
DALS: Delay-driven Approximate Logic Synthesis
Zhuangzhuang Zhou, Yue Yao, Shuyang Huang, Sanbao Su, Chang Meng and Weikang Qian

University of Michigan-Shanghai Jiao Tong University Joint Institute
Shanghai Jiao Tong University, Shanghai, China

{zhouzhuangzhuang, patrickyao, King_hsy, gawaine, changmeng, qianwk}@sjtu.edu.cn

ABSTRACT
Approximate computing is an emerging paradigm for error-tolerant
applications. By introducing a reasonable amount of inaccuracy,
both the area and delay of a circuit can be reduced significantly. To
synthesize approximate circuits automatically, many approximate
logic synthesis (ALS) algorithms have been proposed. However,
they mainly focus on area reduction and are not optimal in reduc-
ing the delay of the circuits. In this paper, we propose DALS, a
delay-driven ALS framework. DALS works on the AND-inverter
graph (AIG) representation of a circuit. It supports a wide range of
approximate local changes and some commonly-used error metrics,
including error rate and mean error distance. In order to select an
optimal set of nodes in the AIG to apply approximate local changes,
DALS establishes a critical error network (CEN) from the AIG and
formulates a maximum flow problem on the CEN. Our experimental
results on a wide range of benchmarks show that DALS produces
approximate circuits with significantly reduced delays.
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1 INTRODUCTION
As modern VLSI designs encompass more complexity and transistor
technology reaches nanoscale, it has been increasingly difficult to
improve the performance and energy consumption of circuits by
conventional design methods [20]. On the other hand, many recent
applications are error tolerant by their nature. Such applications
include machine learning, image processing, andmultimedia. Under
this circumstance, approximate computing was proposed as a novel
circuit design paradigm [5]. Its basic idea is tomodify the function of
a target circuit without affecting its usability in its application. If the
modification is proper, the resulting circuit will have smaller area,
lower power consumption, and better performance than the original
version. A topic of approximate computing related to electronic
design automation is the logic synthesis for approximate circuits,
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which is known as approximate logic synthesis (ALS). ALS seeks to
synthesize an optimal approximate circuit for a target circuit with
the output error under a given error constraint.

Significant progress has been made in ALS in recent years [2,
8, 9, 11, 14, 17, 18, 22, 23, 25]. A few representative works will
be discussed in details in Section 2.3. However, all proposed ALS
methods mainly focused on reducing the circuit area. Although the
circuit delay is usually also reduced as a byproduct of these ALS
methods, the potential power of ALS in improving circuit delay has
not yet been fully explored. For applications such as real-time signal
processing, they are error tolerant, but they also have a stringent
deadline to meet. For these applications, delay, instead of area, is the
primary concern. Thus, if we can develop a delay-oriented ALS flow,
it will be very helpful in synthesizing circuits for these applications.

Given the difficulty in optimizing the approximate circuits glob-
ally, previous ALS methods usually repeatedly apply approximate
local changes (ALCs) to the gates in a circuit until the given er-
ror constraint is reached. In these approaches, where area is the
primary concern, all gates in the circuit are treated equally since
they contribute to the area equally regardless of their locations in
the circuit. However, this is completely different for delay mini-
mization. Circuit delay is determined by the critical paths and only
the gates on the critical paths contribute to the delay. Thus, efforts
should be directed to the gates on the critical paths. Furthermore,
even doing local changes repeatedly on these specific gates may
not be effective. This is because there usually exist multiple critical
paths of the same or nearly the same lengths. The local change may
reduce the length of a particular critical path, but the lengths of
the other critical paths still remain the same. Thus, to effectively
reduce the delay, it should be done globally, that is, all the critical
paths should be shortened simultaneously.

In this work, we propose DALS, a Delay-driven Approximate
Logic Synthesis framework for delay-oriented ALS. It addresses
the above-mentioned problems. First, it focuses on the gates on the
critical paths. Second, it performs multiple ALCs simultaneously so
that all critical paths in the circuit are shortened. DALS is a general
framework that supports a wide range of ALCs. It also supports
some widely-used error metrics, including error rate and mean
error distance [5]. In this work, DALS is implemented on the AND-
inverter graph (AIG) representation of a circuit [10]. However, it
should be noted that the DALS framework can also be applied to
other circuit representations. One specific challenge in the DALS
framework is the selection of the sets of nodes to apply the ALCs,
since there exist an exponential number of choices in a circuit. To
solve this problem, we propose to establish a critical error network
(CEN) from the AIG and then solve a maximal flow problem on
the CEN. Our experimental results show that DALS produces ap-
proximate circuits with significantly reduced delays compared to
the state-of-the-art ALS approaches. An application of DALS to



synthesize approximate adders also show that DALS can produce
approximate adders competitive to manual designs.

