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Abstract 

As more low power devices are needed for applications 
such as IOT, reducing power and area is becoming more 
critical. Reducing power consumption and area caused by 
using full scan should be considered as a method to help 
achieve these stricter requirements. This is especially 
important in designs using near-threshold technology. In 
this work, we use partial scan to attempt to improve 
power, performance and area on a CPU core and a GPU 
shader core. We present our non-scan DFF selection 
algorithm that maximizes non-scan DFF count while 
achieving ATPG results close to those of the full scan 
design on both a CPU and a GPU shader core.  In 
addition, we present the PPA (power, performance and 
area) results of these designs for both the full scan and 
partial scan. 

1. Introduction 

Scan based testing is widely used in the industry today 
for manufacturing test. In a mux-D based full scan design, 
all DFFs in the design are converted into scan DFFs 
(SDFFs) which adds a 2-input multiplexer onto every DFF 
at its D-input. One input to this multiplexer is the normal 
functional input (that would have fed the D-input of the 
non-scan DFF directly). The other input is the Scan Input 
(SI) which is generally connected to the Q-output of 
another SDFF in the design. The selection between these 
two inputs is controlled by the Scan Enable (SE) signal. 
When SE=0, the functional input is selected. When SE=1, 
SI is selected. Thus, when SE=1, all SDFFs in the design 
are configured as shift register(s) also known as scan 
chain(s). Automatic Test Equipment (ATE) can shift test 
data in and out of these scan chains. Thus, all SDFFs 
become control/observe points and the problem of 
sequential testing becomes a combinational one. Figure 1 
shows a simple scan-based design. 

Scan chains introduce much more wiring into a design 
as there is a wire between the scan out (SO) of one SDFF 
to the scan in (SI) of the next SDFF in the scan chain. 
These wires often require hold fixing since these paths 
have little or no combinational logic in them and the DFFs 
are often physically close in proximity. Hold fixing can be 
costly in power and area as well as schedule, since this can 
become a complex task if there is a lot of hold fixing that 
must be done [1]. 

Partial scan is an old topic [2] [3] [4] [5] [6] [7] [8]. [9], 
[10] and [11]are relatively newer research in this area. In 
[9], the authors present a “cycle-cutting” approach to 
determine non-scan DFFs. A minimal set of DFFs are 

made scannable such that there are no non-scan DFF 
loops. In our work, we achieve this by non-scan to non-
scan paths check (section 2.1). We show through our 
results that we need several other checks to get good 
ATPG results with partial scan. The authors in [10] 
inserted test points to improve controllability/observability 
in non-scan circuits. Our work does not involve addition of 
any test points. In [11], faults undetectable by sequential 
ATPG are identified and SDFFs are selected in order to 
detect them. While this work reported good fault coverage 
results, it did not focus on optimizing pattern count. 

 With the new low power requirements of the Internet 
of Things (IOT), perhaps it is time to revisit the 
possibilities of partial scan on current designs. Partial scan 
is simply leaving some of the DFFs non-scan. This means 
no extra mux on the DFF and no scan wire to the SI. 
Partial scan can help mitigate extra logic like hold buffers 
and wiring caused by full scan as shown in Figure 2.  

 
Figure 1: A Simple Scan-based Design 

 

 
Figure 2: Partial Scan Design 

Another result of partial scan is that due to fewer 
SDFFs, either the number of SDFFs in each scan chain 
decreases, the number of scan chains decrease, or both. 
These can help decrease test data volume. 



Paper 2.3 INTERNATIONAL TEST CONFERENCE 2 

Of course, there are issues with partial scan 
methodology. The test problem becomes sequential for 
stuck-at fault (SAF) and more sequential for delay fault 
testing which means the number of capture cycles must be 
increased. Partial scan also introduces unknowns (Xs). 
Both of these issues can affect test data volume in a 
negative way. Values on non-scan DFFs are set through 
functional paths, making it more difficult for the ATPG 
tool to set desired values on these DFFs. This can have two 
negative effects on ATPG results: 
i) Reduced Test Coverage (TC) 
ii) Increased Pattern Count (PC) 

For these reasons, partial scan has been mostly 
abandoned for over a decade. 

