.235-236), as well as redundancy removal optimizations.

CH2657-5/88/0000/0102$01.00 © 1988 IEEE

102

uniformly. Together, the extensions reported here result in a sig-
nificant conceptual, as well as practical, simplification to the logic
optimization phase of LSS. This phase, which until recently in-
cluded more than a dozen local transformations, can now be de-
scribed entirely in terms of two primitive processes: global flow
methods for boolean logic optimization, and factoring to satisfy
fan-in/fan-out constraints.

The global flow method is described in detail in [2, 3]. At a high
level it can be described as follows. Iteratively, for each net the
procedure determines how the terminals of the current net can be
rearranged and chooses a legal rearrangement for implementation.
These legal rearrangements are determined assuming the net car-
ries the controlling value? and reflect the boolean nature of the
operators (as opposed to the algebraic nature of factoring). These
possible rearrangements are determined using summary informa-
tion which consists of assertions concerning the state of other nets
in the circuit. The correctness of the rearrangements is guaranteed
by Theorem 1 of [2] which states that rearrangements of the ter-
minals of a net that leaves the “FRONTIER” unchanged are le-
gal. (These concepts will be defined precisely later.)

Example:We use the circuit in figure 1 to illustrate throughout.
When the procedure considers signal “i”, it performs deductions
under the assumption that i=1 since 1 is the controlling value for
NOR gates. It derives the assertions: n=0, m=0, j=03, p=1, r=0,
s=0, q=0.% It then determines that FRONTIER(i)={q=0, r=0}5.
The algorithm then changes the terminals of “i” to produce the
circuit shown in figure 3.

Since the optimizations involve rearranging the terminals of the
net under consideration, it is important to differentiate between
assertions which are independent of the precise connections of the
current net and those which depend on where this net goes. Our
first result addresses this distinction. In our earlier paper, this
distinction was captured to some extent in the definition of the
frontier. In this paper, this distinction is refined through the idea
of an assertion concerning the circuit being “FREE”. The earlier
theorem is extended to show that any rearrangement which leaves
the non-“FREE” part of the frontier unchanged is legal. This
results in significant connection reduction in some examples. Note
that in the above example, the connection of “i” at the source of
s is not necessary because the assertion q=0 is independent of

2 For a network of NORs, the value ’1” is the “‘controlling value” since it
controls the output of the logic gate, and blocks the ffect of other inputs.

3 Since j=13i=0 and therefore i=13j=0.

4 These correspond to C,o(i) = {n,mj,r.s,q} and C,,(i) = {p} in the notation
of [2].

s This corresponds to FRONTIER(i)={q,r} in the notation of [2].

where “i” is connected. It is this type of information which is
captured in the notion of a “FREE” assertion.

The second enhancement to the method results from an improve-
ment in the formalism which permits us to reason about individual
terminals rather than entire nets. This does not require any fun-
damental change to the techniques, but it does permit
“conditional” optimizations to be accomadated in the same the-
oretical framework. These conditional optimizations include
connection reduction optimizations® which utilize designer speci-
fied output “don’t care” information (this has not been possible
before in graph-based synthesis systems) and redundancy removal
optimizations.”

Summary of Technical Material

Terminology and Foundations

Circuits are represented as dags. For simplicity, we assume the
nodes of the dag to be NORs, INPUTs, or OUTPUTs. We use
terms gate, node, signal, and terminal in the standard way. Since
we assume each gate has a single output, we will also identify the
net with the node which is its source. In what follows € is an ar-
bitrary circuit satisfying the above constraints.

Definition:A ={(c,v) | ¢’s are terminals in € and v, ’s are associated
values} is called a partial assignment of €.

We can think of a partial assignment as a set of assertions (or de-
ductions) about the state of the circuit. For example, if (c,1) €A,
we may say that A contains the assertion ¢=1, or equivalently that
A asserts that terminal ¢ has value 1. We will write partial as-
signments as sets of pairs or sets of assertions interchangeably.
Note that a partial assignment, A, determines a set of possible in-
put values, i.e. all input choices which result in the assertions of
A being true. We shall refer to such inputs as input assignments of
A

Definition: For any partial assignment A of €, let A* denote the
partial assignment consisting of all assertions implied by A. This
is called the closure of A.

