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Abstract  The outstanding progress in experimental 

quantum computing with superconducting Josephson-

junction based qubits over the past few decades has pushed 

coherence times many orders of magnitude above that of the 

first measured. We are also in the midst of scaling towards 

complex architectures of multi-qubit processors where 

maintaining very low gate error rates at the limits supported 

by coherence times is extremely important. Here we will 

review some of the critical materials and device challenges 

for superconducting qubits from the perspective of improved 

coherence and improved error rates. In particular we will 

focus on the problem of frequency allocations in order to 

target multi-qubit lattices for fixed-frequency microwave-

based gates. 

I. INTRODUCTION 

In quantum processors employing fixed-frequency 

superconducting Josephson-junction-based transmon qubits 

[1] and all-microwave cross-resonance two-qubit gates [2-3], 

 are a distinct 

challenge to attaining low gate error rates. The problem arises 

due to nearest-neighbor or next-nearest-neighbor qubits which 

are degenerate in one or another excitation energy. Josephson 

junctions for transmon qubits are typically patterned 

lithographically out of Al/AlOx/Al.  Fabrication defines the 

critical current of the junction and in turn the frequency of the 

transmon qubit.  

The cross-resonance gate is an all-microwave entangling 

gate between a control qubit and a target qubit. It involves a 

defined fixed coupling between two qubits, where a ZX 

interaction (generator of a controlled NOT, CNOT, gate) is 

activated by driving the control qubit at the transition 

frequency of the target qubit. The strength of the drive and the 

frequency detuning between the qubits affect the total CNOT 

gate time and effectiveness. In particular, the transmon is a 

weakly anharmonic qubit, meaning there are higher energy 

levels that are not too far away from the ground to first excited 

state energy. Such levels can also cause collisions that can be 

detrimental to the cross-resonance gate performance.  

Therefore, as processors scale up in the number of qubits, 

allowed cross-resonance gates depend upon accuracy of 

fabricated Josephson junctions and where the frequencies of 

the qubits come out. The rest of this paper will describe the 

types of problems that can arise with respect to frequency 

collisions and we show a Monte Carlo modeling method to 

demonstrate the yield of devices with usable qubit 

frequencies. 

II. TYPES OF GATE COLLISIONS 

The transmon cross-resonance frequency collision 

conditions are not simply limited to qubits that participate 

together in a CR gate, but extends to non-nearest neighbors as 

well. Considering transmon qubits of frequency f and 

anharmonicity , we know of six degeneracy conditions that 

degrade gate fidelities and one that leads to unfavorably slow 

gate rates: fj = fk  (any two qubits j, k sharing a coupling), fj = 

fk -  /2 (gate pair of control j, target k qubits),  fj = fk -  (any 

two qubits j, k sharing a coupling), fj > fk -  (gate pair of 

control j, target k will exhibit `slow gate' behavior), fi = fk (two 

target qubits i, k sharing a control j), fi = fk -  (two target 

qubits i, k sharing a control j) and 2fj +  = fk + fi (gate pair of 

control qubit j & target qubit k; spectator qubit i is coupled to 

control j). To ensure high gate fidelities in our devices, we 

must avoid any of these conditions. Assuming all qubits are 

transmons with frequencies on the order 5 GHz and 

anharmonicity  ~ -340 MHz, we can assume an exclusion 

region of at least +/- 5  MHz around each condition. Exact 

bounds remain under study both experimentally and using 

effective-Hamiltonian modeling. 

III. FREQUENCY ARRANGEMENT STRATEGIES AND 

MONTE CARLO MODELING 

How can we be confident to meet these constraints in a 

lattice of 17 (e.g. for a distance 3 rotated surface code) or 

more qubits? A useful metric is the standard deviation f in 

precisely setting the qubit frequency. One tactic to avoid 

frequency crowding would be to design all of the qubits in the 

lattice to be identical, and rely on the random scatter f  to 

.  Another idea would be to arrange 

the lattice into a regular pattern of qubit frequencies. Figure 1 

shows likely arrangements. For instance, a pattern of five 

frequencies should prevent any two adjacent qubits from 

sharing a frequency [4]. We can model the behavior in a 

Monte Carlo manner, as diagrammed in Figure 3: assign a 

mean frequency to each position in the pattern, populate the 

lattice with random frequencies from distributions f around 

each mean, count the collisions, and repeat the process more 

than 10
3
 times. The yield is the fraction of cases having no 

collisions. In Figures 4 and 5 we see that in order to achieve a 

useful yield (more than a few %) in a 16 or 17 qubit lattices 

we will have to use a 5-frequency pattern with f well below 

50 MHz. To produce a useful yield in a 49-qubit lattice will 

require a 5-frequency pattern with f well below 20 MHz.  

The connectivity of the lattice also has a measurable effect. 

For instance, figure 4 shows that in a 17-qubit device, for most 
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values of f, using a square-lattice layout will improve yield ~ 

2x over a skew-symmetric lattice. 

Statistical models can guide our designs for scaled-up 

qubit lattices if we know the fabrication precision f,. We 

expect the ground-state to first excited state qubit frequency 

difference to follow f01 ~ (8 EJ EC)
0.5

 with Josephson energy 

EJ given by EJ ~Ic/2 and Josephson junction critical current Ic 

related to junction resistance Rn by the Ambegaokar-Baratoff 

relation Ic ~ /2eRn, while charging energy Ec derives from 

qubit capacitance C as Ec = e
2
/2C. This implies that we can 

learn about the statistics of our qubit frequencies from 

measurements of junction resistances.  

We will present correlations of room temperature 

resistance measurements with actual measured qubit 

frequencies and give a guide towards achievable device yields 

for larger qubit lattices. 
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 FIG. 1: Possible frequency patterns for 17Q skew-symmetric 

lattice. Qubits are indicated by solid circles, coupling buses by 

gray squares. Left: One frequency. Rely on random scatter to 

avoid collisions. Middle: Two frequencies. Right: Five 

frequencies. No two qubits on the same bus has the same 

frequency 
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FIG. 2: Square lattices of three sizes. Five-frequency patterns 

illustrated in two cases. 

 
FIG. 3: Example of frequency collision statistical model. Five-

frequency pattern. Lattice is populated from random distributions 

about five mean frequencies. We vary the frequency step between 

means (67 MHz in this example) as well as the width of the 

distributions. Left: Mean frequencies, Right: Distributions 

FIG. 4: Predicted yield of 17-qubit chips having 

no frequency crowding. Lattice connected either 

in skew-symmetric (4Q/bus) or square (2Q/bus) 

manner. Three possible patterns of qubit 

frequencies 

 
FIG. 5: Predicted yield of chips having no 

frequency crowding. Monte Carlo model predicts 

yield of square qubit lattices shown in FIG. 2, as a 

function of  
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