An ideal partial scan design includes non-scan DFFs 
without paying any penalty in TC and PC. Keeping this in 
mind, we have arrived at a set of checks to classify a DFF 
as a non-scan DFF. We use the ATPG tool’s ability to 
simulate the last few shift cycles to determine the values of 
non-scan DFFs mitigating the X propagation issue. We 
divide our checks into two levels. Level1 checks are run on 
all DFFs in the design. Level2 checks are a more 
complicated and time-consuming set of checks. Non-scan 
candidates that pass Level2 checks are the final non-scan 
DFFs. As we show through our case studies, for some 
cores Level1 checks may be sufficient. In that case, the 
DFFs that pass Level1 checks are the final non-scan DFFs. 

We identify a new category of faults in SAF test which 
we refer to as “Sequentially Redundant” [12] faults. These 
SAFs are exposed in partial scan designs. We provide a 
simple yet efficient way to identify these faults and add a 
check in Level2 to minimize them. 

We then perform SAF and transition delay fault (TDF) 
ATPG to prove the effectiveness of our non-scan DFF 
selection algorithm (henceforth called partial scan 
algorithm). Final TC is within 0.1% of the full scan design 
for both fault models. PPA results prove why partial scan 
is worth considering for modern designs, especially in 
areas such as near-threshold technology. Though we 
believe partial scan will be most ideal for a near-threshold 
design, case studies are on a CPU core CPU in a multicore 
processor such as is described in [13] and a GPU shader 
core as described in [14].  

In Section 2, we present Level1 checks of our partial 
scan algorithm and introduce sequential redundancy. 
Section 3 describes Level2 checks. ATPG and PPA results 
are presented in Section 4, and our conclusions are covered 
in Section 5. 

2. Partial scan algorithm – Level1 checks 

Level1 checks are a set of preliminary checks run on 
all DFFs in the design. Subsequent sections present each of 
these checks. Only Level1 checks were performed on the 
CPU core as sufficient coverage was achieved with these. 
The GPU shader core did not achieve sufficient test 

coverage with these checks alone, so Level2 checks were 
added. 

2.1. Non-scan to non-scan paths check 

One of the Level1 rules is that there can be no paths 
where the launch point and capture point are both non-scan 
cells. This was done to help reduce the complexity of the 
logic for the ATPG tool. For n back-to-back non-scan 
DFFs, the faults captured by the first non-scan DFF need n 
+ 1 capture cycles to be observed at an SDFF at the fan-out 
of the nth non-scan DFF. The extra complexity of multiple 
sequential non-scan DFFs may be too much for today’s 
ATPG tools to handle. This also prevents cyclic non-scan 
paths. 

2.2. Shift register check 

In the case of a shift register, only the first DFF needs 
to be an SDFF and the remaining DFFs can be non-scan. 
Since shift register DFFs are automatically handled by 
EDA tools and are often already non-scan DFFs, we do not 
need to include those in our algorithm. For this reason, 
shift register DFFs fail this check. 

2.3. Primary Input (PI) / Primary Output (PO) check 

DFFs that are in the fan-out of PIs and those that are in 
the fan-in of POs are made SDFFs. This is because, at 
system level, the core will be integrated with other IP. We 
do not want to jeopardize controllability/observability of 
logic external to our IP due to their interface with non-scan 
DFFs. In short, DFFs connected to PIs and POs fail this 
check.  

2.4. RAM check 

DFFs that interface with memories are made SDFFs. 
This is to accommodate the possibility that memories may 
not include a scan collar. DFFs in the fan-in and fan-out of 
memories fail this check. Though we always use RAMs 
with internal scan chains to allow for control and observe 
of the RAM shadow logic, we cannot rely on this for our 
many different partners who implement our IP. 

2.5. Integrated Clock Gating (ICG) check 

DFFs that lie in the fan-in of ICGs are made SDFFs. 
Our designs are essentially 100% clock gated, so having 
non-scan DFFs in the logic to the enable of the clock gate 
as well as in the logic connected to the input of the DFFs 
becomes too complex for the ATPG tool to handle. 

2.6. Self-drive check 

DFFs that feedback to themselves fail this check and 
are scan inserted. DFFs that feedback to themselves are 
difficult to set to a desired value without any hardware 
modifications. 
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2.7. Clock Domain Crossing (CDC) check 

Any DFF that has a fan-in DFF from a different clock 
domain is made an SDFF. The capture DFFs on CDC 
paths (that are either false or multicycle) will always be an 
X after the shift procedure. We do not consider such DFFs 
as non-scan to reduce the amount of Xs in the design 
before entering into capture cycles (we try to make the 
design as X-free as possible). 

