
In-process Memory Isolation Using Hardware Watchpoint

Jinsoo Jang
KAIST

jisjang@kaist.ac.kr

Brent Byunghoon Kang
KAIST

brentkang@kaist.ac.kr

ABSTRACT

Memory disclosure vulnerabilities have been exploited in the leak-

ing of application secret data such as crypto keys (e.g., the Heart-

bleed Bug). To ameliorate this problem, we propose an in-process

memory isolation mechanism by leveraging a common hardware-

feature, namely, hardware debugging. Specifically, we utilize a

watchpoint to monitor a particular memory region containing se-

cret data. We implemented the PoC of our approach based on the

64-bit ARM architecture, including the kernel patches and user

APIs that help developers benefit from isolated memory use. We

applied the approach to open-source applications such as OpenSSL

and AESCrypt. The results of a performance evaluation show that

our approach incurs a small amount of overhead.

1 INTRODUCTION

Memory disclosure vulnerabilities [17] have been remotely or lo-

cally exploited by attackers for the leakage of secret data. For in-

stance, the Heartbleed vulnerability (CVE-2014-0160) [4] persis-

tently reads up to 64 KB of process memory, leading to the leakage

of a crypto key for the server process. Unfortunately, process-level

isolation given by the OS is insufficient to prevent such an attack

because the attacker can take advantage of the lack of in-process

memory isolation.

Previous studies have proposed several ways to enable in-process

memory isolation and thus mitigate the vulnerability to a memory

disclosure. Shred [14] provides programming primitives that help

developers define and fulfill access control of a critical memory re-

gion. SeCage [20] also enables isolating a secret compartment from

the remaining process compartments by leveraging a hardware-

assisted virtualization technique. Although these approaches effec-

tively isolate critical regions, their adoption is generally difficult be-

cause previous works have required specific hardware components,

the availability of which is dependent on the hardware architec-

ture. For example, Shreds uses the memory domain and the domain

access control register (DACR), which are only supported in the

32-bit ARM architecture. SeCage leverages a VMFUNC instruction,

which is part of the virtual-machine extensions (VMX) on x86.

In this paper, we propose an architecture agnostic approach that

aims at realizing in-process memory isolation. We leverage the

hardware watchpoint to create secure memory on a thread basis.

This basically exploits the fact that configuring the watchpoint for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317843

a certain memory region with read and write monitoring capability

allows access control to that region, and thus readily builds an

isolated region. Further, most importantly, the watchpoint can be

configured on each processor independently, which facilitates the

design of thread-based security mechanisms.

Our prototype of watchpoint-based security application is imple-

mented on a Juno development board [7] using Linaro Release 17.10

[9]. Because the watchpoints need to be configured with privileged

mode, we patch the Linux kernel to insert watchpoint configura-

tion operations in the kernel exit code. Moreover, we additionally

implement a user library and a kernel driver to provide watchpoint

configurability to user applications. In the performance evaluation,

the proposed approaches are found to impose a small overhead. A

maximum overhead of 5% is imposed for OpenSSL applied with

in-process secure memory.

2 BACKGROUND AND RELATEDWORK

2.1 Self-hosted debugging

Commercial processor architectures, such as ARM and x86, gen-

erally support two types of debug mechanisms: (1) external and

(2) self-hosted (internal) debugging. External debugging refers to

performing debugging using external hardware equipment, such

as a JTAG debugger. Self-hosted debugging exploits debug-related

exceptions raised by a processor. The exceptions are caught and

handled by privileged software, such as the OS kernel. Several

debug facilities are provided by processors to support self-hosted

debugging. For instance, breakpoint registers allow a breakpoint ad-

dress to be set for an instruction execution that needs to be trapped

by raising a breakpoint exception. By using watchpoint registers,

access to a certain memory region can be configured to incur a

watchpoint exception.

The aforementioned debugging facilities have been leveraged

in various ways. GDB [3] is a well-known user-level software de-

bugger that can set hardware breakpoints (and watchpoints) by

invoking a ptrace system call that configures breakpoint registers.

