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20.2 A 0.14pJ/b Inductive-Coupling Inter-Chip Data transceiver here transmits a rectangular clock of higher slew rate

Transceiver with Digitally-Controlled Precise to solve this problem. Figure 20.2.4(b) depicts measured timing
Pulse SOhapingjitter of the received clock. By increasing the slew rate, the tim-Pulse Shaping ing jitter is reduced to 4.8ps,m, at minimum. It is half of the tim-

Noriyuki Miural, Hiroki Ishikurol, Takayasu Sakurai', Tadahiro Kuroda' ing jitter of the conventional clock transceiver.
'Keio University, Yokohama, Japan, Figure 20.2.5(a) presents measured timing bathtub curve
'University of Tokyo, Tokyo, Japan dependence on the pulse amplitude. The minimum pulse ampli-

tude required for a BER<10-12 is seen to be 60mV. Figure 20.2.5(b)
One of the main applications of System-in-a-Package (SiP) is a presenits the bathtub curve dependence on the pulse width. It is
high-performance and yet power-aware system such as HDTV on confirmed that E, is reduced by C2. When c is set to the minimum
a portable device. H.264/AVC for 1080HDTV requires 23.1Gb/s pulse width of 60ps, E1, is reduced by 1/17 (0.13pJ/b) and the tim-
data bandwidth between microprocessors and memories. The ing margin for a BER<10-12 is 25ps.
data link should consume as low as 0.4pJ/b energy in order to
keep the total power dissipation below 10mWV But conventional Figure 20,2,6 shows themlneasured BER dependence on supply
technologies consume much larger energy: 1.6pJ/b in a micro- noise, Since the clock link is located adjacent to the data link,
bump technology [1] and 2.8pJ/b in an inductive-coupling trans- timing jitter caused by supply noise is effectively rejected and
ceiver [2]. This paper reports energy reduction in an inductive- suppressed within the timing margin of 25ps. Therefore, the data
coupling transceiver from 2.8pJ/b to 0.14pJ/b without degrading transceiver exhibits sufficiently high tolerance against a supply
the data rate. The energy dissipation is the lowest published to noise of 350mn It is much larlger than the 69mV supply noise
date and far lower than [1-16] (Fig. 20.2.1). Precise pulse shaping mhonitoredi1n7 a product-level microprocessor for 3G cellular
reduces the transmitter's energy by 1/20, while device scaling phones [17] Chip perfoirman0ce in both 0.18um and 9Onm CMOS
lowers the receiver's energy by1/20. is summarized in Fig, 20,2,7,
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This Work [2] Previous Work

Energy Dissipation 0.14pJ/b 0.33pJ/b 2.8pJ/b
in Data Link (Tx:0.11pJ/b, Rx:0.03pJ/b) (Tx:0.13pJ/b, Rx:0.2pJ/b) (Tx:2.2pJ/b, Rx:0.6pJ/b)

Energy Dissipation No Data 3.5pJ/b 12.5pJ/b
in Clock Link (Tx:1.5pJ/b, Rx:2pJ/b) (Tx:6.5pJ/b, Rx:6pJ/b)

in Clock Link No Data 4.8ps-rms 9.5ps-rms

Process 90nm CMOS 180nm CMOSProcess ~(VDD=IV) (VDD=1.8V)
Data Rate lGb/s

Bit Error Rate <10-12

Clock Rate 1GHz

Channel Area 30gm x 30m

Distance 15gm (Chip Thickness:10gm, Adhesive Thickness:5gm)
[2] N.Miura (ISSCC'06)

Figure 20.2.7: Performance summary.

6081 200 IEEE11 International Solid-State Circuits Conference 1-4244-0852-O/07/$2500 ©2007 IEEE1