2.8. Fan-in and Fan-out check 

Fan-in and fan-out to a DFF are considered because the 
more complex the control or the observe logic must be, the 
less likely the ATPG tool will be able to get coverage with 
a moderate number of patterns. We found that different 
types of designs (e.g. CPU1 vs CPU2 vs GPU) had 
different thresholds to achieve the partial scan percentages 
that were desired to affect PPA. Fan-in and fan-out became 
variables in the partial scan algorithm to achieve the 
minimum desired percentage of non-scan DFFs. In 
addition, when selecting non-scan DFFs with these criteria, 
the check starts with the DFFs with low fan-in/out as 
discussed in Section 3.4. 

2.9. Sequential redundancy 

By introducing non-scan DFFs, we effectively revert 
testing from being a purely combinational problem to a 
sequential one. This creates a new set of SAFs that do not 
exist in a full-scan design.  Figure 3 shows an example of a 
“Sequentially Redundant” fault. 

In Figure 3, DFFs FF1, FF2, FF3 and FF6 are scan 
DFFs. DFFs FF4 and FF5 are non-scan DFFs. 

The values at the Q outputs of FF4 and FF5 in the 
current cycle depend on the Q outputs of FF1, FF2 and 
FF3 in the previous cycle. After shifting values into all 
SDFFs, two capture cycles are needed to propagate the 
faults captured by non-scan DFFs FF4 and FF5 to the 
SDFF FF6. 

 

 
Figure 3: Sequential Redundancy Illustration 

 
Table 1 shows the truth table for Q outputs of non-scan 

DFFs FF4 and FF5 as a function of Q outputs of scan 
DFFs FF1, FF2 and FF3. 

 

Cycle n Cycle n+1 
QFF1 QFF2 QFF3 QFF4 QFF5 

0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 0 
0 1 1 0 1 
1 0 0 0 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

Table 1: Truth Table for Circuit for Figure 3 
To detect the stuck-at 1 (SA1) fault shown in Figure 3 

we need the output values of FF4 and FF5 (QFF4, QFF5) 
set to 1 and 0, respectively.  As shown in Table 1, (QFF4, 
QFF5) can never achieve the value set (1, 0). This SA1 
defect is a sequentially redundant fault. If FF4 and FF5 had 
been SDFFs, they could have been set to any of the four 
possible values during shift mode and detected the SA1 
fault. 

We define a sequentially redundant fault as a fault 
whose presence does not affect the behavior of the 
sequential circuit. Combinational redundant faults (which 
are automatically detected by the ATPG tool) are not 
included in our definition of sequentially redundant faults. 
Sequential and combinational redundant logic can be 
present in a design due to improper RTL coding style or 
ineffective optimization by the synthesis tool. Sometimes, 
they are deliberately intended to address timing issues. 
Sequentially redundant faults were found in our partial 
scan design and must be addressed if they are significant in 
number.  

Classical research work on identifying sequential 
redundancy has focused on logic optimization during 
synthesis. Sequential redundancy was detected in [15] by 
looking for don’t care conditions in state transition 
diagrams. In [16], a circuit was made feedback free by 
cutting at the feedback lines assuming they are fully 
controllable and observable. Test generation and fault 
simulation are then performed on this feedback free circuit. 
C-cycle redundancy was presented in [17]. In this work, an 
arbitrary set of inputs are provided to the circuit for c clock 
cycles (where c >= 0). The possible states of the circuit at 
the end of these c cycles are analyzed for both fault-free 
and faulty cases to determine sequential redundancy. If 
there exists a state Sf in the faulty circuit and a state S in 
the fault-free circuit such that the response of both the 
circuits to any input I is the same, then the fault is 
considered sequentially redundant. The circuit is then 
optimized by removing the region associated with that 
fault. It was shown that different benchmark circuits 
needed different values of c to detect all the redundant 
faults. 

We came up with a simple way of determining the 
possibility of sequentially redundant faults even before 
generating the partial-scan design. We first perform SAF 
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and Launch-off Capture (LOC) TDF ATPG on the full-
scan design. Sequentially redundant faults are uncovered 
during TDF ATPG. If we consider the sequentially 
redundant SA1 fault in Figure 3, the slow-to-fall fault on 
the same node will remain uncovered. This is because, 
during the launch of capture transition, all DFFs are in 
their functional mode and sequentially redundant faults are 
exposed. During SAF ATPG, the sequentially redundant 
faults are hidden since there is control and observe at every 
DFF. We determine sequentially redundant faults as those 
that are undetected during full-scan transition delay ATPG 
and detected during full-scan SAF ATPG. This technique 
does not involve using synthesis or test generation/fault 
simulation engines. Instead, it only relies on existing full-
scan ATPG results. 