The rest of the paper is organized as follows. In Section 2, we
introduce the preliminaries on AIG and error metrics and discuss
some related works. In Section 3, we present the methodology of
DALS. In Section 4, we present the experimental results. Finally, in
Section 5, we conclude the paper.

2 PRELIMINARIES AND RELATED WORKS
In this section, we first introduce the preliminaries on AIG and
error metrics and then discuss some related works.

2.1 AND-Inverter Graph
An AND-Inverter Graph (AIG) is a directed acyclic graph (DAG) that
implements a logic function [10]. Each node in an AIG is either a
primary input (PI) or a two-input AND gate. For example, Fig. 1a
shows an AIG, in which the square nodes represent PIs and the
round nodes represent AND gates. If a node corresponds to a two-
input AND gate, we call it a functional node. The nodes in the AIG
that give the final outputs of the logic function are also marked as
primary outputs (POs) of the AIG. For example, the nodes 10 and 11
in Fig. 1a are the POs. The edges in an AIG can be complemented,
indicating the inversion of the signal.

A path in an AIG is a sequence of connected nodes. The length
of a path is the number of edges in the path. A critical path is a
path with the maximum length in the AIG that starts from a PI and
ends at a PO. An AIG can have multiple critical paths. The depth
of an AIG is the length of its critical paths. For example, the depth
of the AIG in Fig. 1a is 3. The size of an AIG is the total number of
AND gates in the AIG. It is worth noting that the area and delay of
the actual circuit also depends on the technology mapping of the
AIG and thus, cannot be measured directly from the AIG. However,
the depth and size of an AIG still correlate well with the delay and
area, respectively, of the final mapped circuit.

2.2 Error Metrics
There are several common error metrics for evaluating the accuracy
of approximate designs. The error metrics relevant to our work are
introduced below.

Let the set of input vectors of a target circuit be {a1, . . . ,aM }.
Assume that input vectorai (1 ≤ i ≤ M) occurswith a probabilityqi .
Let s̃i and si (1 ≤ i ≤ M) be the values encoded by the approximate
and accurate output vectors, respectively, for input vector ai .

The error rate (ER) of an approximate circuit is the probability
for the circuit to produce an incorrect output, i.e.,

ER =
∑

1≤i≤M :s̃i,si

qi .

The error distance (ED) and relative error distance (RED) of an
approximate circuit for input vector ai (1 ≤ i ≤ M) are defined as

ED(ai ) = |s̃i − si |, RED(ai ) =
|s̃i − si |

si
.

The mean error distance (MED) and mean relative error distance
(MRED) are defined as

MED =
M∑
i=1

ED(ai ) · qi , MRED =
M∑
i=1

RED(ai ) · qi .

2.3 Related Works
Previous works have proposed a number of ALS methods [2, 8, 9, 11,
14, 17, 18, 22, 23, 25]. By its nature, ALS is a computationally hard
optimization problem, since given an error constraint, there exist
numerous candidate Boolean functions satisfying the constraint,
while optimizing the circuit implementation for each Boolean func-
tion by itself is a computationally hard task. To overcome this chal-
lenge, many state-of-the-art ALS techniques are based on applying
ALCs to the circuits. For example, Shin and Gupta proposed to
apply constant-0 and constant-1 replacement to internal gates [14].
Venkataramani et al. proposed to substitute one signal in the circuit
by another with similar functionality [17]. Yao et al. proposed to
perform local approximate disjoint bi-decomposition to internal
signals to reduce the local area [25]. Liu and Zhang proposed some
simple local circuit changes, including flipping a local output, re-
moving a gate, and adding a gate [8] and integrated these ALCs into
a stochastic optimization framework. These previous works mainly
focus on area reduction, with delay reduction as a side effect. In
contrast, DALS primarily focuses on delay reduction. Nevertheless,
as we will show later, our DALS framework is applicable to many
types of ALCs proposed in the previous works.

