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One of the main applications of System-in-a-Package (SiP) is a
high-performance and yet power-aware system such as HDTV on
a portable device. H.264/AVC for 1080HDTV requires 23.1Gb/s
data bandwidth between microprocessors and memories. The
data link should consume as low as 0.4pJ/b energy in order to
keep the total power dissipation below 10mW. But conventional
technologies consume much larger energy: 1.6pJ/b in a micro-
bump technology [1] and 2.8pJ/b in an inductive-coupling trans-
ceiver [2]. This paper reports energy reduction in an inductive-
coupling transceiver from 2.8pJ/b to 0.14pJ/b without degrading
the data rate. The energy dissipation is the lowest published to
date and far lower than [1-16] (Fig. 20.2.1). Precise pulse shaping
reduces the transmitter’s energy by 1/20, while device scaling
lowers the receiver’s energy by 1/20.

The shape of the transmit pulse is illustrated in Fig. 20.2.2. The
transmitter’s energy dissipation, E, is determined by the trans-
mit pulse shape and given by, E=V,,I;t, where I, is a pulse
amplitude and 2t is a pulse width. A received pulse signal, V; , is
induced by MdI /d¢, and the amplitude is given by V,=2MI. /.
When the communication distance and the inductor size are
given (i.e. M is given), a pulse slew rate, S,=I/1, is determined by
the Bit-Error Rate (BER) requirement. By reducing t while keep-
ing the slew rate, E,, is reduced by 1, as E,,=V,,S,t* indicates. On
the other hand, since a receiver (latch comparator [2]) is a digital
CMOS circuit, the receiver’s energy dissipation, E,,, is given by
E=CV,? and it is effectively reduced by device scaling.

Figure 20.2.2 depicts the pulse shaping circuit that consists of
pulse width, pulse slew rate and pulse amplitude controls. In the
pulse width control, a 4-phase clock generator provides 0°, 45°,
90°, 180° clocks to two Phase Interpolators (PIs). The left PI
interpolates a clock phase between 90° and 180° by 1/256-UI (4ps)
step. The right PI is a dummy circuit that always outputs 0°
clock. A succeeding AND gate generates a pulse clock that deter-
mines the pulse width, 1. The pulse slew rate is digitally con-
trolled by variable capacitors. The pulse amplitude is digitally
controlled by changing channel width of the NMOS in the H-
bridge driver.

Since the receiver’s timing margin is reduced by reducing the
pulse width, an accurate timing design is necessary to maintain
the BER<10®. A clock transceiver is modified to reduce the tim-
ing jitter in the received clock, Rxclk. The timing jitter caused by
supply noise and temperature variations can be effectively reject-
ed as common-mode noise by the clock link that is located adja-
cent to the data link. A sampling timing control adjusts the tim-
ing by 4ps step to overcome timing shift due to process variations.

Figure 20.2.3 shows two sets of stacked test chips. One is fabri-
cated in 0.18um CMOS where the transceiver with the pulse
shaping circuit is implemented. Energy reduction in the data
transmitter is evaluated in the same process employed in [2]. The
other is fabricated in 90nm CMOS to measure energy reduction
in the data receiver due to device scaling. In both 0.18um and
90nm CMOS, a 10um-thick transmitter chip is stacked on top of
a receiver chip and the communication distance including an
adhesive layer is 15um. The data transceiver communicates at
1Gb/s by a 30um diameter metal inductor. A clock transceiver in
the 0.18um CMOS chip provides 1GHz clock link by a 200pum
diameter metal inductor. The communication distance and induc-
tor size are the same as [2].

Timing jitter in the clock transceiver is reduced to receive the
narrow pulse correctly. The clock transceiver and simulated
waveforms are depicted in Fig. 20.2.4(a). A conventional clock
transceiver in [2] transmits a sinusoidal clock whose low slew
rate increases the timing jitter when the transmitter generates
I, and the receiver latches Rxclk. On the other hand, the clock

transceiver here transmits a rectangular clock of higher slew rate
to solve this problem. Figure 20.2.4(b) depicts measured timing
jitter of the received clock. By increasing the slew rate, the tim-
ing jitter is reduced to 4.8ps,,, at minimum. It is half of the tim-
ing jitter of the conventional clock transceiver.

Figure 20.2.5(a) presents measured timing bathtub curve
dependence on the pulse amplitude. The minimum pulse ampli-
tude required for a BER<10" is seen to be 60mV. Figure 20.2.5(b)
presents the bathtub curve dependence on the pulse width. It is
confirmed that Ey is reduced by 1. When 7 is set to the minimum
pulse width of 60ps, K, is reduced by 1/17 (0.13pJ/b) and the tim-
ing margin for a BER<10" is 25ps.

Figure 20.2.6 shows the measured BER dependence on supply
noise. Since the clock link is located adjacent to the data link,
timing jitter caused by supply noise is effectively rejected and
suppressed within the timing margin of 25ps. Therefore, the data
transceiver exhibits sufficiently high tolerance against a supply
noise of 350mV. It is much larger than the 69mV supply noise
monitored in a product-level microprocessor for 3G cellular
phones [17]. Chip performance in both 0.18um and 90nm CMOS
is summarized in Fig. 20.2.7.
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Figure 20.2.1: Energy dissipation of CMOS links presented at ISSCC.
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Figure 20.2.3: Micrographs of stacked test chips in 180nm and 90nm CMOS.
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Figure 20.2.5: Measured timing bathtub curves dependence on (a) pulse amplitude and
(b) pulse width.
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Figure 20.2.2: Inductive-coupling inter-chip data transceiver with digital control of
pulse shaping.
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Figure 20.2.4:(a) Inductive-coupling clock transceiver, simulated waveforms and (b)
measured jitter of received clock.
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Figure 20.2.6: Measured BER dependence on supply noise.
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Energy Dissipation

0.14pJ/b

0.33pJ/b

2.8pJ/b

in Data Link (Tx:0.11pJ/b, Rx:0.03pJ/b)| (Tx:0.13pd/b, Rx:0.2pJ/b)| (Tx:2.2pJ/b, Rx:0.6pJ/b)
Energy Dissipation No Data 3.5pJ/b 12.5pJ/b
in Clock Link (Tx:1.5pd/b, Rx:2pJib) | (Tx:6.5pJd/b, Rx:6pJib)
in C;J;f:t: 'i.ink No Data 4.8ps-rms 9.5ps-rms
Process 90nm CMOS 180nm CMOS
(Vpo=1V) (V,p=1.8Y)
Data Rate 1Gb/s
Bit Error Rate <1012
Clock Rate 1GHz
Channel Area 30um x 30pum

Distance

15um (Chip Thickness:10pm, Adhesive Thickness:5um)

Figure 20.2.7: Performance summary.
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