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Abstract- Statistical variability associated with discreteness of 
charge and granularity of matter is one of limiting factors for 
CMOS scaling and integration. The major MOSFET statistical 
variability sources and corresponding physical simulations are 
discussed in detail. Direct statistical parameter extraction 
approach is presented and the scalability of 6T and 8T SRAM of 
bulk CMOS technology is investigated. The standard statistical 
parameter generation approaches are benchmarked and newly 
developed parameter generation approach based on nonlinear 
power method is outlined. 

 

I. INTRODUCTION 
 

 The years of ‘happy scaling’ are over and the fundamental 
challenges that the semiconductor industry faces at technology 
and device level will deeply affect the design of the next 
generations of integrated circuits and systems. The progressive 
scaling of CMOS transistors to achieve faster devices and 
higher circuit density has fuelled the phenomenal success of 
the semiconductor industry – captured by Moore’s famous law 
[1]. Silicon technology has entered the nano CMOS era with 
35 nm gate length MOSFETs in mass production in the 45 nm 
technology generation. However, it is widely recognized that 
the increasing statistical variability in the device 
characteristics is among the major challenges to scaling and 
integration for the present and next generation of nano CMOS 
transistors and circuits [2], [3]. Variability of transistor 
characteristics already critically affects SRAM scaling [4], and 
introduces leakage and timing issues in digital logic circuits 
[5]. The variability is the main factor restricting the scaling of 
the supply voltage, which for the last four technology 
generations has remained virtually constant, adding to the 
looming power crisis. 
  Compact Model is a key component of interface between 
technology and design. The first step towards variability aware 
design is to develop statistical compact modeling approaches 
that can reliably capture statistical variability information, 
which will enable designer to confidently take full advantage 
of advanced technologies can offer. Historically, the 
importance of device matching property in analogue domain 
drove the statistical compact modeling efforts [6]. For a 
semiconductor technology that can have economic sense in 
analog domain, the device should have well controlled 
variance behaviors and as a result most of statistical compact 
model approaches developed for analog domain were rest 
upon the assumption for normal, uncorrelated distributions of 
the compact model parameters [7]. However, in digital 
domain, from the static functionality aspect, the CMOS logic 
circuit is very resistant to device variation [8]. Although 
statistical variation of device can cause major concerns in 
timing and power dissipation aspects of CMOS digital design, 
it still can tolerate relatively large SV compared with analog 
counterpart. Consequently, statistical compact modeling in 

digital domain needs to deal with large magnitude of SV 
inherent to devices at nanometer scale.  

In this paper, we examine in detail how this statistical 
variability influences the device technology, scaling, circuit 
performance and compact modeling practices. In section II we 
review the major sources of statistical variability and 
corresponding physical simulation in nano CMOS transistors 
focusing at the 45nm technology generation and beyond. A 
direct statistical compact modeling strategy that can accurately 
transfer device variability information into industry standard 
compact models is outlined and its application on SRAM 
simulation is presented in section III. In section IV, commonly 
used statistical compact modeling approaches are 
benchmarked against direct extraction results discussed in 
section III. A newly developed parameter generation method 
that can maintain both the high moments of parameter 
distribution and the correlations between parameters is 
proposed in section V and the final conclusions are drawn in 
section VI.   

 