Although the results described here are independent of the method
used to derive these assertions, for the sake of clarity in this ab-
stract, we use the following recurrences which we introduced in
[2] as our deductive system. (Let X(s) = {inputs of source of s}.)

Cio(4) = {(5,0) | e X[, e Cu(I U A4

U {5,003,) e C((Dlse XM}

U {(5,0) | 3 (x,1) € 4,(x,0) € Cpo({(s,HD]}

U {(s,0) | 3c on same net as s,(c,0) € Cjo(4)}
C,(4) = {(s,1) | 3,(7,0) € Co(A) 5€X(),

Vre X(p)[r#£55(1,0) € Cio(A)]}

Ui(s,1) | Vye X()[(0) e Cro(D} U 4

U {(s,1) | 2x[(x,1) € 4,(x,0) € Coo({ (5,00 1]}

U {(s,1) | 3c on same net as s,(c,1) € C;,(4)}
Similarly for Cy, Co1-

Connection reduction optimizations are those logic optimizations which
leave the function unchanged at the most forward changed nodes.
Redundancy removal optimizations are those where the function may be
changed at the most forward changed node; however, the change can not
be seen at any output because of the circuit structure.

The use of this deductive method results in the closure, A%, being
the least fixed point of these recurrences. We note that Hachtel
[9] uses related deductive methods while Brayton [7] takes a dif-
ferent approach.

The definition of partial assignments permits different values to
be associated with different terminals of a net. Such a partial as-
signment corresponds to inconsistent assertions about the state
of the circuit. Inconsistent assignments are ruled out through the
notion of a compatible assignment.

Definition:A partial assignment A is said to be compatible in € if
whenever (c,v)) and (c,v) € A%, and ¢, and ; refer to terminals of
the same net, then v, = v,

The following notation will be useful. For any compatible A, we
let ®\A be a circuit identical to € but with all terminals of A re-
moved, and each terminal of A which is the input to a gate re-
placed by a connection to a new primary input. Also let B(A) =
{(c,v) | (c,v) €4* and there is no path in € from any terminal in
A to any terminal on the same net as c}.

Observe that B(A) contains assertions which are dependent on
how the signalin A are computed but independent of how they
are used. This is true because any assignment to inputs that results
in the terminal-value pairs of A, must also result in the pairs con-
tained in B(A). In fact, for any input assignment of A, if €is
changed by rearranging terminals in A (subject to some re-
strictions), the assertions of B(A) still hold. This is because no
path exists from A to B(A) and so there can be no direct depend-
ence of these assertions on the terminals in A. We illustrate this
with the following.

Example:Consider the circuit from figure 1, and assume that the
partial assignment, A, under consideration sets all terminals of
signal “i” to 1. We see that 4%={(n,0), (m,0), (,0), (p,1), (r,0),
(s,0), (q,0)} with each signal-value pair replaced by all the ap-
propriate terminal-value pairs. We also see that B(A) contains the
assertions n=0, m=0, j=0, p=1, again with signals replaced by the
appropriate terminals.

This independence is important and leads us naturally to our main
definition.

Definition:FREE(A) = B(4)*\M.

Example:If we continue the earlier example, we see that FREE(A)
contains g=0 as well as the assertions n=0, m=0, j=0, p=1 which
were also in B(A).

We see intuitively that the assertions in FREE(A) are consistent
with 4% and also independent of A. Consistency is established by:

Lemma:If A is compatible then
fe] 1(c.0),(c.)} {FREE() U A} = ¢.

Proof: From the definition of the closure operator, we s that for
an{ set of assertions X and partial assignment A,
X*\cX¥ and that B(4)¥<4¥ . Combining these observations
shows that FREE(4)<A*, and since A is compatible, the result
follows.m

Intuitively, the independence of FREE(A) follows from the con-
struction of ¥\A. By replacing connections of terminals of A
which are inputs of gates by connections of new primary inputs,
we prevent the establishment of any assertions which depend n
the precise terminals of A.