3 METHODOLOGY
In this section, we present the methodology of DALS. We first give
an overview of DALS and then present some details of it.
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Figure 1: Illustration of (a) an AIG and (b) its critical graph.



3.1 Overview
DALS works on the AIG representation of the circuit. Given an
input AIG, DALS aims at synthesizing an approximate AIG with
reduced depth without increasing its size, while satisfying the given
error constraint. The error constraint DALS can handle includes
ER constraint and MED constraint. Before we present our method,
we first introduce several definitions.

The depth of a node in an AIG is the length of the longest path
from a PI to this node. For example, the depth of node 8 in the
AIG in Fig. 1a is 2. The critical graph G = (V ,E) for an AIG is a
subgraph of the AIG, whereV and E are the sets of nodes and edges,
respectively, on the critical paths of the AIG. For example, the graph
shown in Fig. 1b is the critical graph for the AIG shown in Fig. 1a. If
a node in the critical graph corresponds to a PI/PO/functional node
in the original AIG, we also call it a PI/PO/functional node in the
critical graph. We define a cut for a critical graph as a set of nodes
in the critical graph satisfying the following three conditions:

(1) None of the nodes in the set is a PI of the critical graph. In
other words, each node in the set is a functional node.

(2) Each path from a PI node to a PO node of the critical graph
passes at least one node in the set.

(3) We cannot remove any node from the set; otherwise, Condi-
tion 2 would be violated.

Note that Condition 3 essentially means that the cut is a minimal
set without any redundant nodes. Based on this definition, nodes
8 and 9 form a cut for the critical graph shown in Fig. 1b. Since
the critical graph is associated with an AIG, we also call a cut for
a critical graph of an AIG a critical cut for the AIG. For example,
nodes 8 and 9 form a critical cut for the AIG shown in Fig. 1a.

In order to reduce the depth of an AIG, it is not enough to shorten
one critical path, because there usually exist multiple critical paths
in an AIG; we need to shorten all critical paths. A critical cut for the
AIG provides us a way to achieve this. Specifically, for a particular
cut, if we can reduce the depth of all nodes in the cut, then the
depth of the entire AIG can be reduced. For example, suppose that
we are able to reduce the depths of nodes 8 and 9 in Fig. 1a both
from 2 to 1, then the depth of the entire AIG reduces from 3 to 2.

Since we allow errors in approximate computing, the reduction
of the depth of a node is through an ALC that could introduce error.
Note that there usually exist multiple critical cuts for an AIG and
multiple candidate ALCs for each node in the AIG. Different choices
of the critical cut and the ALCs applied to the nodes in the selected
cut will cause different error impacts on the resulting approximate
AIG. In our approach, we will repeatedly select a critical cut and
a set of ALCs to modify the nodes in the selected cut until the
approximate AIG reaches the error constraint. Each iteration is
expected to reduce the depth of the AIG by one, but at the same
time, increase the error of the approximate AIG. Since we want to
maximize the depth reduction, we should maximize the number of
iterations. This requires that in each iteration, we should select the
cut and the associated set of ALCs that lead to the minimum error
impact among all choices.

The overall flow of DALS is summarized in Algorithm 1. To make
the flow general, besides the input AIG and the error threshold, the
flow also takes a user-specified approximation operator op as an
input. The operator op should produce a set of ALCs for a node that

could reduce the depth of the node. An example is replacing a node
with a constant [14]. It includes two specific changes, replacement
by a constant 0 and replacement by a constant 1. It can be easily
seen that a constant replacement reduces the depth of the node
to 0. Some other examples include the approximate substitution
proposed in [17] and the approximate disjoint bi-decomposition
proposed in [25], which are briefly described in Section 2.3.

By definition, a critical cut for an AIG is a cut for the critical
graph of the AIG. Thus, at the beginning of each iteration, Line 4
obtains the critical graph from the current approximate AIG Gapx .
It applies the traditional timing analysis technique to obtain the
slacks of all nodes in the AIG [19] and gathers the nodes with
slack 0 to form the critical graph. Then, Line 5 selects the cut for
the critical graph and the associated set of ALCs that lead to the
minimum error impact. The details of this step will be described
in Section 3.2 below. Line 6 applies the selected set of ALCs to all
nodes in the selected cut and derives the new approximate AIG
Gnew . Line 7 calculates the error between the input AIG G and
Gnew , which can be achieved through logic simulation. If the error
is less than the threshold, a new round begins by assigning Gnew
to Gapx (see Line 3); otherwise, Gapx is returned.

