
Paper 2.3 INTERNATIONAL TEST CONFERENCE 1
978-1-5386-8382-8/18/$31.00 ©2018 IEEE

Improving Power, Performance and Area with Test: A Case Study

Teresa McLaurin*, Ignatius P. Lawrence�
*Arm Austin, TX, USA

�Texas A&M University, College Station, TX, USA

Abstract

As more low power devices are needed for applications
such as IOT, reducing power and area is becoming more
critical. Reducing power consumption and area caused by
using full scan should be considered as a method to help
achieve these stricter requirements. This is especially
important in designs using near-threshold technology. In
this work, we use partial scan to attempt to improve
power, performance and area on a CPU core and a GPU
shader core. We present our non-scan DFF selection
algorithm that maximizes non-scan DFF count while
achieving ATPG results close to those of the full scan
design on both a CPU and a GPU shader core. In
addition, we present the PPA (power, performance and
area) results of these designs for both the full scan and
partial scan.

1. Introduction

Scan based testing is widely used in the industry today
for manufacturing test. In a mux-D based full scan design,
all DFFs in the design are converted into scan DFFs
(SDFFs) which adds a 2-input multiplexer onto every DFF
at its D-input. One input to this multiplexer is the normal
functional input (that would have fed the D-input of the
non-scan DFF directly). The other input is the Scan Input
(SI) which is generally connected to the Q-output of
another SDFF in the design. The selection between these
two inputs is controlled by the Scan Enable (SE) signal.
When SE=0, the functional input is selected. When SE=1,
SI is selected. Thus, when SE=1, all SDFFs in the design
are configured as shift register(s) also known as scan
chain(s). Automatic Test Equipment (ATE) can shift test
data in and out of these scan chains. Thus, all SDFFs
become control/observe points and the problem of
sequential testing becomes a combinational one. Figure 1
shows a simple scan-based design.

Scan chains introduce much more wiring into a design
as there is a wire between the scan out (SO) of one SDFF
to the scan in (SI) of the next SDFF in the scan chain.
These wires often require hold fixing since these paths
have little or no combinational logic in them and the DFFs
are often physically close in proximity. Hold fixing can be
costly in power and area as well as schedule, since this can
become a complex task if there is a lot of hold fixing that
must be done [1].

Partial scan is an old topic [2] [3] [4] [5] [6] [7] [8]. [9],
[10] and [11]are relatively newer research in this area. In
[9], the authors present a “cycle-cutting” approach to
determine non-scan DFFs. A minimal set of DFFs are

made scannable such that there are no non-scan DFF
loops. In our work, we achieve this by non-scan to non-
scan paths check (section 2.1). We show through our
results that we need several other checks to get good
ATPG results with partial scan. The authors in [10]
inserted test points to improve controllability/observability
in non-scan circuits. Our work does not involve addition of
any test points. In [11], faults undetectable by sequential
ATPG are identified and SDFFs are selected in order to
detect them. While this work reported good fault coverage
results, it did not focus on optimizing pattern count.

 With the new low power requirements of the Internet
of Things (IOT), perhaps it is time to revisit the
possibilities of partial scan on current designs. Partial scan
is simply leaving some of the DFFs non-scan. This means
no extra mux on the DFF and no scan wire to the SI.
Partial scan can help mitigate extra logic like hold buffers
and wiring caused by full scan as shown in Figure 2.

Figure 1: A Simple Scan-based Design

Figure 2: Partial Scan Design

Another result of partial scan is that due to fewer
SDFFs, either the number of SDFFs in each scan chain
decreases, the number of scan chains decrease, or both.
These can help decrease test data volume.

Paper 2.3 INTERNATIONAL TEST CONFERENCE 2

Of course, there are issues with partial scan
methodology. The test problem becomes sequential for
stuck-at fault (SAF) and more sequential for delay fault
testing which means the number of capture cycles must be
increased. Partial scan also introduces unknowns (Xs).
Both of these issues can affect test data volume in a
negative way. Values on non-scan DFFs are set through
functional paths, making it more difficult for the ATPG
tool to set desired values on these DFFs. This can have two
negative effects on ATPG results:
i) Reduced Test Coverage (TC)
ii) Increased Pattern Count (PC)

For these reasons, partial scan has been mostly
abandoned for over a decade.

An ideal partial scan design includes non-scan DFFs
without paying any penalty in TC and PC. Keeping this in
mind, we have arrived at a set of checks to classify a DFF
as a non-scan DFF. We use the ATPG tool’s ability to
simulate the last few shift cycles to determine the values of
non-scan DFFs mitigating the X propagation issue. We
divide our checks into two levels. Level1 checks are run on
all DFFs in the design. Level2 checks are a more
complicated and time-consuming set of checks. Non-scan
candidates that pass Level2 checks are the final non-scan
DFFs. As we show through our case studies, for some
cores Level1 checks may be sufficient. In that case, the
DFFs that pass Level1 checks are the final non-scan DFFs.

We identify a new category of faults in SAF test which
we refer to as “Sequentially Redundant” [12] faults. These
SAFs are exposed in partial scan designs. We provide a
simple yet efficient way to identify these faults and add a
check in Level2 to minimize them.