Ninja [22] provides a stealthy malware analysis framework by com-

bining the processor debug features and security extensions (i.e.,

ARM TrustZone). Ether [16], a hypervisor-based malware analyzer,

exploits the hardware trap flag to monitor every single instruc-

tion execution. Kivati [15] and RaceHound [10] adopt hardware

watchpoints to detect atomicity violations. Previous works have

mainly used debug facilities for offline analysis and tracing of appli-

cations. By contrast, here, we show how to exploit debug facilities,

particularly hardware watchpoints, for runtime attack prevention.

2.2 In-process memory protection

Variousways have been proposed to protect applications. As hypervisor-

based approaches, TrustVisor [21] and Inktag [18] enable devel-

opers to isolate critical logic in the hypervisor-protected memory.

Similarly, ARM TrustZone [2] and Intel SGX [6] provide security

hardware primitives that can create a trusted execution environ-

ment in which the developers can deploy critical resources, such as

crypto key and services.

However, despite the strict isolation between the critical and

non-critical domains, such techniques remain vulnerable to attacks

that are performed inside the protected region owing to the coarse

protection granularity (e.g., heartbleed attack [4]). To address this

problem, SeCage [20] was proposed as a hypervisor-based approach

that separates an application into several compartments, and iso-

lates and protects them by creating exclusive extended page table

(EPT) mappings for each compartment. Further, VMFUNC [5] has

been leveraged to minimize the performance overhead during EPT

changes. On ARM, Shreds [14] exploits the memory domain [1] to

provide fine-grained in-process private memory. Although SeCage

and Shreds address important problems, it is difficult to gener-

ally apply them to high-end devices for the following reasons: (1)

VMFUNC is only available on x86 and (2) the memory domain is

obsolete on 64-bit ARM architecture.

3 WATCHPOINT ON ARM

Because our prototype is implemented on ARM, we discuss ARM

architecture-based watchpoint. To generate the watchpoint excep-

tion, the relevant watchpoint registers need to be configured along

with the setting of the monitor debug events (MDE) flag in the mon-

itor debug system control register (MDSCR_EL1). With ARM, there

are two types of watchpoint registers: the debug watchpoint value

register (DBGWVR(n)_EL1, n = 0-15) and the debug watchpoint

control register (DGBWCR(n)_EL1, n = 0-15). The watchpoint value

register (DBGWVR(n)_EL1, n = 0-15) sets up the starting address of

the monitoring. The watchpoint control register (DGBWCR(n)_EL1,

n = 0-15) comprises important attributes such as the monitoring

size and activation control. The monitoring size is determined by

referencing the BAS and MASK flags. For instance, the MASK flag

is leveraged to monitor the address range, the size of which is a

power of 2; the minimum and maximum sizes are 8 bytes and 2

GB, respectively. The two types of registers with the same index (n)

should be configured together to properly set up the watchpoint.

According to ARMv8 [1], the number of watchpoint pairs can be

as high as 16. However, in our development board [7], we have

four available watchpoint register pairs, i.e., from (DBGWVR0_EL1,

DBGWCR0_EL1) to (DBGWVR3_EL1, DBGWCR3_EL1). Most im-

portantly, the watchpoint registers are banked for each processor.

This enables us to design watchpoint-based solutions on a thread

basis.

Configuration requirement. The watchpoint configuration

should strictly comply with the monitoring size and the address-

alignment requirements. The starting address of the monitoring,

the size of which is less than or equal to 8 bytes, needs to be aligned

with a word or doubleword. For a size of larger than 8 bytes, the

monitoring size should be a power of 2, and the starting address of

the monitoring should be aligned with that size. If this requirement

is not satisfied, the watchpoints will not be activated.

4 ATTACK MODEL

We assume that an application can encompass a vulnerability in

which arbitrary process memory is leaked. The attacker’s goal is

exfiltrating secret data by exploiting the vulnerability. However, we

do not assume a kernel-privileged attacker. If the kernel is already

compromised, exploiting the memory disclosure vulnerability of an

application will not be necessary. Therefore, we trust the OS kernel

as the trusted computing base (TCB) of our proposed mechanism.