Algorithm 1: The proposed flow of DALS.
Input: an AIG G , an error threshold T , and an approximation

operator op .
Output: an approximate AIG Gapx with reduced depth and error

e ≤ T .
1 Gnew ⇐ G ;
2 while e ≤ T do
3 Gapx ⇐ Gnew ;
4 д ⇐ GetCriticalGraph(Gapx );
5 (Cut, ApxChanдe) ⇐ GetCutALC(д, op);
6 Gnew ⇐ ApplyChange(Gapx , Cut, ApxChanдe);
7 e ⇐ GetError(G, Gnew );

8 return Gapx ;

3.2 Selecting the Best Critical Cut and the
Associated Approximate Logic Changes

A crucial step (i.e., Line 5 in Algorithm 1) in our proposed flow is
to find the critical cut and the associated set of ALCs that lead to
the minimum error impact. For simplicity, we call the cut the best
critical cut. The most straightforward approach is to enumerate all
critical cuts and all sets of ALCs for each cut and then choose the
combination with the minimum error. However, the total number
of the critical cuts grows exponentially with the size of the AIG.
Furthermore, for each cut, the number of applicable ALCs grows
exponentially with the size of the cut. Bare enumeration is imprac-
tical for large AIGs. To solve this issue, we propose to transform
this problem into a network flow problem. This transformation
relies on our proposed estimation of the error impact of applying
a set of ALCs to a critical cut. Next, we will first introduce this
estimation and then describe how we model the selection problem
as a network flow problem.

3.2.1 Estimating the Error Impact of Applying a Set of ALCs to a
Critical Cut. The most straightforward way to evaluate the error



impact of a critical cut and a set of ALCs for the cut is to apply the
set of ALCs to the nodes in the cut and then calculate the error of
the resulting approximate AIG. However, calculating the error of
an approximate AIG requires time-consuming logic simulation. If
we apply this straightforward method to evaluate the error impacts
of all choices of critical cuts and their ALCs, the total number of
logic simulations needed is very large. To give a rough analysis
on the number of logic simulations needed, we assume that the
number of cuts in the critical graph is NT , the average number of
ALCs for each node is NA, and the average size of a cut is L. Then,
the number of logic simulations needed equals N L

ANT .
To reduce the complexity, we propose the following way to

estimate the error impact of a set ALCs. Suppose that the critical
cut containsm nodes n1,n2, . . . ,nm and for each 1 ≤ i ≤ m, the
ALC applied to nodeni isAi . For each nodeni , we evaluate the error
impact of applying ALCAi to node ni alone and denote the value as
ei . Then, we estimate the error impact of applying the set of ALCs
to the nodes in the critical cut as the sum e1 + e2 + · · · + em . This
method could significantly reduce the number of logic simulations
needed to evaluate the error impacts of all choices of critical cuts
and their ALCs. Indeed, we only need to perform logic simulation
to get the error impact for each combination of a functional node in
the critical graph and an ALC for that node. Thus, the total number
of logic simulations equals NANC , where NA is the average number
of ALCs for a node and NC is the number of functional nodes in
the critical graph. Given that the number of cuts NT in the critical
graph is much larger than NC , the value NANC is much smaller
than the value N L

ANT , which is the number of logic simulations
needed by the straightforward method.

Furthermore, due to the above decomposition of the total error
impact into the individual error impacts, for each functional node in
the critical graph, after obtaining the error impacts of all ALCs for
that node, we only need to keep the ALC that gives the minimum
error impact. We call this ALC the optimal ALC of the node and
its error impact the minimum error impact (MEI) of the node. If a
functional node is in the best critical cut, then to minimize the total
error impact, we should choose to apply its optimal ALC. Thus,
there is no need to consider other ALCs for the node.

After obtaining the MEI of each functional node in the critical
graph, we assign that value to the node. For example, the value near
each functional node shown in Fig. 1b denotes the MEI of the node.
Now, the problem of selecting the best critical cut simply becomes
selecting a cut for the critical graph so that the sum of the MEIs of
all nodes in the cut is minimal.