II. STATISTICAL VARIATION AND ITS PHYSICAL SIMULATION 
 

A.  Sources of Statistical Variability 
The statistical variability in modern CMOS transistors is 

introduced by the inevitable discreteness of charge and matter, 
the atomic scale non-uniformity of the interfaces and the 
granularity of the materials used in the fabrication of 
integrated circuits. The granularity introduces significant 
variability when the characteristic size of the grains and 
irregularities become comparable to the transistor dimensions.  
For conventional bulk MOSFETs that are still the workhorse 
of the CMOS technology Random Discrete Dopants (RDD) 
are the main source of statistical variability [9].  RDD are 
introduced predominantly by ion implantation and 
redistribution during high temperature annealing. Fig.1 
illustrates the dopant distribution obtained by the atomistic 
process simulator DADOS by Synopsys. Apart from special 
correlation in the dopant distribution imposed by the silicon 
crystal lattice, there may be also correlations introduced by the 
Coulomb interactions during the diffusion process. Line Edge 
Roughness (LER) illustrated in Fig. 2 stems from the 
molecular structure of the photoresist and the corpuscular 
nature of light. The polymer chemistry of the 193nm 
lithography used now for few technology generations mainly 
determines the current LER limit of approx 5 nm [10]. In 
transistors with poly-silicon gate, Poly Gate Granularity 
(PGG) illustrated in Fig. 3 is another important source of 
variability. PGG is associated with the surface potential 
pinning at the grain boundaries complimented by doping non-
uniformity due to rapid diffusion along the grain boundaries 
[11] 
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The introduction of high-k/metal gate technology improves 
the RDD induced variability, which is inversely proportional 
to the equivalent oxide thickness (EOT). The metal gate also 
eliminates the PGG induced variability. However, it 
introduces high-k granularity illustrated in Fig.4, and 
variability due to work-function variation associated with the 
metal gate granularity illustrated in Fig.5 [12]. In extremely 
scaled transistors atomic scale channel interface roughness 
illustrated in Fig.6 [13] and corresponding oxide thickness and 
body thickness variations can become important source of 
statistical variability. 

 

  
Fig. 1 KMC simulation of RDD 
(DADOS, Synopsys) 

Fig. 2 Typical LER in photoresist 
(Sandia Labds.) 

  
Fig. 3 SEM micrograph of typical 
PGG patterns. 

Fig. 4 Granularity in HfON high-k 
dielectrics (Sematech). 

  
Fig. 5 Metal granularity causing gate 
work-function variation. 

Fig. 6 Interface roughness (IBM). 

 
On top of above-mentioned static statistical variability, 

problems related to statistical aspects of reliability are looming 
that can reduce the life-span of contemporary circuits from 
tens of years to 1-2 years, or less in the near future. In 
combination with RDD, which are the dominant source of 
statistical variability in bulk MOSFETs, the statistical nature 
of discrete trapped charges on defect states at the interface or 
in the gate oxide associated with hot electron degradation, 
negative / positive bias temperature instability (NBTI/PBTI) 
and hot carrier injection (HCI) result in relatively rare but 
anomalously large transistor parameter changes, leading to 
loss of performance or circuit failure [14]. In small devices, 
both the number of trapped charges and their positions varies 
from device to device. For example in a 35 nm p-channel 
SRAM transistor corresponding to the 45 nm technology 
generation a 1x1011 cm2 NBTI trapped hole density results in 
average of 2 trapped holes per transistor. However, the 

number of trapped holes follows a Poisson distribution and in 
reality varies from 0 to 10. 

B.  Physical Simulation of Statistical Variability 
The simulation results presented in this paper were 

obtained using the Glasgow statistical 3D device simulator, 
which solves the carrier transport equations in the drift-
diffusion approximation with Density Gradient (DG) quantum 
corrections [15]. In the simulations, the RDD are generated 
from continuous doping profile by placing dopant atoms on 
silicon lattice sites within the device S/D and channel regions 
with a probability determined by the local ratio between 
dopant and silicon atom concentration. Since the basis of the 
silicon lattice is 0.543nm a fine mesh of 0.5nm is used to 
ensure a high resolution of dopant atoms. However, without 
considering quantum mechanical confinement in the potential 
well, in classical simulation, such fine mesh leads to carrier 
trapping at the sharply resolved Coulomb potential wells 
generated by the ionised discrete random dopants. In order to 
remove this artifact, the DG approach is employed as a 
quantum correction technology for both electrons and holes 

The LER illustrated in Fig. 2 is introduced through 1D 
Fourier synthesis. Random gate edges are generated from a 
power spectrum corresponding to a Gaussian autocorrelation 
function [10], with typical correlation length �=30nm and 
root-mean-square amplitude �=1.3 nm, which is the level that 
is achieved with current lithography systems. The quoted in 
the literature values of LER are equal to 3�. The procedure 
used for simulating PGG involves the random generation of 
poly-grains for the whole gate region:  a large atomic force 
microscope image of polycrystalline silicon grains illustrated 
at the top of Fig. 3 has been used as a template and the image 
is scaled according to the average grain diameter 
experimentally observed through X-Ray-diffraction 
measurements made both in �-2� and � scan modes [16] (the 
average grain diameter is 65nm). Then the simulator imports a 
random section of the grain template image that corresponds 
to the gate dimension of the simulated device, and along grain 
boundaries, the applied gate potential in the polysilicon is 
modified in a way that the Fermi level remains pinned at a 
certain position in the silicon bandgap. In the worst case 
scenario the Fermi level is pinned in the middle of the silicon 
gap. The impact of polysilicon grain boundary variation on 
device characteristics is simulated through the pinning of the 
potential in the polysilicon gate along the grain boundaries. 
The individual impact of RDD, LER and PGG on the potential 
distribution in at typical 35 nm bulk MOSFET is illustrated in 
Figs. 7, 8 and 9 respectively. 