5 IN-PROCESS SECURE MEMORY

To address in-process abuse, such as a heartbleed attack, we de-

signed a method to provide in-process secure memory using hard-

ware watchpoints.

5.1 Secure memory creation

As discussed in Section 3, the watchpoints are configurable on a per

CPU basis. By exploiting this feature, we can create the in-process

secure memory by enabling watchpoint read/write monitoring for

a certain memory area. Once the monitoring is enabled, any access

to the area causes the watchpoint exception, which can be caught

and verified by the kernel. We exploit this property to conduct

access control to the area. The monitoring will be disabled only

when the legitimate (allowed) code accesses the area (we discuss

access control to the area in the following section).

As shown in Figure 1, a simple approach whereby each secure

memory slot is dynamically and thus sparsely allocated might limit

the number of creatable slots to be equal to the number of watch-

points, which is SoC-dependent and four in our case (note that we

assume that the minimum slot size is 8 bytes here). Further, Figure

2 shows that more than one watchpoint is required to protect a

slot if the size or starting address of the slot is not aligned with a

power of two. Thus, to maximize the number of possible slots, we

allocate the secure memory slots from a reserved linear memory

area. In addition, we ensure that the size and address of the slots

are aligned with a power of two and that the sizes of all slots are

equal.

With this allocation strategy, the maximum number of slots

(Nslot) should be carefully chosen to ensure that the following

conditions are satisfied: (1) the entire slot size should be covered

by the available watchpoints and (2) when a certain slot is used

(i.e., not monitored by the watchpoint), the remaining slots should

be monitored by configuring the available watchpoints. To satisfy

(1), the size of the reserved area should be within Nwp (number

of supported watchpoints) * 2 GB (maximum monitoring size of

each watchpoint), which is 8 GB in our system. Further, the size of

certain area (a group of continuous slots) that is monitored by each

watchpoint should be a power of two. As each slot size is a power

of two, the number of slots to be monitored by each watchpoint

should also be a power of two. This implies that Nslot is a sum of

powers of two.

Satisfying (2) is more restrictive than satisfying (1) because of

the watchpoint configuration requirement and the fact that size

of the remaining slots under a certain watchpoint monitoring is

not a power of two when an open slot exists. As can be seen in

Figure 3, finding the target open slot can be regarded as continuing

to bisect the memory area that includes the slot until the size of

Secure slot: A Secure slot: B

Read/write monitoring
WP_0

Memory 0x8000 0x9000 0x104000

… …

0x108000

…

Read/write monitoring
WP_1

Figure 1: Sparse slot allocation limits the number of cre-

atable secure slots to be equal to the number of available

watchpoints.

Secure slot size = 0x1800

WP_0 (size = 0x1000)

Memory 0x0 0x1800

……

0x1000

WP_1 (size = 0x800)

a) Slot size is not aligned with power of two.

Secure slot size = 0x2000

WP_0 (size = 0x1000)

Memory 0x7000 0x9000

……

0x8000

WP_1 (size = 0x1000)

b) Slot start address is not aligned with slot size.

Figure 2: More than two watchpoints are required to protect

a secure slot (a) if the size of the slot is not aligned with a

power of two or (b) the starting address of the slot is not

aligned with the size of the slot.

the bisected area equals the slot size, which is similar to binary

search. The bisection can be conducted asmany times as the number

of watchpoints (Nwp), as one of the bisected memory areas that

does not include the target slot in each step needs to be monitored

by a watchpoint. This implies that Nslot should be 2N wp (Nwp :

number of supported watchpoints), which is 16 in our development

environment supporting four watchpoints. Besides, each bisected

area should be monitored by a single watchpoint. Thus, the size of

the first bisected area, which is the largest one, should be within

2 GB. As a result, the size of each slot (Ssize) can be as large as 2

GB/(half of Nslot), which is 256 MB (2 GB/8) in our case.

Algorithm 1: setupWP() is recursively invoked to config-

ure the watchpoints with the aim of monitoring every slot

other than the target slot.