We then perform SAF and transition delay fault (TDF)
ATPG to prove the effectiveness of our non-scan DFF
selection algorithm (henceforth called partial scan
algorithm). Final TC is within 0.1% of the full scan design
for both fault models. PPA results prove why partial scan
is worth considering for modern designs, especially in
areas such as near-threshold technology. Though we
believe partial scan will be most ideal for a near-threshold
design, case studies are on a CPU core CPU in a multicore
processor such as is described in [13] and a GPU shader
core as described in [14].

In Section 2, we present Level1 checks of our partial
scan algorithm and introduce sequential redundancy.
Section 3 describes Level2 checks. ATPG and PPA results
are presented in Section 4, and our conclusions are covered
in Section 5.

2. Partial scan algorithm – Level1 checks

Level1 checks are a set of preliminary checks run on
all DFFs in the design. Subsequent sections present each of
these checks. Only Level1 checks were performed on the
CPU core as sufficient coverage was achieved with these.
The GPU shader core did not achieve sufficient test

coverage with these checks alone, so Level2 checks were
added.

2.1. Non-scan to non-scan paths check

One of the Level1 rules is that there can be no paths
where the launch point and capture point are both non-scan
cells. This was done to help reduce the complexity of the
logic for the ATPG tool. For n back-to-back non-scan
DFFs, the faults captured by the first non-scan DFF need n
+ 1 capture cycles to be observed at an SDFF at the fan-out
of the nth non-scan DFF. The extra complexity of multiple
sequential non-scan DFFs may be too much for today’s
ATPG tools to handle. This also prevents cyclic non-scan
paths.

2.2. Shift register check

In the case of a shift register, only the first DFF needs
to be an SDFF and the remaining DFFs can be non-scan.
Since shift register DFFs are automatically handled by
EDA tools and are often already non-scan DFFs, we do not
need to include those in our algorithm. For this reason,
shift register DFFs fail this check.

2.3. Primary Input (PI) / Primary Output (PO) check

DFFs that are in the fan-out of PIs and those that are in
the fan-in of POs are made SDFFs. This is because, at
system level, the core will be integrated with other IP. We
do not want to jeopardize controllability/observability of
logic external to our IP due to their interface with non-scan
DFFs. In short, DFFs connected to PIs and POs fail this
check.

2.4. RAM check

DFFs that interface with memories are made SDFFs.
This is to accommodate the possibility that memories may
not include a scan collar. DFFs in the fan-in and fan-out of
memories fail this check. Though we always use RAMs
with internal scan chains to allow for control and observe
of the RAM shadow logic, we cannot rely on this for our
many different partners who implement our IP.

2.5. Integrated Clock Gating (ICG) check

DFFs that lie in the fan-in of ICGs are made SDFFs.
Our designs are essentially 100% clock gated, so having
non-scan DFFs in the logic to the enable of the clock gate
as well as in the logic connected to the input of the DFFs
becomes too complex for the ATPG tool to handle.

2.6. Self-drive check

DFFs that feedback to themselves fail this check and
are scan inserted. DFFs that feedback to themselves are
difficult to set to a desired value without any hardware
modifications.

Paper 2.3 INTERNATIONAL TEST CONFERENCE 3

2.7. Clock Domain Crossing (CDC) check

Any DFF that has a fan-in DFF from a different clock
domain is made an SDFF. The capture DFFs on CDC
paths (that are either false or multicycle) will always be an
X after the shift procedure. We do not consider such DFFs
as non-scan to reduce the amount of Xs in the design
before entering into capture cycles (we try to make the
design as X-free as possible).

2.8. Fan-in and Fan-out check

Fan-in and fan-out to a DFF are considered because the
more complex the control or the observe logic must be, the
less likely the ATPG tool will be able to get coverage with
a moderate number of patterns. We found that different
types of designs (e.g. CPU1 vs CPU2 vs GPU) had
different thresholds to achieve the partial scan percentages
that were desired to affect PPA. Fan-in and fan-out became
variables in the partial scan algorithm to achieve the
minimum desired percentage of non-scan DFFs. In
addition, when selecting non-scan DFFs with these criteria,
the check starts with the DFFs with low fan-in/out as
discussed in Section 3.4.

2.9. Sequential redundancy

By introducing non-scan DFFs, we effectively revert
testing from being a purely combinational problem to a
sequential one. This creates a new set of SAFs that do not
exist in a full-scan design. Figure 3 shows an example of a
“Sequentially Redundant” fault.

In Figure 3, DFFs FF1, FF2, FF3 and FF6 are scan
DFFs. DFFs FF4 and FF5 are non-scan DFFs.

The values at the Q outputs of FF4 and FF5 in the
current cycle depend on the Q outputs of FF1, FF2 and
FF3 in the previous cycle. After shifting values into all
SDFFs, two capture cycles are needed to propagate the
faults captured by non-scan DFFs FF4 and FF5 to the
SDFF FF6.