Another idea which we need is that of the frontier of a signal in a
set of nodes. Intuitively, the frontier is the subset of nodes closest

to the outputs. More formally, Given a signal i in € and a partial
assignment, A, we define the frontier of i in A, #(A,i), as the set
of nets, j, for which:

o (j0)ed",

® there is a path j—j—j...»OUTPUT such that for no j is
Jede,

® jisreachable in the circuit from i.

If we say frontier of a net, we are referring to the partial assign-
ment which assigns 1’ to all terminals of that net.

The importance of the sets #(A,i) and FREE(A) is illustrated by
the following theorem.

Main Theorem:Let i be a net in € and A any partial assignment
which setsito 1. Let € be identical to € except that terminals
of i in A may be missing and additional terminals of i may be
present. Assume that none of the connections of i in € are to
nodes in FREE(A). If in the two circuits, the sets
{x| xeF(A,)A\x¢ FREE(A)}. are identical, then the two circuits
compute the same function.

This theorem is very similar to the main theorem of [2]. In fact,
it is established by showing that in this case, the hypotheses of our
earlier theorem hold. In our earlier work, we could guarantee that
a rearrangement was legal only if the frontier sets in the two cir-
cuits were identical; while to apply this theorem, we require only
that the non-“FREE” part of the frontier sets be identical. Since
connections must be added to maintain the equivalence of these
two sets, we see that our new result can, in principle, result in
smaller circuits. We have found this to be true in practice as well.

Example:Continuing the example, we saw earlier that
F(A,))={q=0,r=0}. If we combine this with the value for
FREE(A) computed above we see that

{x|xeF(A,)A\x¢ FREE(A)} ={r=0}. The above theorem then
guarantees that the circuit shown in figure 2 is equivalent to that
shown in figure 1. Note that in figure 2 signal i has only 2 termi-
nals. As mentioned earlier, our previous method which did not
make use of “FREE” connections would result in the circuit
shown in figure 3 in which net “i”’ has three terminals. We realize
that this is a simple example which could be handled by other less
sophisticated methods. It is meant only to illustrate the improve-
ment in our new optimization.

As presented here, the method appears to be computationally in-
tensive since to compute the “FREE” connections, we must per-
form deductions for a new circuit. However, we note that a good
approximation, to the deductions embodied in the recurrences
shown in the appendix, can be computed on a signal by signal ba-
sis. This is done by a straightforward use of data flow propagation
techniques [1, 10] which never computes information that will
be invalidated before it is needed. The running time of this pro-
cedure is proportional to the product of the size of the controlling
sets and the average fan-in of the circuit. These techniques enable
us to compute the “FREE” connections with minimal extra cost
during the same graph traversal.

Experimental Results

We performed a number of experiments to evaluate the impact of
our main theorem on the effectiveness of global flow optimization.
We did this by creating two programs, one of which used our main
theorem and one of which relied on Theorem 1 of [2]. Both pro-
grams utilized the theorems through the artifact of derived graphs.
The method used to construct the derived graphs was somewhat

104

different from that described in [2]; however, identical methods
were used in both programs. In addition, because of the compu-
tational constraints alluded to above, we did not compute the en-
tire fixed point of the recurrences; rather, we weakened the
recurrences by dropping the term corresponding to the
contrapositive throughout the experiment. When computing the
results based on [2], we weakened the recurrences even more by
including only the term corresponding to forward propagation.
The result of these two approximations can only exaggerate the
possible benefit due to our main theorem, and therefore, our re-
sults should be considered as an upper bound on the usefulness
of this idea. We feel strongly that other experiments are needed
to evaluate the benefit which might be gained by utilizing the
contrapositive or even using the entire F,, sets[2].

Our experiments began with logic which had been run through the
high-level and and/or level optimizations of LSS and then trans-
lated to NORs. (See [4, 8] for details about these optimizations.)
We then ran one of the two programs: FREEOPT, which utilized
our main theorem, or WEAKOPT, which was based on our earlier
methods. These were followed by some “tidying up” programs
which propagate constants, remove common sub-expressions,
eliminated double negations, etc.. We did not perform fan-in or
fan-out correction.