 
Fig. 7 Potential distribution in a 35 nm MOSFET subject to RDD. 



 
Fig. 8 Potential distribution in a 35 nm MOSFET subject to LER. 

 
Fig. 9 Potential distribution in a 35 nm MOSFET subject to PGG. 

 
The validation of our simulation technology is done in 

comparison with measured statistical variability data in 45 nm 
low power CMOS transistors [17]. The simulator was adjusted 
to match accurately the carefully calibrated TCAD device 
simulation results of devices without variability by adjusting 
the effective mass parameters involved in DG formalism, and 
the mobility model parameters. The calibration results are 
shown in Fig. 10. 
 

 

  
Fig. 10 Top: structure of the simulated 45 nm LP technology n(left) and 
p(right) channel MOSFETs; Bottom: Agreement between the commercial 
TCAD and the Glasgow ‘atomistic’ simulator results. 

 
Statistical variability simulations are carried out, for 

nMOSFET, RDD, LER and PGG are considered while for 
pMOSFET, only RDD and LER are considered. The 
simulation results for the standard deviation of the threshold 

voltage �VT introduced by individual and combined sources of 
statistical variability are compared with the measured data in 
Table 1. In the nMOSFET case the accurate reproduction of 
the experimental measurements necessitates the assumption 
that, in addition to RDD and LER, the PGG related variability 
has to be taken into account. Constant current criterion is used 
defining the threshold voltage as the gate voltage producing 
drain current of (I = 70 nA .W/L) at both low drain voltage of 
VDS=0.05 V, and high drain voltage of VDS=1.1 V. Good 
agreement has been obtained assuming that the Fermi level at 
the n-type poly-Si gate grain boundaries is pinned in the upper 
half of the band-gap at approximately 0.35eV below the 
conduction band of silicon. However, in the pMOSFET case 
the combined effect of just the RDD and LER is sufficient to 
reproduce accurately the experimental measurements. The 
reason for this is the presence of acceptor type interface states 
in the upper half of the band-gap which pin the Fermi level in 
the case of n-type poly-Si, and the absence of corresponding 
donor type interface states in the lower part of the bandgap 
which leaves the Fermi level unpinned in the case of p-type 
poly-Si [18]. 

 
Table 1: �VT introduced by individual and combined source of statistical 

variability 
 n-channel MOSFET p-channel MOSFET 

 �VT  [mV] 

(VDS=0.05 V) 

�VT  [mV] 

(VDS=1.1 V) 

�VT  [mV] 

(VDS=0.05 V) 

�VT  [mV] 

(VDS=1.1 V) 

RDD 50 52 51 54 
LER 20 33 13 22 
PSG 30 26 - - 
Combined 62 69 53 59 
Experimental 62 67 54 57 

 
Table 2: Individual and combined impact of RDD, LER on sVT in 32 nm UTB 

SOI and 22 nm double gate nMOSFETs 
45nm �VT (mV) 32nm �VT (mV) 22nm �VT (mV)  

Vds(50mV) Vds(1.1V) Vds(50mV) Vds(1.0V) Vds(50mV) Vds(1.0V) 
RDD 50 52 5.3 6.1 6.4 8.1 
LER 20 33 3.3 8.6 5.8 13 
PGG 30 26 N/A N/A N/A N/A 