Figure 3: Sequential Redundancy Illustration

Table 1 shows the truth table for Q outputs of non-scan

DFFs FF4 and FF5 as a function of Q outputs of scan
DFFs FF1, FF2 and FF3.

Cycle n Cycle n+1
QFF1 QFF2 QFF3 QFF4 QFF5

0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 1: Truth Table for Circuit for Figure 3
To detect the stuck-at 1 (SA1) fault shown in Figure 3

we need the output values of FF4 and FF5 (QFF4, QFF5)
set to 1 and 0, respectively. As shown in Table 1, (QFF4,
QFF5) can never achieve the value set (1, 0). This SA1
defect is a sequentially redundant fault. If FF4 and FF5 had
been SDFFs, they could have been set to any of the four
possible values during shift mode and detected the SA1
fault.

We define a sequentially redundant fault as a fault
whose presence does not affect the behavior of the
sequential circuit. Combinational redundant faults (which
are automatically detected by the ATPG tool) are not
included in our definition of sequentially redundant faults.
Sequential and combinational redundant logic can be
present in a design due to improper RTL coding style or
ineffective optimization by the synthesis tool. Sometimes,
they are deliberately intended to address timing issues.
Sequentially redundant faults were found in our partial
scan design and must be addressed if they are significant in
number.

Classical research work on identifying sequential
redundancy has focused on logic optimization during
synthesis. Sequential redundancy was detected in [15] by
looking for don’t care conditions in state transition
diagrams. In [16], a circuit was made feedback free by
cutting at the feedback lines assuming they are fully
controllable and observable. Test generation and fault
simulation are then performed on this feedback free circuit.
C-cycle redundancy was presented in [17]. In this work, an
arbitrary set of inputs are provided to the circuit for c clock
cycles (where c >= 0). The possible states of the circuit at
the end of these c cycles are analyzed for both fault-free
and faulty cases to determine sequential redundancy. If
there exists a state Sf in the faulty circuit and a state S in
the fault-free circuit such that the response of both the
circuits to any input I is the same, then the fault is
considered sequentially redundant. The circuit is then
optimized by removing the region associated with that
fault. It was shown that different benchmark circuits
needed different values of c to detect all the redundant
faults.

We came up with a simple way of determining the
possibility of sequentially redundant faults even before
generating the partial-scan design. We first perform SAF

Paper 2.3 INTERNATIONAL TEST CONFERENCE 4

and Launch-off Capture (LOC) TDF ATPG on the full-
scan design. Sequentially redundant faults are uncovered
during TDF ATPG. If we consider the sequentially
redundant SA1 fault in Figure 3, the slow-to-fall fault on
the same node will remain uncovered. This is because,
during the launch of capture transition, all DFFs are in
their functional mode and sequentially redundant faults are
exposed. During SAF ATPG, the sequentially redundant
faults are hidden since there is control and observe at every
DFF. We determine sequentially redundant faults as those
that are undetected during full-scan transition delay ATPG
and detected during full-scan SAF ATPG. This technique
does not involve using synthesis or test generation/fault
simulation engines. Instead, it only relies on existing full-
scan ATPG results.

Determining sequentially redundant faults beforehand,
allows us to use that information in a Level2 check of our
partial scan algorithm. This enables us to generate a partial
scan netlist with a minimal amount of sequentially
redundant faults.

2.10. Other X-generation issues

Even though we simulate the last few shift cycles, we
found that there was still some X-generation. Since the
value in the last DFF of a scan chain is known only after
all shift cycles, the non-scan DFFs that lie in the fan-out of
these DFFs propagate X’s during the capture phase. Figure
4 shows two non-scan DFFs in the fan-out of last SDFF in
a scan chain. These DFFs will capture X’s during the first
capture cycle since the tool is unable to simulate shift
values for the last DFF in a scan chain. To prevent this, we
override the set/reset ports of all non-scan DFFs that are
functionally adjacent to the last SDFF of each scan chain
with the scan enable signal so that they are either 1 or 0 at
the end of shift instead of X as described in [18]. If these
non-scan DFFs are neither set nor reset DFFs, then we use
a set or reset DFF to be able to initialize them during shift.
Figure 5 shows an example of how a resettable non-scan
DFF on the fan-out of last DFFs in scan chains is handled.
A settable DFF would be handled in the same manner
where shift enables the set, rather than the reset. This
resolved the issue that was causing the X-generation.

Figure 4: Non-scan DFFs in Fan-out of Last SDFF in

Scan Chain

Figure 5: Set/Reset Overriding for Non-scan DFF on

Fan-out of Last DFF in Scan Chain

3. Partial scan algorithm – Level2 checks

Level2 checks are performed on non-scan candidate
DFFs, i.e. DFFs that pass Level1 checks. Subsequent
sections specify each of these checks. These checks were
added for the computationally heavy GPU shader core
which could not achieve the test coverage numbers of the
CPU core with only the Level1 checks. These additional
checks have not been evaluated on a CPU core.