Our most surprising result was that in one of the 15 cases for
which comparisons were run, the size of the NOR level circuit
produced by WEAKOPT was smaller than that produced by
FREEOPT. This must be due to the interaction of successive ap-
plications of the optimization and suggests that the effect of signal
ordering in the sequence of applications is important. Currently,
we treat high fan-out signals first. Other than this, results were in
accordance with our expectations. In many cases the two methods
were identical. In those where there was a difference, there was
a wide spread in effect; the improvement varied from 25% to
100%?3. This large variance is not too surprising; it suggests that
if the style of specification is such that the main theorem applies,
it may apply frequently.

Other Applications

As mentioned earlier, the refinement in our formalism extends the
applicability of our method to conditional optimizations. This
permits us to make use of “don’t care” conditions directly. We
do this by adding a new function, which recognizes the appropri-
ate ‘“‘care” set, to the circuit and a new pair setting the output of
this function to ’1’ to partial assignments used for optimization.
The resulting optimizations will be valid on all inputs in the
“care” set. Both output don’t care’s and redundancy removal can
be accommodated in this framework.

Summary and Conclusion

In this paper we describe two enhancements to our earlier global
flow algorithm for connection reduction. We show how to make
better use of all types of “don’t care” information. and we show
how to apply our methods to redundancy removal optimizations.
From a practical standpoint, these enhancements result in superior
performance for the algorithm. From a conceptual standpoint,
they unify a wide variety of optimizations which have been part
of the Logic Synthesis System.

8 The percentage improvement was computed as the ratio of the number of
connections removed by each program.

The work presented suggests a number of avenues for further re-
search:

1. Develop an incremental or on-line algorithm which maintains
the full controlling sets.

2. Determine the effect of using the forcing sets or the full con-
trolling sets in global flow. (See [9] for a beginning.)

3. Investigate the effect of signal ordering on global flow.

Acknowledgements

We would like to thank Larry Carter and Andrea LaPaugh, with-
out whom this might have been written but could never have been
read.

Figure 1

References
1. F. E. Allen and J. Cocke, “A Program Data Flow Analysis
Procedure,” CACM, vol. 19, no. 3, pp. 137-147, March
1976.
2. L. Berman and L. Trevillyan, “A Global Approach to Figure 2

Circuit Size Reduction,” Advanced Research in VLSI, 5th
MIT Conference, pp. 203-214, Cambridge, MA: MIT
Press, March 28-30 1988.

3. L. Berman, L. Trevillyan, and D. Brand, “Applications of
Global Flow Analysis in Logic Synthesis,” Proceeding of
1988 Int. Symp. on Circuits and Spystems, Helsinki,
Finland, June 7-9 1988.

4. D. Brand, “Logic Synthesis,” Design Systems for VLSI
Circuits: Logic Synthesis and Silicon Compilation, pp.
301-326, Martinus Nijhoff, 1987.

5. R. K. Brayton, “Algorithms for Multi-Level Logic Syn-
thesis and Optimization,” Design Systems for VLSI Cir-
cuits: Logic Synthesis and Silicon Compilation, pp.
197-248, Martinus Nijhoff, 1987.

6. R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and
A. R. Wang, “MIS: A Multiple-Level Logic Optimization
System,” IEEE Trans. on CAD, vol. CAD-6, no. 6, No-
vember 1987.

7. R. K. Brayton, E. M. Sentovich, and F. Somenzi, “Don’t
Cares and Global Flow Analysis of Boolean Networks,”
Proceedings of the ICCAD, November 1988.

8. J. A. Darringer, W. H. Joyner, Jr., C. L. Berman, and L.
Trevillyan, “Logic Synthesis Through Local
Transformation,” IBM Journal of Research and Develop-
ment, vol. 25, no. 4, pp. 272-280, July 1981.

9. G. Hachtel, R. Jacoby, P. Moceynas, and C. Morrison,
“pPerformance Enhancements in BOLD using
"Implications",” Proceedings of the ICCAD, November
1988.

10. L. Trevillyan, W. Joyner, Jr., and C. L. Berman, “Global
Flow Analysis in Automatic Logic Design,” IEEE Trans.
on Computers, vol. C-25, no. 1, January 1986.

Figure 3

105