Determining sequentially redundant faults beforehand, 
allows us to use that information in a Level2 check of our 
partial scan algorithm. This enables us to generate a partial 
scan netlist with a minimal amount of sequentially 
redundant faults. 

2.10. Other X-generation issues 

Even though we simulate the last few shift cycles, we 
found that there was still some X-generation. Since the 
value in the last DFF of a scan chain is known only after 
all shift cycles, the non-scan DFFs that lie in the fan-out of 
these DFFs propagate X’s during the capture phase. Figure 
4 shows two non-scan DFFs in the fan-out of last SDFF in 
a scan chain. These DFFs will capture X’s during the first 
capture cycle since the tool is unable to simulate shift 
values for the last DFF in a scan chain. To prevent this, we 
override the set/reset ports of all non-scan DFFs that are 
functionally adjacent to the last SDFF of each scan chain 
with the scan enable signal so that they are either 1 or 0 at 
the end of shift instead of X as described in [18]. If these 
non-scan DFFs are neither set nor reset DFFs, then we use 
a set or reset DFF to be able to initialize them during shift. 
Figure 5 shows an example of how a resettable non-scan 
DFF on the fan-out of last DFFs in scan chains is handled. 
A settable DFF would be handled in the same manner 
where shift enables the set, rather than the reset. This 
resolved the issue that was causing the X-generation. 

 

 
Figure 4: Non-scan DFFs in Fan-out of Last SDFF in 

Scan Chain  

 
Figure 5: Set/Reset Overriding for Non-scan DFF on 

Fan-out of Last DFF in Scan Chain 

3. Partial scan algorithm – Level2 checks 

Level2 checks are performed on non-scan candidate 
DFFs, i.e. DFFs that pass Level1 checks. Subsequent 
sections specify each of these checks. These checks were 
added for the computationally heavy GPU shader core 
which could not achieve the test coverage numbers of the 
CPU core with only the Level1 checks. These additional 
checks have not been evaluated on a CPU core. 

3.1. Overlap threshold check 

The overlap threshold check was added to control the 
number of non-scan DFFs that feed into a single 
combinational logic cloud. The GPU is a computationally 
intensive design, resulting in DFFs whose fan-in ranges 
from 1 to 18000 and fanout from 1 to 4000. We looked at 
modules that included a high level of computational logic 
and identified a common problem: high fan-in from non-
scan DFFs into combinational logic resulted in too many 
uncovered faults in that logic. This condition also 
exacerbated the propagation of faults captured by non-scan 
DFFs that needed to be propagated through that logic. 
With these observations, we concluded that in certain 
modules, when high fan-in includes many non-scan DFFs, 
this can reduce test coverage in the area significantly. We 
call this the “overlap threshold” problem. Figure 6 
illustrates this condition. 

In Figure 6, FF1, FF2, FF3, FF4, FF5, FF7 and FF8 are 
non-scan DFFs feeding-in to the combinational logic fan-
in to SDFF FF6. For faults captured by FF2 to propagate to 
FF6, FF1, FF3, FF4 and FF8 must be a 1 while DFFs FF5 
and FF7 must be a 0. Since non-scan DFFs are weak 
control points, it might be tough to satisfy all the 
constraints.  

To limit the number of non-scan DFFs feeding in to a 
combinational logic cloud, we limit the number of non-
scan DFFs that fan-in to an SDFF. In Figure 6, if we limit 
the maximum number of non-scan DFFs that fan-in to 
SDFF FF6 to some value n, it is guaranteed that the 
combinational logic cloud (AND gate + OR gate) shown in 
the figure will not have more than n non-scan DFFs 
feeding in. This is a simple yet effective way of 
implementing the overlap threshold check. In the next 
section, we will reveal how we addressed both sequential 
redundancy and the overlap threshold problem by using 
only the overlap threshold check. 
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Sequential redundancy was described in Section 2.9. In 
this section, we will talk about how the sequential 
redundancy check was implemented using the overlap 
threshold check. To create a simpler implementation, we 
chose an aggressive way to tackle sequential redundancy. 
Non-scan DFFs that illuminate sequential redundancy have 
common fan-in and fan-out DFFs. This is evident in Figure 
3. In the event of two or more non-scan candidate DFFs 
having common fan-in and fan-out DFFs, only one of 
those candidates will pass the sequential redundancy 
check. 
 