1 setupWP (start , end, tarдetSlot , slotSize);

2 /* start , end , tarдetSlot are virtual addresses */

3 mid = (end − start) / 2;

4 if mid <= tarдetSlot then
5 configWPRegister(start ,mid);

6 if (end −mid)! = slotSize then
7 setupWP(mid, end, tarдetSlot , slotSize);

8 end

9 else

10 configWPRegister(mid, end);

11 if (mid − start)! = slotSize then
12 setupWP(start ,mid, tarдetSlot , slotSize);

13 end

14 end

WP_0

size = Sslot

Memory

Open
slot1Slot0

WP_0

size = Sslot * 2

Memory

Open
slot1Slot0 Slot2 Slot3

WP_1

size = Sslot

Nwp= 2

Nwp= 1

WP_1

size = Sslot * 2

Memory

Open
slot5Slot4 Slot6 Slot7

WP_0

size = Sslot * 4

Nwp= 3

Slot1Slot0 Slot2 Slot3

WP_2

size = Sslot

WP_...

Memory
Open
Slot

2k-2+1
Slot2k-2 …… Slot2k-1

WP_0

size = Sslot *2k-1

Nwp= k

Slot1Slot0 …… Slot2k-1

WP_1

size = Sslot*2k-2

……

…WP_k-1

size = Sslot

…

Normal use Normal use

Normal use Normal use

Open secure slot Closed secure slot

Figure 3: Total number of slots can be as high as 2N wp when

we assume that the size of each slot is aligned with a power

of two and all slot sizes are equal.

5.2 Access control

For access control of the secure slot, the watchpoint should properly

be configured on the basis of access to the slot. We assume that

the critical code region that is allowed to access the slot is verified

in advance and thus the possibility of this region containing a

vulnerability is minimized. Note that this assumption is generally

found in previous works that aim to provide an isolated and a

secure memory region [14, 18, 20, 21]. Before executing the critical

code, we open the slot so that it is accessible. This is achieved by

configuring the watchpoints such that every slot other than the

slot to be accessed is monitored. We configure the watchpoints by

recursively searching for a group of slots that is monitored by each

watchpoint, as shown in Algorithm 1. First, we bisect the entire

reserved memory. One of the bisected areas that does not contain

the target slot is monitored by configuring the watchpoint. For

the other area of the bisection that contains the target slot, we

recursively run the algorithm until the last one remaining is the

target slot. As discussed in Section 5.1, because the total number

of slots is 2N wp , Nwp recursions are required to configure all the

watchpoints.

Exit from a certain critical region is required to protect (monitor)

the secure slot associated with the region by reconfiguring the

watchpoint. Compared to the entry, this procedure is quite simple.

We enable watchpoint read/write monitoring for the entire reserved

memory, the size of which is Sslot × Nslot . In our prototype, the

maximum size of the reserved memory can be as large as 4 GB

(256 MB * 16) because Ssize is limited to 256 MB. Therefore, a

Table 1: User library for in-process secure memory creation.

API Description

initSlotAll (int slotSize) Reserves a memory with size = Sslot × Nslot

enterCriticalRegion (int slotNum) Makes the specified slot accessible

exitCriticalRegion (int slotNum) Makes all slots not accessible

wp_malloc (int size, int slotNum) Allocates a heap memory in the specified slot

wp_free (void *p, int slotNum) Frees an allocation in the specified slot

configuration of at most two watchpoints each monitoring 2 GB is

sufficient for this purpose.

5.3 Components and usage

In this section, we present the core user library and kernel com-

ponent designed for realizing the creation of in-process secure

memory. In addition, a simple usage example is presented.