3.1. Overlap threshold check

The overlap threshold check was added to control the
number of non-scan DFFs that feed into a single
combinational logic cloud. The GPU is a computationally
intensive design, resulting in DFFs whose fan-in ranges
from 1 to 18000 and fanout from 1 to 4000. We looked at
modules that included a high level of computational logic
and identified a common problem: high fan-in from non-
scan DFFs into combinational logic resulted in too many
uncovered faults in that logic. This condition also
exacerbated the propagation of faults captured by non-scan
DFFs that needed to be propagated through that logic.
With these observations, we concluded that in certain
modules, when high fan-in includes many non-scan DFFs,
this can reduce test coverage in the area significantly. We
call this the “overlap threshold” problem. Figure 6
illustrates this condition.

In Figure 6, FF1, FF2, FF3, FF4, FF5, FF7 and FF8 are
non-scan DFFs feeding-in to the combinational logic fan-
in to SDFF FF6. For faults captured by FF2 to propagate to
FF6, FF1, FF3, FF4 and FF8 must be a 1 while DFFs FF5
and FF7 must be a 0. Since non-scan DFFs are weak
control points, it might be tough to satisfy all the
constraints.

To limit the number of non-scan DFFs feeding in to a
combinational logic cloud, we limit the number of non-
scan DFFs that fan-in to an SDFF. In Figure 6, if we limit
the maximum number of non-scan DFFs that fan-in to
SDFF FF6 to some value n, it is guaranteed that the
combinational logic cloud (AND gate + OR gate) shown in
the figure will not have more than n non-scan DFFs
feeding in. This is a simple yet effective way of
implementing the overlap threshold check. In the next
section, we will reveal how we addressed both sequential
redundancy and the overlap threshold problem by using
only the overlap threshold check.

Paper 2.3 INTERNATIONAL TEST CONFERENCE 5

Sequential redundancy was described in Section 2.9. In
this section, we will talk about how the sequential
redundancy check was implemented using the overlap
threshold check. To create a simpler implementation, we
chose an aggressive way to tackle sequential redundancy.
Non-scan DFFs that illuminate sequential redundancy have
common fan-in and fan-out DFFs. This is evident in Figure
3. In the event of two or more non-scan candidate DFFs
having common fan-in and fan-out DFFs, only one of
those candidates will pass the sequential redundancy
check.

Figure 6: Non-scan DFFs Feeding into Combinational

Logic

3.2. Sequential redundancy check
In Figure 7, only FF4 or FF5 will end up passing the

check. Just because there are non-scan candidates that have
common fan-in and fan-out DFFs does not mean there will
be sequential redundancy. However, the simplified flow is
more aggressive in replacing these DFFs with SDFFs.
Figure 7 illustrates the parallels between sequential
redundancy and the overlap threshold problem.

In Figure 7, there are two non-scan DFF candidates
FF3 and FF4 that need to be evaluated for sequential
redundancy and the overlap threshold condition. The
candidates have common fan-in DFFs: FF1 and FF2, and
common fan-out DFFs: FF5 and FF6.

Hence, only one of them will end up passing the
sequential redundancy check based on the order in which
they are processed. If FF3 is processed before FF4, FF4
will fail the sequential redundancy check. While checking
for the overlap threshold condition, we consider the DFFs
in the fan-out of the candidate and ensure that the number
of non-scan DFFs that fan-in is below the set threshold.

When FF3 is processed, we look at the number of non-
scan DFFs that fan-in to DFFs FF5 and FF6; the same is
true for FF4. Now, if we set the overlap threshold limit to
one (i.e. only one non-scan DFF can fan-in to a
combinational logic cloud), FF5 and FF6 will have only

one non-scan DFF in their fan-in. Assuming FF3 is
processed before FF4, FF3 will end up passing the overlap
threshold check and FF4 will not. Thus, the overlap
threshold limit of one meets the sequential redundancy
requirements.

Implementing an overlap threshold limit of 1 is very
aggressive and we ended up losing a considerable number
of non-scan DFFs. Our non-scan DFF count dropped from
~30% to ~20% after adding this check. But by losing only
a third of the non-scan DFFs, we regained two thirds of the
lost SAF coverage.

Figure 7: Parallels between Sequential Redundancy

and Overlap Threshold Conditions
The overlap threshold check enables a lot of flexibility.

We can set the overlap threshold limit to one to push the
coverage as high as possible. An overlap threshold limit of
one is the most conservative value: it completely gets rid
of sequential redundancy and the overlap threshold
problem. However, the threshold can be varied anywhere
from one to the maximum fan-in minus one. With higher
threshold values, we can get a higher non-scan DFF count
usually at the cost of lower coverage and/or a higher
pattern count due to an increase in sequential redundancy
and the overlap threshold problem. However, as in LOC
transition delay testing, one could argue that the lost
coverage is for faults that can never occur during
functional operation.

The overlap threshold step was not required for CPU to
meet test coverage requirements.

3.3. Identification of problematic DFFs

After addressing the overlap threshold and sequential
redundancy problems, we still saw around 0.1% lower test
coverage as compared to the full scan design. The non-
scan DFFs that affected these faults, either in the observe
or control paths, were collected. We refer to these non-
scan DFFs as “problematic” DFFs. We associated a weight
with each problematic DFF. Weight indicates the number
of uncovered faults affected (on a control or observe path)
by the corresponding problematic DFF. So, the higher the
weight, the more problematic the DFF is with regard to
affecting test coverage. We then ranked these problematic
DFFs in decreasing weight order to identify the worst
ones.