 
Figure 6: Non-scan DFFs Feeding into Combinational 

Logic 

3.2. Sequential redundancy check 
In Figure 7, only FF4 or FF5 will end up passing the 

check. Just because there are non-scan candidates that have 
common fan-in and fan-out DFFs does not mean there will 
be sequential redundancy. However, the simplified flow is 
more aggressive in replacing these DFFs with SDFFs. 
Figure 7 illustrates the parallels between sequential 
redundancy and the overlap threshold problem. 

In Figure 7, there are two non-scan DFF candidates 
FF3 and FF4 that need to be evaluated for sequential 
redundancy and the overlap threshold condition. The 
candidates have common fan-in DFFs:  FF1 and FF2, and 
common fan-out DFFs: FF5 and FF6. 

Hence, only one of them will end up passing the 
sequential redundancy check based on the order in which 
they are processed. If FF3 is processed before FF4, FF4 
will fail the sequential redundancy check. While checking 
for the overlap threshold condition, we consider the DFFs 
in the fan-out of the candidate and ensure that the number 
of non-scan DFFs that fan-in is below the set threshold. 

When FF3 is processed, we look at the number of non-
scan DFFs that fan-in to DFFs FF5 and FF6; the same is 
true for FF4. Now, if we set the overlap threshold limit to 
one (i.e. only one non-scan DFF can fan-in to a 
combinational logic cloud), FF5 and FF6 will have only 

one non-scan DFF in their fan-in. Assuming FF3 is 
processed before FF4, FF3 will end up passing the overlap 
threshold check and FF4 will not. Thus, the overlap 
threshold limit of one meets the sequential redundancy 
requirements. 

Implementing an overlap threshold limit of 1 is very 
aggressive and we ended up losing a considerable number 
of non-scan DFFs. Our non-scan DFF count dropped from 
~30% to ~20% after adding this check. But by losing only 
a third of the non-scan DFFs, we regained two thirds of the 
lost SAF coverage.  

 

 
Figure 7: Parallels between Sequential Redundancy 

and Overlap Threshold Conditions 
The overlap threshold check enables a lot of flexibility. 

We can set the overlap threshold limit to one to push the 
coverage as high as possible. An overlap threshold limit of 
one is the most conservative value: it completely gets rid 
of sequential redundancy and the overlap threshold 
problem. However, the threshold can be varied anywhere 
from one to the maximum fan-in minus one. With higher 
threshold values, we can get a higher non-scan DFF count 
usually at the cost of lower coverage and/or a higher 
pattern count due to an increase in sequential redundancy 
and the overlap threshold problem. However, as in LOC 
transition delay testing, one could argue that the lost 
coverage is for faults that can never occur during 
functional operation. 

The overlap threshold step was not required for CPU to 
meet test coverage requirements. 

3.3. Identification of problematic DFFs 

After addressing the overlap threshold and sequential 
redundancy problems, we still saw around 0.1% lower test 
coverage as compared to the full scan design. The non-
scan DFFs that affected these faults, either in the observe 
or control paths, were collected. We refer to these non-
scan DFFs as “problematic” DFFs. We associated a weight 
with each problematic DFF. Weight indicates the number 
of uncovered faults affected (on a control or observe path) 
by the corresponding problematic DFF. So, the higher the 
weight, the more problematic the DFF is with regard to 
affecting test coverage. We then ranked these problematic 
DFFs in decreasing weight order to identify the worst 
ones.  
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We identified the below properties of the problematic 
DFFs: 
i) Many were high fan-in/fan-out DFFs. High fan-

in/fan-out DFFs affect more logic hence can be 
problematic. Based on this, we adjusted the 
maximum fan-in threshold to 120 and maximum 
fan-out threshold to 100 on the GPU shader core. 
Note that these thresholds have nothing to do with 
overlap threshold. These are the thresholds 
described in Section 2.8.  

ii) There were low fan-in/fan-out problematic DFFs. 
These DFFs were involved in arithmetic intensive 
logic and the combinational logic depth between 
these DFFs and the SDFFs in their fan-out was 
high.  