Combined 62 67 6.2 11 8.6 15 
Measured 62 69 N/A N/A N/A N/A 

 
The scaling of the conventional bulk MOSFETs required 

continuous increase of the channel doping in order to control 
the short channel effects and the related leakage. This in turn 
keeps the RDD related variability high. Thin body silicon on 
insulator (SOI) transistors, due to better electrostatic integrity 
and short channel control, tolerate very low channel doping 
and therefore are resilient to the main source of statistical 
variability in bulk MOSFETs the RDD. Meantime very good 
electrostatic integrity and corresponding reduction of the 
threshold voltage sensitivity on channel length and drain 
voltage also reduces their susceptibility to LER induced 
variability. Table 2 presents the individual and combined 
impact of RDD, LER on �VT in 32 nm UTB SOI and 22 nm 
double gate MOSFETs, corresponding �VT results of the 
45nm bulk technology generation nMOSFET is also presented 
as reference. The values of �VT in the 32 nm UTB SOI and 22 



nm double gate (DG) MOSFETs are 3-4 times smaller 
compared to the equivalent values in bulk MOSFETs with 
similar size. The results for a 22 nm double gate MOSFET are 
also representative for FinFET type device architectures. 

The reduction of the RDD, LER variability in the UTB 
SOI and DG MOSFETs focuses the attention on NBTI, PBTI 
and HCI related variability. Also the introduction of high–k 
gate dielectric and the corresponding relatively high density of 
fixed and trapped charge (FTC) introduces unwanted 
variability which can neutralize the benefits from low channel 
doping and reduced short channel effects.  Figure 11 
illustrated the impact of FTC with different interface charge 
density on the potential distribution in 32 nm UTB SOI 
MOSFETS described in details elsewhere [19]. The impact of 
different interface trapped charge density on �VT in 32 nm 
UTB SOI and 22 nm double gate MOSFETs is summarized in 
Table 3. 

 
(a) 

 
(b) 

 
(c) 

Fig. 11 Typical potential profiles corresponding to trap charge with sheet 
density at (a) 1e11cm-2, (b) 5e11cm-2, and (c) 1e12cm-2 
 

In the past the research in new gate stack materials and 
new device architectures has been mainly motivated by the 
drive to improve the device performance. Not any more. As 

illustrated in Fig. 12 the main driving force behind the 
introduction metal gate technology, fully depleted SOI and 
FinFET devices is the promise for reduction of the statistical 
variability. 

 
Table 3: Summary of simulation results of different interface charge density 

32nm �VT (mV) 22nm �VT (mV)  
Vds(50mV) Vds(1.0V) Vds(50mV) Vds(1.0V) 

Trap (1e11cm-2) 11 11 5.1 4.8 
Trap (5e11cm-2) 18 17 13 12 
Trap (1e12cm-2) 26 23 18 17 

 
 

 
Fig. 12 Statistical variability reduction scenario. Source: 2007 ITRS Winter 
Public Conference. 

 
III. DIRECT STATISTICAL COMPACT MODELING AND ITS 

APPLICATIONS 
 

A. Direct Statistical Compact Modeling 
It is very important to be able to capture the simulated or 

measured statistical variability in statistical compact models 
since this is the only way to communicate this information to 
designers. Unfortunately, the current industrial standard 
compact models do not have natural parameters designed to 
incorporate seamlessly the truly statistical variability 
associated with RDD, LER, PGG and other relevant 
variability sources. Fig. 13 shows the spread in ID-VG 
characteristics obtained from ‘atomistic’ simulator due to the 
combined effect of RDD, LER and PGG for a 35nm gate 
length device, and Fig.14 shows the corresponding probability 
plot of linear Ion, which is one of the important device figures 
of merits that can determine the circuit speed at nanometer 
regime. For a normal distribution, it should follow the straight 
line. It’s clear from Fig.13 that the magnitude of variation 
introduced by statistical variability sources at nanometer 
regime is huge, for this particular case, the Ioff can spread by 
almost 3 order of magnitude. Further more, Fig.14 
demonstrates that the transistor electrical performance 
parameters not always follow normal distribution. 