User library.We created a user library that provides five APIs

to support watchpoint-based in-process secure memory creation.

initSlotAll calculates the entire memory size required for allocating

all slots (Sslot x Nslot) and reserves the memory. Before the cal-

culation, the input parameter slotSize is rounded up to a power of

two. The reserved memory is also size-aligned by internally using

a memalign API. Note that the API can be amended to enable the

configuration of the reserved slot number (based on the power of

2) in case the total number of required slots is fewer than Nslot .

enterCriticalRegion and exitCriticalRegion generate the value of each

watchpoint control and value register for opening and closing the

corresponding slot that is indicated by the slotNum parameter. The

generated values are delivered to the kernel driver for the actual

watchpoint register settings. In addition, enterCriticalRegion ran-

domizes the current stack address by subtracting a random value

prior to the execution of the function prologue. exitCriticalRegion

restores the original stack address after the function epilogue is

completed. wp_malloc and wp_free can be used in the critical code

region, which allocates and frees the memory in the corresponding

slot, respectively.

Kernel patch & driver. Because the watchpoint-related regis-

ters are only configurable with kernel privilege, we patch part of the

kernel and create a kernel driver. The kernel driver communicates

with user APIs, such as enterCriticalRegion and exitCriticalRegion,

through an ioctl system call. The driver just obtains the values

of watchpoint-related registers from the user space and copies

them into sec_thread_mem data structure, which is inserted in the

thread_info Linux data structure as part of our implementation.

The copied values are referenced and set in the watchpoint regis-

ters later when the mode switches from kernel to user. For adding

sec_thread_mem and setting the watchpoint register on user mode

entry, the Linux kernel source is patched.

Listing 1: Example of API usage in AESCrypt.

1 int main(int argc , char *argv []){
2 /* Variable initialization */
3 ...
4 unsigned char *pass_input;
5 unsigned char *pass;
6 ...
7

8 initSlotAll (0 x2000); // Memory reservation. Each
slot size is 0x2000.

9 enterCriticalRegion (0); // Open the slot #0.
10 pass_input = (unsigned char *) wp_malloc(MAX_PASSWD_BUF

, 0); // Malloc in the slot #0.
11 pass = (unsigned char *) wp_malloc(MAX_PASSWD_BUF , 0);
12 exitCriticalRegion (0); // Close the slot #0.
13 ...
14

15 /* Processing an input parameter */
16 if (passlen == 0) {
17 ...
18 enterCriticalRegion (0);
19 passlen = passwd_to_utf16 ((unsigned char*) optarg ,

strlen ((char *) optarg), MAX_PASSWD_LEN , pass);
20 exitCriticalRegion (0);
21 ...
22 }
23

24 /* Encrypting the input stream */
25 if (mode == ENC) {
26 ...
27 enterCriticalRegion (0);
28 rc = encrypt_stream(infp , outfp , pass , passlen);
29 exitCriticalRegion (0);
30 ...
31 }
32

33 /* Cleanups */
34 ...
35 enterCriticalRegion (0);
36 memset(pass , 0, MAX_PASSWD_BUF);
37 wp_free(pass , 0); // Free in the slot #0.
38 wp_free(pass_input , 0);
39 exitCriticalRegion (0);
40 return rc; // End of main.
41 }

Usage example. We used the APIs to secure an open source

file encryption application, namely AESCrypt (Listing 1). We pro-

tect password inputs by locating them in the in-process secure

memory. pass_input and pass variables are allocated in secure

slot #0. Note that an arbitrary slot number (within 15) can be used

depending on the application design (e.g., allocating an exclusive

slot for each individual thread). These variables are stack variables

in the original source code but we change them to heap variables

by using the wp_malloc API. We invoke the enterCriticalRegion and

exitCriticalRegion APIs before and after calling subroutines such as

passwd_to_utf16 and encrypt_stream because these functions

need to access the protected variables. Finally, before exiting from

the main function, we free the allocations in the secure slot by using

the wp_free() API. Note that our aim is to show the feasibility of cre-

ating the in-process secure memory using watchpoints. Thus, we

simply instrumented code with a coarse-grained definition of the

critical region, i.e., function granularity. However, we expect that

the granularity can be made finer by adopting previous approaches

for privilege separation [12]. In addition, the security of critical

code can be enhanced by compiler-based code instrumentation

techniques (e.g., secret leakage prevention) [14].