The error metric for which we can apply the proposed estima-
tion technique includes ER and MED. It should be noted that the
proposed estimation may not be accurate, since the exact error
impact of applying multiple ALCs together may not equal the sum
of the error impacts of applying each individual ALC alone. Nev-
ertheless, for error metrics such as ER and MED, this sum is still a
good first-order approximation and enables the design of a more
efficient algorithm.

3.2.2 Selecting the Best Critical Cut. In this section, we present
a method to select the best critical cut. By our estimation method
for the error impact, the best critical cut is a cut for the critical
graph so that the sum of the MEIs of all nodes in the cut is minimal.

Our method first maps the original critical graph into a critical error
network (CEN) and then solves a network flow problem on the CEN.

The CEN is built from the critical graph. We also need to assign
proper capacities to the edges in CEN. The details for building the
CEN is shown below.

(1) For each functional node n with MEI e in the critical graph,
we add a pair of nodes na and nb to the CEN. We also add
an edge from na to nb with capacity of e to the CEN.

(2) For each edge from a functional node u to a functional node
v in the critical graph, we add an edge from ub to va with
infinite capacity to the CEN.

(3) We add a source node s . For each edge from a PI node p to a
functional node n in the critical graph, we add an edge from
s to na with infinite capacity to the CEN.

(4) We add a sink node t . For each PO node q in the critical
graph, if it is a functional node, then we add an edge from
qb to t with infinite capacity to the CEN.

The CEN built from the critical graph shown in Fig. 1b is given
in Fig. 2.

The CEN is a classic flow network [3]. For a flow network, a
cut is defined as a set of edges that disconnects the source and
sink upon removal. The capacity of a cut is the total capacity of all
edges in the cut. A minimum cut of a flow network is a cut with
the minimum capacity over all cuts of the flow network. Given
the above mapping procedure, it is easily seen that the problem
of selecting the cut for the critical graph with the minimum sum
of MEIs now reduces to the problem of finding a minimum cut in
the CEN. By the max-flow min-cut theorem [3], the capacity of a
minimum cut in a flow network equals the maximum flow of the
network. Thus, we can find a minimum cut of the CEN by solving
the maximum flow problem on the CEN.

Once we have identified each edge in the minimum cut, we
can get the corresponding nodes in the critical graph from the
mapping relation and obtain the cut in the critical graph that gives
the minimum sum of MEIs.
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Figure 2: The critical error network built from the critical graph
shown in Fig. 1b.

3.2.3 The Entire Flow. Algorithm 2 shows the entire flow for
finding the best critical cut and the associated set of ALCs, namely
the function GetCutALC in Algorithm 1. Lines 1–5 iterate over each
node in the critical graph and find the optimal ALC and the MEI of
each node. Line 6 builds the CEN from the critical graph, given the



MEI of each node in the critical graph. Line 7 solves the maximal
flow problem and returns the minimum cut in the CEN. In our
implementation, we use Dinic’s algorithm to solve the maximal
flow problem [4]. Line 8 maps the minimum cut in the CEN into
the cut Cut in the critical graph. Line 9 obtains the set of optimal
ALCs for all nodes in Cut .

Algorithm 2: The flow of the function GetCutALC for finding the
best critical cut and the associated set of ALCs.
Input: a critical graph д and an approximation operator op .
Output: the critical cut Cut and the associated set of ALCs

ApxChanдe that lead to the minimum error impact.
1 foreach node n in graph д do
2 foreach ALC x of node n generated by the approximation operator

op do
3 obtain the error impact of applying ALC x to node n;

4 n .e ⇐ the minimum error impact over all ALCs of n;
5 n .OptmALC ⇐ the ALC of n with the minimum error impact;

6 f ⇐ BuildCEN(д);
7 minCut ⇐ SolveMaxF low (f );
8 Cut ⇐ EdgetoNode(minCut );
9 ApxChanдe ⇐ GetBestALC(Cut );

10 return Cut and ApxChanдe ;

4 EXPERIMENTAL RESULTS
In this section, we present the experimental results of our proposed
DALS method. We implemented the algorithm in C++. All experi-
ments were conducted on a laptop computer with Intel i7-5700HQ
CPU @ 2.70GHz and 16 GB memory running Linux 4.13.