Paper 2.3 INTERNATIONAL TEST CONFERENCE 6

We identified the below properties of the problematic
DFFs:
i) Many were high fan-in/fan-out DFFs. High fan-

in/fan-out DFFs affect more logic hence can be
problematic. Based on this, we adjusted the
maximum fan-in threshold to 120 and maximum
fan-out threshold to 100 on the GPU shader core.
Note that these thresholds have nothing to do with
overlap threshold. These are the thresholds
described in Section 2.8.

ii) There were low fan-in/fan-out problematic DFFs.
These DFFs were involved in arithmetic intensive
logic and the combinational logic depth between
these DFFs and the SDFFs in their fan-out was
high.

There are two ways to address the low fan-in/fan-out
problematic DFFs problem:
i) We select the problematic DFFs whose weight is

above a certain value and exclude them while
processing non-scan DFF candidates. This is a
more accurate approach with some iterative work
involved. We call this the “semi-automatic” way
of identifying problematic DFFs. For the GPU
shader core, we selected 100 as the cut-off
weight. So, any problematic DFF whose weight
was above or equal to 100 was excluded and
made SDFF.

ii) We check if a candidate is involved in arithmetic
logic and exclude it if none of its fan-out DFFs
have a fan-in below a certain threshold. To check
if a candidate is involved in arithmetic logic, we
look for adder cells in the fan-in/fan-out. By
having at least one fan-out DFF with low fan-in,
the non-scan DFF has at least one easy path to
propagate the faults captured. Here, we assume
that a low fan-in DFF has smaller combinational
logic in its fan-in. This is an automatic but less
accurate technique than i).

3.4. Ordering non-scan candidate DFFs

In three of our checks: overlap threshold check,
sequential redundancy check and non-scan to non-scan
connectivity check, the order in which we process the non-
scan candidate DFFs has a significant impact on the non-
scan DFF count and ATPG results. Non-scan candidates
that are processed early and pass all checks jeopardize the
chances of other candidate DFFs that overlap with them.
Besides, it is guaranteed that the non-scan candidates in
their fan-in and fan-out will be made SDFFs. This can be
disastrous to non-scan DFF count if high fan-in/fan-out
DFFs are processed early on.

We process non-scan candidate DFFs in order of
increasing fan-in. All candidates with a given fan-in are
processed in order of increasing fan-out. We gave
preference to low fan-in over low fan-out DFFs because it

is easier to set desired values in low fan-in DFFs due to
smaller combinational logic in the fan-in cone.

Figure 8 through Figure 10 show our partial scan
algorithm. Note that the flow charts show the various
checks in the order in which they are implemented. Non-
scan to non-scan paths check which is a Level1 check is
moved to the end of the flow.

Figure 8: Level1 Checks (except non-scan to non-scan

connectivity check)

Paper 2.3 INTERNATIONAL TEST CONFERENCE 7

4. Results and discussion

All ATPG results shown in this section are with
compression enabled.

The same compression hardware configuration is used
for both full scan and partial scan. Since the number of
scan chains is fixed, there are fewer DFFs per scan chain
in partial scan when compared to full-scan. This means
fewer shift cycles per pattern. Hence, to make a fair
comparison with regard to pattern count, we introduce the
parameter “pattern volume” which is defined below:

Pattern volume = (Pattern count) x (Number of DFFs
in longest scan chain)

Figure 10: Level2 Checks and Non-scan to Non-scan

Connectivity Check

4.1. CPU Core results

Four different experiments were run on the CPU core with
different non-scan DFF percentages. The percentage was
varied by changing the fan-in and fan-out variable during
non-scan DFF selection. The CPU core contains
approximately 250K DFFs and only uses Level1 checks.
There can be multiple CPU cores in a microprocessor
which multiplies the PPA advantages of partial scan.
Figure 11 shows the CPU core SAF test coverage and
pattern count/volume.

The four different netlists use 0% (full scan), 9%, 15%
and 35% non-scan DFFs. Full scan achieved 99.79% test
coverage with 7164 patterns. Note that by final release of
Arm® IP, the stuck-at TC is required to meet 99.9% or a
path on how to get to 99.9% stuck-at TC must be
described. When the test coverage data was collected, this
design was early in schedule, so this work was not
complete. The SAF TC did drop slightly for the 9%
(99.74%) and 13% (99.72%) netlists. The 35% non-scan
netlist did achieve over 99% SAF test coverage, as well.
The pattern volume for the 9%, 13% and 35% partial scan
netlists, when compared to the full scan netlist was 32%,
62% and 143% larger, respectively.