5.4 Compatibility

The ptrace system call supports user interfaces for configuring

debug-related registers including watchpoints. Hence, an attacker

can abuse a system call to corrupt the watchpoint configuration for

in-process secure memory protection. We give higher priority to

our security solution in the watchpoint configuration. Thus, if the

watchpoints are already used for user-level security, the ptrace
system call is ignored. We argue that this is a reasonable approach

Table 2: Performance and LoC of open source applications

hardened with in-process secure memory (in μs).

Application Original Hardened LoC

OpenSSL 706.2 742.1 (1.05×) 35

Minizip 1708.3 1745.8 (1.02×) 22

AESCrypt 113516.4 113973.9 (1.00×) 33

because debuggers such as GDB rarely contain secret data, and are

thus not expected to need such an applied security scheme (e.g.,

in-process secure memory).

6 IMPLEMENTATION

Our example applications were implemented on a Juno ARM refer-

ence board equipped with Cortex-A57 and Cortex-A53 multicore

processors and 8 GB of DDR3 memory. It supports ARMv8 (64-bit

architecture) and provides four hardware watchpoints.

The four watchpoints are fully utilized to create up to 16 secure

slots per thread. The kernel driver is built as a loadable kernel

module (LKM), which creates a device file, /dev/secthreadmem.

In addition, the kernel_exit macro in entry.S is patched by in-

serting watchpoint setup operations to enable protection when

switching to user mode. Finally, the user library is built as a shared

library (.so); thus, it can be dynamically linked to an application.

The library maintains an array that stores 16 individual memory

allocation statuses to support wp_malloc in each slot. For the stack

base address randomization conducted by enterCriticalRegion, we

use the 14 least-significant bits of the processor cycle counter value

as the randomization entropy. Because our system is enabled with a

stack alignment check that forces the stack address to be quadword

aligned, we shift the stack-based address by a multiple of 16 bytes.

7 SECURITY ANALYSIS

The robustness of our solution depends on the integrity of the

watchpoint configuration. Because the watchpoint configuration

is a privileged operation, any user privilege attack that attempts

to directly manipulate the configuration will fail. Any indirect at-

tempt to disable the configuration such as abusing our APIs (e.g.,

enterCriticalRegion) can be defeated by checking the call sites of

the APIs in a runtime. The metadata of legitimate call sites can

be created during compile time. The stack used by the critical re-

gion is also obfuscated by the address randomization approach, the

entropy of which is 214, making it difficult for an attacker to find

the footprint of the critical region (this can also be enhanced by

zero masking the stack used). Any vulnerabilities existing in the

critical region might neutralize the benefit of the secure memory.

For example, a memory corruption vulnerability encompassed by

the critical code might exfiltrate the secret data to non-protected

memory. Several mitigations such as privilege separation [13] and

critical code instrumentation [14] have been suggested to address

this problem. Adopting similar approaches will improve the efficacy

of our approach.

8 PERFORMANCE EVALUATION

We first measure the performance of APIs for the in-process secure

memory creation. We then apply the APIs to three open source

12.5 2.7

55.7
33.3

225

25.7 17.8 7.6

0

50

100

150

200

250

T
im

e
(μ

S
)

Figure 4: Performance of in-process secure memory APIs

and libc functions (in μs).

applications and assess the overhead incurred by adopting a new

security feature.

API performance.We compare each API execution time with

generic libc functions, such as getpid and mmap. The results are
shown in Figure 4. Among our APIs, initSlotAll requires the longest

execution time, which is approximately 9× that of getpid. This is
because the operations conducted by initSlotAll are more complex

than those of other APIs; it rounds up the requested slot size to a

power of 2, invokes memalign to reserve memory for all slots, and

initializes the flags for managing the memory allocation in each slot.

The elapsed times for enterCriticalRegion and exitCriticalRegion are

much shorter than that for initSlotAll but longer than those for the

reference libc functions. They both invoke ioctl system calls to

communicate with our kernel driver to update the sec_thread_mem.

In addition, enterCriticalRegion generates each watchpoint configu-

ration value on the basis of the algorithm shown in Algorithm 1.

wp_malloc and wp_free are faster than other APIs. They internally

handle the memory allocation and freeing in each slot. Because the

allowed memory operation size in each slot is fixed and is limited

to the size of the initialized slot, additional system calls such as

sbrk are not required.