A two-stage direct statistical compact model extraction 
procedure [20] was developed to accurately transfer device 
statistical variation into compact models. At the first stage, a 
combination of group extraction and local optimization 
strategy for BSIM4, a local level parameter extraction strategy 
for PSP, has been applied respectively to obtain the complete 
set of BSIM4 and PSP parameters for uniform device. The 
resulting compact model card serves as the base model card 
for the second stage statistical extraction. 
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Fig. 13 Variability in the current 
voltage characteristics of a statistical 
sample of 200 microscopically 
different 35nm square (W=L) 
nMOSFETs at VD=1 V 

Fig. 14 Probability plot of linear Ion 
of a statistical sample of 200 
microscopically different 35nm 
square (W=L) nMOSFETs at 
VD=50mV 

 
Based on the physical analysis of the impacts of intrinsic 

SV on device operation, 7 possible statistical parameters have 
been identified for BSIM4 and PSP respectively to capture the 
intrinsic SV. For BSIM4, Vth0 is basic long channel threshold 
voltage parameter, and can be selected to account for 
traditional threshold variation introduced by SV; U0 is low-
field mobility parameter, and can be selected to account for 
current factor variation caused by SV; Nfactor and Voff are 
basic subthreshold parameters, and can be used to account for 
subthreshold slope and off current variation; Minv is moderate 
inversion parameter, and is selected to account for variation at 
moderate inversion regime; Rdsw is basic S/D resistance 
parameter, and is selected to account for dopant variation at 
S/D region; Dsub is DIBL parameter and is selected to 
account for DIBL variation introduced by SV. For PSP, 
NSUBO is the basic substrate doping parameter that 
physically determines the threshold voltage of device, and can 
be chosen to account for threshold voltage variation. Both 
CFL and ALPL are short channel effects parameters, and can 
be used to account for short channel effects variation. UO and 
CSO are mobility parameters, and are selected to account for 
transport variation introduced by SV. CTO is interface state 
parameter, and together with NSUBO, can be used to mimic 
the subthreshold behavior variation introduced by SV. RSW1 
is source/drain series resistance parameter, and is selected to 
account for the influence of SV at S/D region. 

The advantage of this approach is two fold: firstly, it does 
not require the variation of device electrical performance 
parameter follows any particular distribution; secondly, it does 
not need any pre-assumption of statistical compact model 
parameter distribution, correlation and sensitivity. As a result 
within the accuracy of the compact model fitting this approach 
will be the most accurate representation of the current voltage 
characteristics from the physical 3D simulations or from 
measurement. 

The accuracy in representing each of the device 
characteristics and figures of merit under the influence of SV 
depend on the number of statistical parameters used in the 
second stage statistical extraction. Statistical parameters are 
selected in an order following their statistical significance to 
form the different size of parameter set. As long as the 
parameter set contain both low field (such as Vth0 of BSIM4, 
NSUBO of PSP) and high field parameters (such as Dsub of 
BSIM4, CFL of PSP), two sub-steps are applied during direct 
statistical parameter extraction: gate characteristics at low 
drain bias condition are selected to extract basic variation 

parameters at first step where high-field characteristics 
variation is extracted during the second sub-step. Due to the 
increasing importance of standby power dissipation in low 
power IC design, we treat Ioff and Ion equally during 
statistical extraction and the RMS error calculation in 
subthreshold region is based on linear scale as at the on 
current regime. 

 
Table 4. Statistical parameter extraction errors for BSIM and PSP 

 
 

The impacts of different size of statistical parameter set on 
the statistical compact modeling accuracy for BSIM4 and PSP 
are summarized in Table. 4, the device under investigation is a 
35nm gate length MOSFET. Although surface potential based 
PSP is more device physics oriented comparing to threshold 
voltage based BSIM4, both models do not have natural 
structure to describe the intrinsic SV. As a result, the overall 
accuracy of the direct extraction results is similar for BSIM4 
and PSP. The average RMS errors for both BSIM4 and PSP 
are around 16% at 1-parameter set, and reduce to around 1% 
at full 7-parameter set. The common practice is to use 
threshold voltage and current factor to describe variation in 
compact models, if the threshold voltage and the mobility 
parameter are used as a 2-parameter SV set in BSIM4, the 
average RMS statistical compact modeling error is 10% and 
for each individual device, the RMS error can be scattered in 
the range form 5% to 25%. On the other hand, it’s worth 
mentioning that the device area is a determinant factor in 
statistical variation of device characteristics and the use of 
small statistical parameter set would be helpful for 
development of general statistical compact modeling strategy 
that can cover a wide range of device geometries. In this 
paper, we focus on the statistical parameter extraction results 
based on the 7-parameter set. 