98.60%
98.80%
99.00%
99.20%
99.40%
99.60%
99.80%
100.00%

0

5000

10000

15000

20000

25000

30000

fullscan 9% non-scan 15% non-scan 35% non-scan

Te
st

 C
ov

er
ag

e

Pa
tt

er
n

Co
un

t

Netlist

Stk-At Test Coverage vs Pattern Count/Volume

Test coverage Pattern count Pattern Volume

 Figure 11: CPU Core SAF TC
Figure 12 shows the TDF TC and pattern

count/volume. As can be seen, the LOC transition delay
coverage is very high on the CPU core with full scan
(97.49%). The test coverage remains high for most of the
netlists and the 35% non-scan netlist still achieves greater
than 90% test coverage.

86.00%
88.00%
90.00%
92.00%
94.00%
96.00%
98.00%
100.00%

0

10000

20000

30000

40000

50000

fullscan 9% non-scan 15% non-scan 35% non-scan

Te
st

 C
ov

er
ag

e

Pa
tt

er
n

Co
un

t

Netlist

Trn Delay Coverage vs Pattern Count/Volume

Test coverage Pattern count Pattern Volume

Figure 12: CPU Core TDF TC

Figure 9: Elimination of problematic DFFs

Paper 2.3 INTERNATIONAL TEST CONFERENCE 8

The 9% and 15% partial scan netlist test coverages are
respectively 97.56% and 96.79%. Interestingly, the 9%
partial scan netlist achieves slightly higher test coverage
than the full scan netlist. The reason behind this was not
evaluated. The 35% partial scan netlist only achieves
transition delay TC of 90.25% and may not be a good
candidate for manufacturing. The pattern volume increases
by 28% and 69% for the 9% and 15% netlists respectively.
The test coverage loss for both SAF and TDF on the 9%
and 15% partial scan netlists, though minimal, is still
coverage loss. It must be considered what end markets
may still be targeted for SoCs using the partial scan
methodology. For instance, automotive would likely not be
a good choice.

The question we then asked is whether the PPA
improvement is worth the extra test time. We evaluated the
PPA of this core with a 19% non-scan netlist. The full
flow comprises synthesis � placement � clock tree
synthesis (CTS) � postCTS hold � route � postroute �
postroute hold. Table 2 shows the improvements shown in
the partial scan netlist after the placement step.

.

Density
Full design reg2cg reg2reg Difference

partial scan 4.71% 4.71% 0.00% -3.75%

Full design reg2cg reg2reg
partial scan -55.30% -34.32% -62.76%

Frequency Difference

TNS Difference

Placement Analysis - typical

Table 2: CPU Core Post-Route Timing Analysis

There was an increase of 4.71% for frequency which
came from the reg2cg (register to clock gate) paths, not the
reg2reg (register to register) paths. The TNS (total
negative slack) is the sum of all negative slacks. Though
frequency did not improve for reg2reg, the number of
paths with negative slack (paths missing the targeted
frequency) vastly improved. TNS improved for all paths
combined by 55% and the density of the circuit improved
by 3.75%. When the density is reduced, it means that there
is more room for routing, the frequency may be higher,
power may be improved, and/or the design floorplan may
be able to be reduced. These all contribute to helping the
design reach its target frequency and routing more easily

Table 3 shows the post-CTS hold analysis. In this run,
the clock tree has been added and hold time analysis has
been done.

Density
Full design reg2cg reg2reg Difference

partial scan 0.00% 0.00% -0.29% -2.67%

Full design reg2cg reg2reg
partial scan -15.45% -7.67% -15.63%

TNS Difference

Frequency Difference
PostCTS Hold Analysis

Table 3: CPU Core postCTS/Hold Analysis

Now the frequency between the two netlists is very
close. However, the TNS for all paths combined improves
by 15.45% on the partial scan netlist and this is considered
a more important metric since the tools have less paths to
work on and so don’t have to work as hard. The density is
better by 2.67%. The reg2reg paths have a slightly slower
frequency on the partial scan netlist (.008 GHz). However,
looking at the total picture, it is believed that the partial
scan netlist is better than the full scan netlist with regard to
meeting the PPA goals. But is it enough to make it
worthwhile doing partial scan on this type of design?

We then evaluated dynamic power with our maximum
power (maxpwr) test. Table 4 shows that indeed the power
during functional mode did reduce on the partial scan
netlist by 2.41%, which is significant. The clock power
increased. In the past this has been caused by the floorplan
not being reduced for the smaller area of the partial scan
netlist, which results in the clock signals traveling further.

Difference Total DFF logic clock
partial scan -3.38% -3.56% -3.82% 2.68%

Difference Total DFF logic clock
partial scan -2.45% -2.00% -4.48% 2.77%

Dynamic power

Static power
Post-CTS Power Analysis maxpwr - Partial Scan Difference

Table 4: CPU Core Maxpwr Results

Though we did not shrink the floorplan, we did analyze
how much the area reduced for various instances. Table 5
shows the difference in total instance area as well as a
breakdown of several types of instances with regard to area
or count. If this were resolved, then the total power savings
would increase.

Instance Difference
Total Instances -0.86%
Buffer Count -7.20%
Inverter Count 0.82%
DFF Area -4.75%
Total Standard Cell A -2.54%

PostCTS Hold Instance Area

Table 5: Partial Scan Instance Area/Count Differences
The two largest reductions in the design were buffer count
and flop area. Buffer count indicates that less hold fixing
was needed and so less buffers were needed. Though
inverter count is slightly higher, the reduction of buffers
far surpasses the increase in inverters. The DFF area
reduction has a direct relation to the number of DFFs that
remained nonscan.