End-to-end test. We applied our solution to three open source

applications: OpenSSL,Minizip, andAESCrypt. Using the in-process

secure memory, we protect the password usage in each program.

Minizip allows a user to encrypt a compressed file with an input

password. Similarly, AESCrypt uses an input password to proceed

with file encryption and decryption. OpenSSL also provides a func-

tionality that encrypts the input (e.g., private key) using a password.

We slightly change the applications so that the password is isolated

in the secure slot and is accessible only when the legitimate code

associated with the slot is being executed. The lines of changed

code are shown in Table 2.

To evaluate the overhead incurred by activating the secure mem-

ory, we compare the applications with and without protection. For

Minizip and AESCrypt, we measure the entire execution time for

the completion of each task, i.e., file compression and encryption,

respectively. For OpenSSL, we measure in particular the time for

encrypting the private key using a user’s password with the 3DES

algorithm, which can be conducted as part of a private key creation

task. The key creation time can be varied depending on a random

seed value; we simply exempt the time in our comparison (note that

the initSlotAll API is invoked in the key creation part and thus the

API execution time is not included in the OpenSSL evaluation). Ta-

ble 2 shows the result. A maximum overhead of 5% was imposed for

OpenSSL with secure memory. However, the overhead decreased to

zero for AESCrypt, which runs longer than any other applications.

Considering this tendency, we expect the overhead for OpenSSL to

decrease if we include the key creation time.

Note that our implementation does not include the instrumenta-

tion of a legitimate (critical) code that accesses the secure memory.

Thus, applying additional protection techniques such as control

flow integrity (CFI) to the part of the application could degrade

the performance to a certain extent. In addition, the granularity of

the critical region that affects the frequency of API invocation will

influence the performance of a hardened application. The relation-

ship between the granularity and performance will be explored in

our future work.

9 DISCUSSION

Limited number of watchpoints. The feasibility of the proposed

security applications depends on the availability of the watchpoints.

According to our investigation into ARM processor reference man-

uals, modern ARM 64-bit processors for high-end devices (e.g.,

Cortex-A series) provide four watchpoints. Because the semantics

of the watchpoints in terms of their configuration and operation are

the same for all processor versions, our analysis of the watchpoints

and the proposed design are scalable for devices equipped with

such processors.

The limited number of watchpoints can also influence the effec-

tiveness of our solutions. For the in-process secure memory, we

can provide only 16 secure slots that are smaller than those pro-

vided in previous works [14, 20]. However, more watchpoints may

be required depending on the application or OS type. When the

watchpoints are insufficiently provided, we might need to hybridize

other hardware or software primitives. For instance, the secondary

page table can be used together with watchpoints to provide more

than 16 secure slots, although it is expected to incur a much higher

overhead than that incurred when the watchpoints are used.

Compromised kernel.Although we trust the kernel in our pro-

totype design, the mechanism can be readily enhanced to protect a

secure region even in the presence of an untrusted kernel. To realize

this, we can adopt a virtualization technique to trap and emulate

the privileged operations, such as the watchpoint configuration.

Modern mobile devices are already utilizing this technique (i.e.,

instruction trap and emulation) to protect the OS kernel [11, 23].

Therefore, we expect the coordination between the watchpoint and

virtualization technique to require minimal engineering effort.

In-process memory isolation on x86. Our approach is com-

patible with x86, which also supports the hardware debug features

(i.e., DRx registers [19]). However, because of the monitoring range

constraint, which is maximal 8 bytes per watchpoint, only secrets

with a small size (e.g., crypto key) could be protected. To protect

a larger amount of memory, we expect the memory protection

key (MPK) [8, 14] to be a convincing hardware primitive to realize

in-process memory isolation.

10 CONCLUSION

We presented an in-process memory isolation mechanism using

hardware watchpoints to protect critical data from the vulnerability

of a memory disclosure. The isolated memory region can be created

by configuring the watchpoints for read and write accesses to a

particular memory region. Because the watchpoints are banked for

each core, the access control to the protected region can be con-

ducted on a thread basis. The performance evaluation demonstrated

that the overhead in adopting the watchpoints is insignificant.