In our implementation, the errors were measured by performing
logic simulations. We assumed that all primary input vectors have
equal probabilities. For each logic simulation, we generated 100000
input vectors randomly, which is sufficient to get the target error
metrics such as ER and MED with high accuracy. The proposed
DALS algorithm takes a user-specified approximation operator. We
set it as the constant replacement operator in our experiments,
which includes two ALCs, namely constant-0 replacement and
constant-1 replacement. The areas and delays of the circuits were
reported after performing technology mapping by the logic synthe-
sis tool ABC [1] using the MCNC generic standard cell library [24].
The reported areas are normalized to that of a unit-strength inverter.
The unit of the reported delays is ns .

We performed two sets of experiments to evaluate DALS. In the
first set, we applied DALS to some common benchmarks with the
error metric as ER. In the second set, we applied it to synthesize
approximate adders with the error metric as MED.

4.1 Study on Common Benchmarks under
Error Rate Constraint

In this set of experiments, we selected several ISCAS85 benchmarks
and an arithmetic circuit ALU4 synthesized by Synopsys Design
Compiler [16]. The benchmark information is listed in Table 1. We
chose ER as the error metric.

For each benchmark, we first applied DALS to get the correspond-
ing approximate AIG with reduced depth. DALS works iteratively.

Table 1: Benchmark circuit information.

circuit #I/Os #nodes area delay
C880 60/26 238 609 16.50
C1355 41/32 211 781 16.20
C1908 33/25 290 831 23.20
C3540 50/22 729 1838 26.40
C5315 178/123 1026 2557 24.10
C7552 207/107 1466 3930 25.20
ALU4 14/8 1120 2776 12.80

Figure 3: Depth reduction rate versus error rate by DALS.

We recorded the result after each iteration. The experimental re-
sults are shown in Fig. 3, which illustrates the relationship between
depth reduction rate and ER for all the benchmarks. We can see
that DALS can reduce the depth of the AIG when some inaccuracy
is allowed and the depth reduction rate increases with ER.

We further took one point on the depth-reduction-rate-versus-
ER curve for each benchmark and performed technology mapping
to the approximate AIG to obtain the area and delay of the final
mapped circuit. Table 2 lists the actual ERs, area reduction rates,
and delay reduction rates of the approximate circuits in the 2nd, 3rd,
and 4th columns, respectively. We can see that for all benchmarks,
DALS can reduce the delay of the final mapped circuit when some
inaccuracy is allowed. For benchmarks C880, C1355, and C1908,
the circuit delays can be reduced dramatically compared to the
introduced ER. For some other benchmarks, the delay reduction is
not so significant compared to the introduced ER. We believe this is
due to the usage of the constant replacement as the approximation
operator in our experiment. It reduces the AIG depth by one in
each round, but in some cases, the introduced ER could be pretty
large. We believe that if some other approximation operators that
can produce ALCs with smaller introduced ER are applied, we can
have better experimental results. We will explore the effects of
some other approximate operators in our future work. The possible
candidates are approximate substitution [17] and the approximate
disjoint bi-decomposition [25]. They could produce ALCs that have
smaller ERs and at the same time, reduce the node depth.



DALS focuses on the delay reduction, and the area reduction is
just a side effect of it. We only expected the area of the approximate
circuit to be no more than that of the original one. However, as
Table 2 shows, the area of the synthesized approximate circuit also
decreases significantly for some benchmarks.

Table 2: DALS results and comparison with a state-of-the-art area-
driven ALS method [15].

DALS [15]‡

circuit error rate ∆area† ∆delay† ∆area ∆delay
C880 10.73% 17.90% 33.33% 24.04% 16.67%
C1355 12.48% 95.83% 93.83% 41.68% 2.53%
C1908 3.78% 58.24% 55.60% 58.63% 45.14%
C3540 14.31% 19.80% 16.37% 35.67% 8.33%
C5315 15.98% 3.01% 19.92% 13.10% 0.90%
C7552 6.38% 4.43% 16.90% 21.79% 0.91%
ALU4 9.45% 33.86% 19.23% 68.67% 7.69%

† ∆Area and ∆Delay are the area reduction rate and delay reduction
rate, respectively, of the approximate circuit with respect to the original
circuit.
‡ The results are post-processed by delay-driven traditional logic syn-
thesis.