4.2. GPU shader Core results
GPU shader cores are larger than CPU cores and could

potentially show a bigger PPA advantage when utilizing
partial scan. There can be multiple shader cores in a GPU,
multiplying the benefits of partial scan. This GPU shader
core contains over 500k DFFs. Initially we used just the
Level1 checks and the ATPG results were below

Paper 2.3 INTERNATIONAL TEST CONFERENCE 9

expectations. We evaluated the reasons behind this and
created the Level2 checks.

Table 6 shows the GPU shader core ATPG results after
adding the Level2 checks. We first performed full scan
SAF and TDF ATPG and use these results as the
benchmark. The first partial scan netlist (referred to as
original partial scan netlist) was generated without overlap
threshold/sequential redundancy/ problematic DFF
identification checks. The resulting netlist is 30% non-
scan. The SAF and TDF test coverage (TC) drop by 0.74%
and 1.62% respectively with regard to full scan. Pattern
volume increases by 37% and 41% for SAF and TDF
ATPG respectively.

 Next, we determine the modules that have sequential
redundancy and overlap threshold problems and apply
overlap threshold and sequential redundancy checks for
these modules. This results in a 20% non-scan netlist. We
lose 10% non-scan DFFs by adding these checks but we
gain 0.53% stuck-at TC and 1.14% transition delay TC
compared to the original partial scan netlist. Also, pattern
volume drops by 13% and 5.5% for stuck-at and transition
delay ATPG respectively compared to the original partial
scan netlist. While we lose a third of the non-scan DFFs,
we regain two-thirds of the lost stuck-at TC. When
compared to full scan, stuck-at TC is 0.21% less and
pattern volume increases by 19%. Transition delay TC is
0.48% less and pattern volume is 33% more.

To improve the TC, we now perform problematic DFF
identification on top of the existing checks. For the semi-
automatic problematic DFF identification, using the partial
scan netlist with only overlap threshold/sequential
redundancy checks, we gained 0.14% stuck-at TC and
0.42% transition delay TC. With 20% non-scan DFFs, we
are within 0.1% of full scan TC for both stuck-at and
transition delay. The pattern volume increased by 8% for
stuck-at and 24% for transition delay ATPG when
compared to the pattern volumes for the full scan netlist.

Next, we worked to reproduce the same results, seen
with the semi-automatic problematic DFF identification,
with automated problematic DFF identification. The
results for both ways of identifying problematic DFFs are
very close. When compared to the semi-automatic
technique, the automatic technique showed a stuck-at TC
loss of 0.03% and a transition delay TC loss of 0.26%. The
pattern volume for TDF showed an 11% increase while
that for SAF remained almost unchanged.

PPA analysis was performed for the final partial scan
netlist (using semi-automatic problematic non-scan DFF
identification). Table 7 through Table 10 show the results.
The numbers shown in these tables are percentage change
in partial scan netlist with respect to the full-scan netlist.
Standard cell area dropped by 0.92% and this is reflected
on the total cell area. There is no change in RAM area
which is expected. No work was done to reduce the
floorplan, so there is no change in total die area. Physical
utilization of the standard cells has dropped by 0.9%. We
learned from our standard cell team that due to their
limited usage, the non-scan DFF standard cells are not
optimized to the same extent as their SDFF counterparts.

Difference w.r.t. full-scan
Standard cell area -0.92%

Total Area -0.66%
Density -0.90%

Area/Density results

Table 7: GPU Shader Core Area/Density results
Our vector-less power analysis results showed that

leakage power dropped by 0.5% while dynamic power
dropped by 1.3%. Dynamic power simulations with
vectors were not run on this design.

Netlist

Non-scan
DFF %

w.r.t. total
DFFs (%)

Stuck-at ATPG Transition Delay ATPG
Test

coverage
(%)

Pattern
Count

Pattern
volume

(K)

Test
coverage

(%)

Pattern
count

Pattern
volume

(K)
Full scan 99.75 11573 11631 97.46 27200 27336

Partial scan w/o overlap
threshold/sequential redundancy

and problematic DFF checks

29.87 99.01 22396 15946 95.84 54243 38622

Partial scan w/ overlap
threshold/sequential redundancy

check

19.98 99.54 17194 13910 96.98 45101 36487

Partial scan w/
overlap threshold/sequential

redundancy and semi-automatic
problematic DFF check

20.36 99.68 15667 12612 97.40 42167 33945

Final partial scan w/
overlap threshold/sequential
redundancy and automatic

problematic DFF check

20.34 99.65 16077 12959 97.14 37250 30024

Table 6: ATPG Results for GPU Shader Block

Paper 2.3 INTERNATIONAL TEST CONFERENCE 10

Difference w.r.t. full-scan
Dynamic power -1.30%

Static power -0.50%

Power analysis results

Table 8: GPU Shader Core Power analysis results
Frequency results are shown in Table 9. Register to

register (reg2reg) paths can now be clocked at a frequency
that is 2.09% higher with respect to full-scan. Maximum
frequency for input to register (in2reg) and register to
output (reg2out) paths increased by 1.45%.

