15.3 A 1V 77dB-DR 72dB-SNDR 10MHz-BW 2-1 MASH CT $\Delta \Sigma M$

Blazej Nowacki^{1,2}, Nuno Paulino^{1,2}, Joao Goes^{1,2}

¹DEE, FCT, Universidade NOVA de Lisboa, Caparica, Portugal, ²CTS-UNINOVA, Caparica, Portugal

 $\Delta\Sigma$ M performance can be improved by using MASH or SMASH structures to obtain higher-order noise shaping [1]. They have better stability than single-loop structures. The power dissipation of $\Delta\Sigma$ Ms can be reduced by using simpler amplifiers such as single-stage or inverter-based amplifiers [2]. Selecting a passive or active-passive $\Delta\Sigma$ M architecture, where the processing gain of comparator is used in the feedback loop of the $\Delta\Sigma$ M's filter [3], allows a reduction in the number of amplifiers and their gain. This solution is very appealing for deepnanometer CMOS technologies, because a comparator can achieve large gain through positive feedback, which improves with faster transistors. This paper presents a passive-active CT 2-1 MASH $\Delta\Sigma$ M using RC integrators, low-gain stages (~20dB) and simplified digital cancellation logic (DCL). The $\Delta\Sigma$ M, clocked at 1GHz, achieves DR/SNR/SNDR of 77/76/72.2dB for input signal BW of 10MHz, while dissipating 1.57mW from a 1V supply.

In active $\Delta\Sigma$ Ms, loop gain is distributed among all the integrators and the comparator has a signal gain close to 1, while in passive $\Delta\Sigma$ Ms it is concentrated in the comparator. Because passive integrators can only attenuate, the signal is small at the comparator input. This means that the comparator signal gain is larger than 1 because its output amplitude is close to V_{DD}. Figure 15.3.1 depicts a linear model of a 2^{ma}-order passive-active $\Delta\Sigma$ M, where H₁, H₂ are the passive integrators' transfer functions (TFs), E_{TN1}, E_{TN2} are thermal noises, G₁ is an inter-stage low gain block, b₁, b₂ are feedback factors, G_C is the comparator signal gain and E_C, E₀ denote comparator and quantization noises, respectively. Since feedback b₁ is added (subtracted) to V_{in}, it defines the theoretical maximum amplitude of V_{in}. Equations from Fig. 15.3.1 describe the signal D_{OUT} in baseband, where H_{1,2} \approx 1. One can conclude that if G_C>>1 the quantization noise is considerably suppressed, that E_C and E_{TN2} are attenuated by G₁, and that E_{TN1} is added directly to V_{in}. This means that the $\Delta\Sigma$ M's SQNR is mainly defined by G_c (because G_c>G₁) and the SNR is limited by thermal noise.

Figure 15.3.2 shows a block diagram of the CT 2-1 MASH $\Delta\Sigma$ M and Fig. 15.3.3 shows its schematic. Each stage of the MASH $\Delta\Sigma M$ consists of RC integrators, gain block and 1b quantizer (clocked comparator + DFF). Excess loop delays (ELDs) of both stages are equal to T_s and in Z domain are interpreted as a z^{-1} delays. The constant ELD value facilitates proper operation of the DCL. Each integrator is an RC circuit and the feedback path is implemented by, a switchedcapacitor C_{fi} connected in parallel with the C_i during clock phase ϕ_2 . C_{fi} is pre-charged in ϕ_1 to either $+\Delta V_{ref}$ or $-\Delta V_{ref}$ (depending on the output bit-stream D_i). Additional capacitors C_{CMi} are used to reduce the common-mode voltage swing at the integrator's outputs. The integrator's TF can be described in the Z domain as $H_i(z) = \alpha_i / (1 - \beta_i \cdot z^{-1})$, where $\alpha_i = T_s / (2 \cdot R_i \cdot (C_i + C_{f_i}))$ and $\beta_i = (1 - \alpha_i)$. C_i denotes an equivalent capacitance of the main capacitor C_i and two common-mode capacitors C_{CMI}. Based on [4], equivalent comparator gains are approximated, for 1st and 2nd stages, as $G_{c1}=1/(\alpha_2 \cdot b_2)$ and $G_{c2}=1/(\alpha_3 \cdot b_3)$, requiring $\alpha_{2,3} \ll 1$ to increase these gains (α_3 , b_3 are coefficients of the 3rd integrator). Blocks G₁ and G_{Mid} separate adjacent integrators, preventing loading and providing gain (~20dB). They are differential pairs loaded by resistors. These R's are also part of the RC time constants of the 2nd and 3rd integrators.

The output voltage of H₁ is mainly composed by the high-frequency E₀₁ signal and the V_{in} component is only a fraction of this voltage because the first feedback cancels a significant part of V_{in}. This implies two things. First, H₁ has to provide attenuation (\sim G₁/b₂) to guarantee that the G₁ output amplitude is smaller than the feedback voltage of H₂ (to avoid saturation). This requires $\alpha_1 \approx 1/(G_1/b_2) <<1$. Second, the distortion added to V_{in} by G₁ (a differential pair) is reduced due to the small value of V_{in} in the output of H₁. The b_{2,3} should be kept small to increase the loop gains of both stages (by increasing G_{C1,C2}). However, making b_{2,3} too small requires higher H₁ attenuation, making its thermal noise contribution more significant. As mentioned before, the SNR is limited by the integrators' thermal noises, which are defined by values of C's. The circuit has to be designed taking into account all the mentioned constraints. In this work the design solution was obtained through an optimization process.