To study the effectiveness of DALS, we also compared it with
a state-of-the-art area-driven ALS approach [15]. Previous area-
driven ALS approaches have been proved to be effective in reducing
circuit area. However, they do not focus on the delay. To make it
fair, after a circuit had been synthesized by the ALS method in [15],
we further applied delay-driven traditional logic synthesis from
ABC to minimize the delay of the approximate circuit. To reach
the limit, we set the delay constraint as low as possible. For a fair
comparison, we synthesized each benchmark by the method in [15]
so that the actual ER of the approximate circuit is very close to the
ER reported in column two of Table 2. The results of the comparison
study are shown in the last two columns in Table 2.

From the results, we can see that even after subsequent delay-
driven traditional logic synthesis, the state-of-the-art area-driven
ALS method is not optimal in reducing delay. In certain cases, al-
though the areas of the circuits reduce significantly, the delays still
stay nearly the same. This is reasonable because an area-driven
ALS method does not specifically optimize the nodes on the criti-
cal paths and it may choose other nodes to perform approximate
changes. In contrast, DALS reduces more delay than the area-driven
ALS method. Thus, DALS can provide a better solution when delay
is the primary goal. Since area reduction is just a side effect of
DALS, it may not be as much as that of the area-driven ALS method.
However, for benchmark C1355, DALS can even reduce more area.

4.2 Study on Approximate Adders under Mean
Error Distance Constraint

In this set of experiments, we applied DALS to two accurate adder
designs RCA_N8 and RCA_N16, which are 8-bit and 16-bit ripple
carry adders, respectively, to generate the corresponding 8-bit and
16-bit approximate adders. We used Yosys open synthesis suit [21]
to convert the Verilog HDL codes of adders to BLIF files as the
inputs to our program. We used MED, which is one of the most

widely-used error metrics for approximate adders [6], as the error
metric in DALS.

The experimental results are shown in Table 3. The top and
bottom halves of the table show the results for the 8-bit and the 16-
bit adders, respectively. The synthesized adders were compared to
two types of previously proposed manually designed approximate
adders. They are generic accuracy configurable adder (GeAr) [12]
and accuracy-configurable adder (ACA) [7]. In the table, the adders
with the names starting with “GeAr” are GeArs, while the one with
the name starting with “ACA” is an ACA. These designs were taken
from an online repository [13] and the meaning of the abbreviations
is given in that repository. We chose these specific designs for com-
parison, since they locate on a Pareto optimal quality-versus-error
curve according to the results reported in [2]. We obtained their ar-
eas and delays by the logic synthesis tool ABC using the same setup
as the experiments for DALS. The adders synthesized by DALS are
those with the names beginning with “DALS”. Since there are three
manually designed approximate adders for both the 8-bit adder and
the 16-bit adder categories, we also show three approximate adders
synthesized by DALS with different trade-offs between delay and
MED. To give a comprehensive accuracy evaluation, besides MED,
we also list the ER and MRED for each approximate adder.

Table 3:Approximate adders synthesized by DALS and comparison
with some manually designed approximate adders.

circuit ER MRED MED area delay
RCA_N8 0.00% 0.0000% 0.00 140 10.2

GeAr_N8_R2_P4 2.37% 0.6924% 1.50 138 8.6
DALS_N8_1 22.64% 0.5638% 1.07 134 8.4

GeAr_N8_R2_P2 18.73% 3.674% 7.52 128 7.0
DALS_N8_2 39.47% 2.804% 5.45 131 6.6

GeAr_N8_R1_P2 30.05% 7.104% 15.29 124 5.4
DALS_N8_3 69.92% 6.067% 13.61 85 5.4
RCA_N16 0.00% 0.0000% 0.00 315 13.4

GeAr_N16_R4_P4 5.86% 0.2657% 124.4 299 10.2
DALS_N16_1 51.85% 0.2321% 115.9 280 10.0

GeAr_N16_R2_P4 11.65% 0.9819% 510.4 290 8.6
DALS_N16_2 67.31% 1.0752% 514.6 269 8.2

ACA_II_N16_Q4 48.16% 3.893% 2049 260 7.0
DALS_N16_3 87.70% 3.024% 2043 207 7.0

The experimental results show that DALS can generate highly
competitive approximate adders with reduced delays. In most cases,
the adders synthesized by DALS have better areas, delays, MEDs,
and MREDs than the previous manual designs at the cost of higher
ERs. Thus, DALS can provide a better solution for many real-world
applications where MED and MRED are more important than ER,
such as image processing and machine learning. The fact that DALS
generates adders with smaller MEDs but larger ERs is because
the error metric is set as MED in DALS. Given this error metric,
DALS tends to approximate the logic that affects the less significant
outputs of the adder and it ignores the influence to ER.