As seen with the CPU core, the biggest benefit of
partial scan is reflected in the total negative slack (TNS)
results shown in Table 10.

Difference w.r.t. full-scan
regreg paths 2.09%

in2reg/reg2out paths 1.45%

Frequency results

Table 9: GPU Shader Core Frequency results

On reg2reg paths, TNS improved by 77.5%. On in2reg
paths, TNS improved by 33.33%. There is no change in
TNS for reg2out paths.

Difference w.r.t. full-scan
regreg paths -77.50%
in2reg paths -33.33%

reg2out paths 0.00%

Hold TNS results

Table 10: GPU Shader Core TNS results

5. Conclusion and future work

We presented our partial scan algorithm as a complex
amalgamation of several checks. We introduced a new
class of faults that manifest themselves during partial scan
SAF ATPG and presented a way, not only to determine
them, but also eliminate/contain them. We presented two
different ways to identify problematic non-scan DFFs.

We showed that different types of logic need different
considerations when choosing non-scan DFFs and that
there are benefits worth extra exploration in this area.

One way to extend this work would be to analyze the
presence of overlap threshold problem in an automated
way. We determined overlap threshold manually by
debugging the uncovered faults in the ATPG tool. Another
area for future work would be to involve test point analysis
to determine locations of problematic DFFs. Partial scan
benefits should also be explored on a near-threshold
design.

Acknowledgements

The authors would like to thank Mark Nathan, Rich
Slobodnik, Abhijith Gokuldas, Leo Prakash and Mark
Appleton for their help in collecting this data.

References
[1] P. Narayanan et al, "Modified DFF Architecture to Reduce Hold

Buffers and Peak Power during Scan Shift Operation," VLSI Test
Symp. (VTS), pp. 154 - 159, 2011

[2] K. -T. Cheng, V. D. Agrawal, “A partial scan method for sequential
circuits with feedback”, IEEE Transactions on Computers, Vol.
39, No. 4, pp. 544 – 548, 1990

[3] D. H. Lee, S. M. Reddy, “On determining scan DFFs in partial-
scan designs”, IEEE International Conference on Computer-Aided
Design. Digest of Technical Papers, pp. 322 – 325, 1990

[4] R. Gupta, R. Gupta, M. A. Breuer, “The Ballast methodology for
structured partial scan design”, IEEE Transactions on Computers,
Vol. 39, No. 4, pp. 538 – 544, 1990

[5] V. Chickermane, J. H. Patel, “An optimization based approach to
the partial scan design problem”, International Test Conference,
pp. 377 – 386, 1990

[6] V. D. Agrawal et al, “Designing circuits with partial scan”, IEEE
Design & Test of Computers, Vol. 5, No. 2, pp. 8 - 15, 1988

[7] V. Chickermane, J. H. Patel, “A fault oriented partial scan design
approach”, IEEE International Conference on Computer-Aided
Design Digest of Technical Papers, pp. 400 – 403, 1991

[8] S. T. Chakradhar et al, “An Exact Algorithm for
Selecting Partial Scan DFFs”, Design Automation Conference,
pp. 81 – 86, 1994

[9] S. Sharma, M. Hsiao, “Combination of Structural and State
Analysis for Partial Scan”, International Conference on VLSI
Design, pp. 134 – 139, 2001

[10] D. Xiang, Y. Xu, H. Fujiwara, “Non-scan Design for Testability for
Synchronous Sequential Circuits Based on Conflict Resolution”,
IEEE Transactions on Computers, pp. 1063 – 1075, 2003

[11] X. Lin, I. Pomeranz, S. M. Reddy, “Full scan fault coverage with
partial scan”, Conference on Design, automation and test in Europe,
1999

[12] M. A. Iyer et al, “Surprises in Sequential Redundancy
Identification”, European Design and Test Conference, pp. 88 - 94,
1996

[13] McLaurin, Frederick, Slobodnik, “The DFT challenges and
solutions for the ARM Cortex-A15 microprocessors”, Proc. of IEEE
International Test Conference, 2012.

[14] McLaurin, Kulkarni, “The DFT Challenges and Solutions for the
Arm Mali-Mimir GPU”, Proc. of IEEE International Test
Conference India, 2017.

[15] M. Damiani et al, “Synchronous Logic Synthesis: Circuit
Specifications and Optimization Algorithms”, IEEE International
Symposium on Circuits and Systems, pp. 2566 - 2570, 1990

[16] K.-T. Cheng., “On removing redundancy in sequential circuits”,
Design Automation Conference, pp. 164 - 169, 1991

[17] M. A. Iyer et al, “Identifying Sequential Redundancies Without
Search”, Design Automation Conference, pp. 457 - 462, 1996

[18] M. Abramovici et al, "On selecting DFFs for partial reset,"
International Test Conference, Baltimore, MD, pp. 1008 - 1012,
1993