In the block diagram of the MASH $\Delta \Sigma M$ (Fig. 15.3.2) signal V_{int2} is the input signal of the comparator in the first-stage $\Delta \Sigma M$ (2nd order), that is amplified by G_{Mid} and applied to second-stage $\Delta \Sigma M$. The DCL combines the outputs of both stages (D₁ and D₂) to cancel E₀₁ and shape E₀₂ by NTF₀₁. Since NTF and STF have denominators with poles located outside the signal band, only the DC gain factor of these denominators needs to be used in the DCL. This is done by evaluating the denominators of NTF₀₁ and STF₂ at z=1 and using these values to scale the D₁ and D₂. Therefore the DCL becomes a FIR that can be implemented as a 6b look-up table with inputs D₁[n], D₁[n-1], D₂[n], D₂[n-1], D₂[n-2], which is built as a decoder using 270 logic gates and 4 DFFs. This simplification leads to a reduction in power and in the number of components (avoiding multipliers and adders). The DCL coefficients are calculated during the design phase and do not require adjustment or calibration during the circuit operation.

In a MASH architecture, the mismatch between analog (the $\Delta\Sigma$ M stages) and digital (the DCL) TFs can degrade performance. This is addressed by a design methodology (based on [5]) that uses an optimization procedure to maximize the SNDR. The optimization takes into account $\Delta\Sigma$ M's thermal, comparator and quantization noises. At each iteration, a Monte-Carlo (MC) analysis, where process and mismatch variations of R_i's, C_i's, C_n's, G₁ and G_{Mid} are included, is used to determine the average SNDR. These variations are only added to the analog part, while the DCL uses the nominal values to obtain a final design solution that has a low sensitivity, avoiding the need for calibration. Moreover, to reduce the distortion of the first differential pair, its input signal amplitude is also optimized to be smaller than 80mV_{pp,diff}. After optimization, a 1000-case MC analysis (of a high-level model of the $\Delta\Sigma$ M) assuming $3\sigma = 16\%$ for R_i's, 18% for C_i's, 25% for C_n's and 6% for G_{1,Mid}, resulted in a mean SNDR value of 72.9dB with a standard deviation of 1.3%.

The 2-1 MASH CT $\Delta\Sigma$ M was fabricated in 65nm CMOS with a 1V supply. The external reference voltages are V_{ref1.2}=0.9V, V_{ref3}=0.44V. Similarly to [1], the MASH $\Delta \Sigma M$ final outputs D₁ and D₂ are processed off-chip to produce D_{MASH}. This processing includes the DCL operation. The measured modulator's power consumption is 1.3mW, and obtained from electrical simulation the power of DCL is 270µW, giving in total 1.57mW. Figure 15.3.4 shows the FFT spectrum. Peak SNDR at -3dBFS (1.16V_{pp.diff}) and peak SNR at -1dBFS (1.48V_{pp.diff}) are 72.2/76dB, respectively. The two-tone test of IMD2/IMD3, near band-edge at -9dBFS inputs, is -78.5/-76.1dB, respectively. Figure 15.3.5 depicts measured SNDR vs. V_{in} amplitude (DR=77dB), and percentage power break-down of the MASH $\Delta\Sigma$ M. Measurements for $\pm 5\%$ V_{DD} and V_{ref} variations resulted in worst-case SNDR of 70.5dB. The alias suppression (measured for various $F_{\text{in}}\xspace$ from 980MHz to 1.02GHz) is ~51dB. Figure 15.3.6 summarizes the $\Delta\Sigma M$ performance and compares it to the state of the art. This work achieves a Walden FOM_w of 23.6fJ/conv.-step and a Schreier FOMs (SNDR) of 170.2dB. The combination of MASH topology and passive RC integrators with low gain blocks results in both the reduction of the power dissipation and of the chip size, as well as the lowest FOM_w for the $\Delta\Sigma$ Ms with BW from 5 to 50MHz shown in Fig. 15.3.6. Figure 15.3.7 depicts the micrograph of the test chip die with an active area of 0.027mm².

Acknowledgements:

This work was supported by the Portuguese Foundation for Science and Technology through projects: DISRUPTIVE (EXCL/EEI-ELC/0261/2012), PEST (UID-EEA/EEI/00066/2013) and Ph.D. grant: (SFRH/BD/71313/2010).

References:

[1] Y. Do-Yeon et al., "An 85dB-DR 74.6dB-SNDR 50MHz-BW CT MASH $\Delta\Sigma$ Modulator in 28nm CMOS," *ISSCC Dig. Tech. Papers*, pp. 272-273, Feb. 2015. [2] S. Zeller et al., "A 0.039 mm² Inverter-Based 1.82 mW 68.6dB-SNDR 10 MHz-BW CT- $\Sigma\Delta$ -ADC in 65 nm CMOS Using Power- and Area-Efficient Design Techniques," *IEEE J. Solid-State Circuits*, vol. 49, no. 7, pp. 1548-1560, July 2014. [3] A. F. Yeknami et al., "Low-Power DT $\Delta\Sigma$ Modulators Using SC Passive Filters in 65 nm CMOS," *IEEE Trans. Circuits Syst. I*, vol. 61, no. 2, pp. 358-370, Feb. 2014.

[4] F. Chen and B. Leung, "A 0.25-mW Low-Pass Passive Sigma-Delta Modulator with Built-In Mixer for a 10-MHz IF Input," *IEEE J. Solid-State Circuits*, vol. 32, no. 6, pp. 774-782, June 1997.

[5] J. L. A. de Melo et al., "Design Methodology for Sigma-Delta Modulators based on a Genetic Algorithm Using Hybrid Cost Functions," *Proc. ISCAS*, pp. 301-304, May 2012.

Integrator 1 Integrator 3 Integrator 2 Comp. 1 Gain Blocks 0.123 mm 0.123 mm Phase Gen. 0.123 mm 0.223 mm	