The detailed direct extraction results are presented in Fig. 
15. BSIM4 has a slight edge with the mean RMS error of 
1.16% compared to 1.32% for PSP. This may be due to the 
more empirical nature of BSIM4 perhaps provides some subtle 
flexibility to capture SV in a direct extraction approach, or 
caused by different parameter identification procedures 
between BSIM4 and PSP. Fig. 15 also demonstrates that 
although threshold voltage variation is a good indicator for 
subthreshold leakage current variation due to the very strong 
correlation between them, for a given threshold voltage value, 
Ion value can scatter more than ±10% around its’ mean. This 
indicates that just considering threshold voltage variation in 
SV study cannot provide a full SV picture particularly when 
timing variability is of a major concern. 
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Fig. 15 Scatter plots between figure of merits based on 7-parameter set. 
Black square: physical statistical device simulation; Red circle: direct 
statistical compact modelling. Down-left: BSIM4, Up-right: PSP. 

 
B.  Statistical Circuit Simulations 

Based on the statistical compact model libraries built from 
direct statistical compact modeling results, we have 
investigated the impact of RDD on 6T and 8T SRAM stability 
for the next three generations of bulk CMOS technology [21]. 
In the following discussions, we use 25 nm, 18 nm and 13 nm 
gate length transistors described in details in [15]. 

The functionality of SRAM is determined by both static 
noise margin (SNM) and the write noise margin (WNM). By 
using “write assist” technology [22], WNM can be 
dramatically improved; hence we focus our discussion on 
SNM aspect of SRAM scaling. The bias configurations 
associated with the SNM for 6T and 8T SRAM cells is shown 
in Fig.16 (a) and (b) respectively. 
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(a) (b) 
Fig. 16 Bias configuration for SNM for (a) 6T SRAM cell (b) 8T SRAM  

The results of the distribution of SNM for 6T and 8T 
SRAM cells with a cell ratio of 2 are shown in Fig.17. The 
supply voltages for the 25nm, 18nm and 13nm generations are 
taken as 1.0, 1.0 and 0.9 V respectively. For 6T SRAM cells at 
the 13 nm generation, around 2% are not readable even under 
ideal conditions. No generation can meet the ‘�-6�’ yield 
criterion [23] without resorting to bias control approaches. 
However, employing an 8T cell structure dramatically 
improves SNM performance. The mean � of SNM for each 
generation are well above 200mV, 150-200% higher than their 
6T counterparts. The standard deviation � has a similar value 

for both the 25nm and 18nm generations, and is 30% less at 
the 13 nm generation. From a SNM point of view, all three 
generations of 8T cells can pass the ‘�-6�’ yield test with a 
considerable margin. 

 

 

Fig. 17 Distribution of SNM over ensembles of 200 6T and of 200 8T SRAM 
cells for the 25, 18 and 13 nm generations respectively. 

 
One of the fundamental limitations on future ULSI system 

integration is power dissipation. However, supply voltage 
scaling has been historically, and will continue to be much less 
aggressive than device scaling, with yield being one of the 
major reasons behind this. Since 8T SRAM can provide 
significantly improved SNM figure, this in turn will open a 
window for bolder power supply scaling. Fig. 4 shows the 
yield criterion for 8T SRAM cells with a cell ratio of 2 against 
supply voltage. For the 25 nm and 18 nm generations, as far as 
SNM is concerned, reasonable yield can be expected even 
when the supply voltage drops to 0.5 V. For the 13 nm 
generation, although the normalized standard deviation of the 
on-current can be 20% of the mean due to RDD, the minimum 
workable supply voltage can still remain at 0.7 V. Since the 
minimum supply voltage of a ULSI system is usually limited 
by its SRAM component [24], employing an 8T cell structure 
will provide greater flexibility with respect to power budget 
issues in system design. 

 

 

Fig. 18 Six sigma yield performance of 8T SRAM cell against supply voltage. 

 
IV. BENCHMARKING OF COMMONLY USED STATISTICAL 

PARAMETER GENERATION APPROACHES 
 

One of the major disadvantages of the direct statistical 
parameter extraction approach is that the device sample size is 
pre-determined by size of compact model library. Common 
practice in Monte Carlo circuit simulation is to generate 



statistical parameter values on the fly. Two typical statistical 
parameter generation approaches are investigated in 
comparison to the direct statistical extraction results: The first 
approach is to generate statistical compact model parameters 
assuming independent normal distribution for each extracted 
parameter, which is a standard approach in most of spice 
simulators, and will be called “naïve approach” in this paper. 
The second approach is based on Principal Component 
Analysis (PCA) taking care of the correlations between the 
extracted parameters, and will be called “PCA approach” in 
this paper. The PCA itself does not require that the original 
multi-dimension data follow a particular distribution. 
However, the reconstruction of the original data from 
statistical independent principal components is simpler under 
the assumption that the original data closely approximate 
normal distributions. Therefore in the PCA approach, we 
assume that parameters follow normal distribution. 