Finally, we compared DALS to a previous ALS flow [2] that was
also tested on approximate adders. The ALS flow [2] is based on
approximation-aware rewriting of AIGs. We compared the quality
of the 16-bit approximate adders synthesized by DALS to that by
the previous flow [2]. The comparison results are shown in Table 4,



where the results for the work [2] were copied from [2]. To make
it fair, we used the same 16-bit ripple carry adder design and the
same setup as the experiments in [2] when testing DALS.

Table 4: Comparison between DALS and the work in [2] on the syn-
thesis of 16-bit approximate adders.

circuit ER/% WCE MBF area delay area×delay runtime/s
appx9 99.80 2038 9 254 13.4 3403.6 229
appx11 96.88 496 5 277 13.4 3711.8 201
appx13 99.22 1024 7 264 13.4 3537.6 220

DALS_N16_1 51.85 340 7 280 10.0 2800.0 6
appx12 99.90 4090 11 226 12.7 2870.2 187

DALS_N16_2 67.31 5380 11 269 8.2 2205.8 16
appx8 99.64 8320 13 120 7.0 840.0 151
appx10 99.64 8320 13 120 7.0 840.0 150

DALS_N16_3 87.70 6144 9 207 7.0 1449.0 23

Instead of MED, the previous work [2] chose to use the worst-
case error (WCE) and maximum bit-flip (MBF) error to evaluate
the quality of the approximate adders. The WCE is defined as the
maximum error distance over all input vectors, while the MBF is
defined as the maximum hamming distance between the approxi-
mate output vector and the accurate output vector over all input
vectors. For comparison purpose, we also list these two metrics in
the 3rd and 4th columns in Table 4. In the table, the adders with the
names starting with “appx” are those 16-bit approximate adders
taken from [2]. We arrange them into three groups by their delays.
Based on WCE and MBF, it can be seen that the accuracy of the
adders decreases from group 1 to group 3. In each group, we also
show one approximate adder synthesized by DALS, which has its
name starting with “DALS”.

From the table, we can see that in both group one and group two,
the adder synthesized by DALS outperforms the corresponding
approximated adder(s) from [2] in at least two error metrics among
the three, i.e., ER,WCE, andMBF. The DALS adder has smaller delay
but larger area than the adder(s) from [2]. However, in terms of
area-delay product (ADP), which is a more comprehensive measure
on the hardware quality, the DALS adder is much better. In group
one, the DALS adder reduces the ADP by at least 17.7%, while in
group two, the DALS adder reduces the ADP by 23.1%. In group
three, where the accuracy of adders is much lower than that of the
adders in the previous two groups, the DALS adder outperforms
the approximated adders from [2] in all three error metrics but
at a higher cost of area and ADP. In conclusion, the approximate
adders synthesized by DALS are better than those synthesized by
the ALS method in [2] when the accuracy requirement is high. The
last column in the table lists the runtime. It should be noted that
our testing platform is slower than that used in [2]. Thus, we can
conclude that DALS is much faster than the previous method.

5 CONCLUSION
In this work, we proposed DALS, a delay-driven approximate logic
synthesis framework, which can produce approximate circuits with
significantly reduced delays. It supports a wide range of approxi-
mate local changes and some commonly-used error metrics, includ-
ing error rate and mean error distance. Its basic idea is to establish a

critical error network (CEN) for the AIG representation of a target
circuit and utilize the CEN to select the optimal set of nodes to apply
depth-reduction approximate local changes. We tested DALS on a
wide range of benchmarks with different error metrics. Although
we only used the trivial constant replacement as the approximate
local changes, the experimental results show that DALS outper-
forms the state-of-the-art area-driven ALS approaches, even after
subsequent delay-driven traditional logic synthesis. Thus, DALS is
a promising solution for delay-oriented tasks. In our future work,
we will apply more sophisticated approximation local changes to
DALS to enhance its performance.
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