ACKNOWLEDGMENTS

This work was supported by the NRF (NRF-2017R1A2B3006360),

IITP (IITP-2017-0-01889), and ONR (N00014-18-1-2661) grants.

REFERENCES
[1] 2018. ARM Architecture Reference Manual ARMv8, for ARMv8-A architec-

ture profile. (May 2018). https://developer.arm.com/docs/ddi0487/latest/
arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

[2] 2018. ARM Security Technology - Building a Secure System using TrustZone
Technology. (May 2018). http://infocenter.arm.com/help/topic/com.arm.doc.
prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.
pdf

[3] 2018. GDB: The GNU Project Debugger. (May 2018). https://www.gnu.org/
software/gdb/

[4] 2018. The Heartbleed Bug. (May 2018). http://heartbleed.com/
[5] 2018. Intel 64 and IA-32 Architectures Software Developer’s Manual. (May 2018).

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf

[6] 2018. Intel Software Guard Extensions (Intel SGX). (May 2018). https://software.
intel.com/en-us/sgx

[7] 2018. Juno ARM Development Platform SoC. (May 2018). https://www.arm.
com/files/pdf/DDI0515D1a_juno_arm_development_platform_soc_trm.pdf

[8] 2018. Memory protection keys. (May 2018). https://lwn.net/Articles/643797/
[9] 2018. Old release notes. (May 2018). https://community.arm.com/dev-platforms/

w/docs/226/old-release-notes
[10] 2018. Racehound. (May 2018). https://github.com/kmrov/racehound
[11] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad

Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision across worlds: real-time
kernel protection from the ARM trustzone secure world. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security. ACM,
90–102.

[12] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge:
Splitting Applications into Reduced-Privilege Compartments.. In NSDI, Vol. 8.
309–322.

[13] David Brumley and Dawn Song. 2004. Privtrans: Automatically partitioning
programs for privilege separation. In USENIX Security Symposium. 57–72.

[14] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu. 2016.
Shreds: Fine-grained Execution Units with Private Memory. In Security and
Privacy, 2016. SP 2016. IEEE Symposium on. IEEE.

[15] Lee Chew and David Lie. 2010. Kivati: fast detection and prevention of atomicity
violations. In Proceedings of the 5th European conference on Computer systems.
ACM, 307–320.

[16] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. 2008. Ether: mal-
ware analysis via hardware virtualization extensions. In Proceedings of the 15th
ACM conference on Computer and communications security. ACM, 51–62.

[17] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, et al.
2014. The matter of heartbleed. In Proceedings of the 2014 conference on internet
measurement conference. ACM, 475–488.

[18] Owen S Hofmann, Sangman Kim, Alan M Dunn, Michael Z Lee, and Emmett
Witchel. 2013. Inktag: secure applications on an untrusted operating system.
ACM SIGPLAN Notices 48, 4 (2013), 265–278.

[19] Prasad Krishnan. 2009. Hardware Breakpoint (or watchpoint) usage in Linux
Kernel. In PROCEEDINGS OF THE LINUX SYMPOSIUM. Citeseer, 149–158.

[20] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwarting
memory disclosure with efficient hypervisor-enforced intra-domain isolation. In
Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security. ACM, 1607–1619.

[21] Jonathan M McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Vir-
gil Gligor, and Adrian Perrig. 2010. TrustVisor: Efficient TCB reduction and
attestation. In Security and Privacy (SP), 2010 IEEE Symposium on. IEEE, 143–158.

[22] Zhenyu Ning and Fengwei Zhang. 2017. Ninja: Towards transparent tracing and
debugging on arm. In 26th USENIX Security Symposium (USENIX Security 17).

[23] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 2007. SecVisor: A tiny
hypervisor to provide lifetime kernel code integrity for commodity OSes. In ACM
SIGOPS Operating Systems Review, Vol. 41. ACM, 335–350.