The capability of the naïve and the PCA approaches to 
reproduce key device figure of merit – Ion, are illustrated in 
Fig.19, which clearly demonstrate the deviations in the tail due 
to the shared assumption between the two approaches for 
Normal distribution of the extracted parameters. Although 
both approaches can preserve the mean of the distribution, 
only PCA approach can generally regenerate the Ion 
distribution trend, and the naïve approach produces a 
considerable error in whole distribution region. When 
comparing BSIM4 and PSP, both the naïve and the PCA 
approaches in PSP can better reproduce the distributions of the 
physical device parameters, with an error in standard deviation 
�, of 3% for the PCA approach, an error of 30% in � for the 
naïve approach, while the corresponding errors for BSIM4 are 
18% and 51% respectively. 
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Fig. 19 Probability plot of Ion generated by different statistical approaches 

 
V. STATISTICAL PARAMETER GENERATION BASED ON 

NONLINEAR POWER METHOD 
 

 In order to improve the accuracy of statistical parameter 
generation in the tail regions, a newly developed Nonlinear 

Power Method (NPM) is employed to not only maintain the 
correlations between statistical compact model parameters, but 
also to preserve the high moments of the parameter 
distributions. NPM is based on moment matching technique to 
determine first four central moments of non-normal random 
variable Yi representing ith statistical compact model 
parameter. The non-normal random variable Yi can be 
generated using the polynomial transformation of normal 
random variable Z � N(0, 1) as follows 

                     
Yi = ck�1Z

k�1

k=1

s

�
                                      (1)

 

where setting s = 4 controls up to the fourth moment, and this 
requires to knowing the even central moments of Z up to the 
12th order.  It is not necessary to calculate the odd central 
moments of Z since all of these values are zeros. Substituting 
the values of central moments of Z into the formulas of Yi 
moments leads to a nonlinear system, and its solution provides 
an exact solution of constants ck. In order to maintain the 
parameter correlations, the intermediate correlations matrix 
between Yi variables is calculated following the procedure 
described in [25]. Finally, multivariate non-normal 
distribution of random variables Yi is generated using a 
combination of singular value decomposition of intermediate 
correlations matrix and NPM approach. 

As an example, NPM based approach is applied for 
random generation of PSP statistical parameter set. Fig. 20 
clearly demonstrates that at tail regions of statistical parameter 
distribution, NPM approach can preserve the original direct 
extraction result, while PCA approach fail to achieve this due 
to the normal distribution assumption. As a result, the 
statistical property of device electrical performance 
parameters can be better reproduced.  

 

 
Fig. 20 Probability plot of key PSP parameter generated by different statistical 
approaches 

 
Monte Carlo circuit simulation of a propagation delay in a 

simple inverter was carried out to assess the impact of 
parameter generation approaches on accuracy of statistical 
circuit simulation. The results of Monte Carlo circuit 
simulation are presented in Fig. 21. The delay distribution 
based on NPM approach shows very close agreement with the 
distribution obtained using the directly extracted statistical 
compact model library, while PCA method produces the 
significant error in the lower tail of the delay distribution. 

 



 
Fig. 21 Probability plot of inverter delay based on different statistical 
approaches 
 

VI. CONCLUSION 

 The statistical variability introduced by discreteness of 
charge and matter has become one of the major concerns for 
the semiconductor industry. More and more the strategic 
technology decisions that the industry will be making in the 
future will be motivated by the desire to reduce statistical 
variability. SRAM is the most sensitive IC component in 
respect of statistical variability and needs special care and 
creative design solution in order to take full advantage from 
scaling in present and future technology generations. 
Statistical compact modeling plays a vital role in variability 
aware design. Although direct parameter extraction approach 
gives best accuracy, NPM is a step forward for development 
of general statistical compact modeling approach. 
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