There are two ways to address the low fan-in/fan-out 
problematic DFFs problem: 
i) We select the problematic DFFs whose weight is 

above a certain value and exclude them while 
processing non-scan DFF candidates. This is a 
more accurate approach with some iterative work 
involved. We call this the “semi-automatic” way 
of identifying problematic DFFs. For the GPU 
shader core, we selected 100 as the cut-off 
weight. So, any problematic DFF whose weight 
was above or equal to 100 was excluded and 
made SDFF. 

ii) We check if a candidate is involved in arithmetic 
logic and exclude it if none of its fan-out DFFs 
have a fan-in below a certain threshold. To check 
if a candidate is involved in arithmetic logic, we 
look for adder cells in the fan-in/fan-out. By 
having at least one fan-out DFF with low fan-in, 
the non-scan DFF has at least one easy path to 
propagate the faults captured. Here, we assume 
that a low fan-in DFF has smaller combinational 
logic in its fan-in. This is an automatic but less 
accurate technique than i). 

3.4. Ordering non-scan candidate DFFs 

In three of our checks: overlap threshold check, 
sequential redundancy check and non-scan to non-scan 
connectivity check, the order in which we process the non-
scan candidate DFFs has a significant impact on the non-
scan DFF count and ATPG results. Non-scan candidates 
that are processed early and pass all checks jeopardize the 
chances of other candidate DFFs that overlap with them. 
Besides, it is guaranteed that the non-scan candidates in 
their fan-in and fan-out will be made SDFFs. This can be 
disastrous to non-scan DFF count if high fan-in/fan-out 
DFFs are processed early on. 

We process non-scan candidate DFFs in order of 
increasing fan-in. All candidates with a given fan-in are 
processed in order of increasing fan-out. We gave 
preference to low fan-in over low fan-out DFFs because it 

is easier to set desired values in low fan-in DFFs due to 
smaller combinational logic in the fan-in cone.  

Figure 8 through Figure 10 show our partial scan 
algorithm. Note that the flow charts show the various 
checks in the order in which they are implemented. Non-
scan to non-scan paths check which is a Level1 check is 
moved to the end of the flow. 
 

 
Figure 8: Level1 Checks (except non-scan to non-scan 

connectivity check) 
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4. Results and discussion 

All ATPG results shown in this section are with 
compression enabled. 

The same compression hardware configuration is used 
for both full scan and partial scan. Since the number of 
scan chains is fixed, there are fewer DFFs per scan chain 
in partial scan when compared to full-scan. This means 
fewer shift cycles per pattern. Hence, to make a fair 
comparison with regard to pattern count, we introduce the 
parameter “pattern volume” which is defined below: 

Pattern volume = (Pattern count) x (Number of DFFs 
in longest scan chain) 

 

 
 
 
 

 
Figure 10: Level2 Checks and Non-scan to Non-scan 

Connectivity Check 

4.1. CPU Core results 

Four different experiments were run on the CPU core with 
different non-scan DFF percentages. The percentage was 
varied by changing the fan-in and fan-out variable during 
non-scan DFF selection. The CPU core contains 
approximately 250K DFFs and only uses Level1 checks. 
There can be multiple CPU cores in a microprocessor 
which multiplies the PPA advantages of partial scan. 
Figure 11 shows the CPU core SAF test coverage and 
pattern count/volume.  

The four different netlists use 0% (full scan), 9%, 15% 
and 35% non-scan DFFs. Full scan achieved 99.79% test 
coverage with 7164 patterns. Note that by final release of 
Arm® IP, the stuck-at TC is required to meet 99.9% or a 
path on how to get to 99.9% stuck-at TC must be 
described. When the test coverage data was collected, this 
design was early in schedule, so this work was not 
complete. The SAF TC did drop slightly for the 9% 
(99.74%) and 13% (99.72%) netlists. The 35% non-scan 
netlist did achieve over 99% SAF test coverage, as well. 
The pattern volume for the 9%, 13% and 35% partial scan 
netlists, when compared to the full scan netlist was 32%, 
62% and 143% larger, respectively.  
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 Figure 11: CPU Core SAF TC 
Figure 12 shows the TDF TC and pattern 

count/volume. As can be seen, the LOC transition delay 
coverage is very high on the CPU core with full scan 
(97.49%). The test coverage remains high for most of the 
netlists and the 35% non-scan netlist still achieves greater 
than 90% test coverage. 
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Figure 12: CPU Core TDF TC 

Figure 9: Elimination of problematic DFFs
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The 9% and 15% partial scan netlist test coverages are 
respectively 97.56% and 96.79%. Interestingly, the 9% 
partial scan netlist achieves slightly higher test coverage 
than the full scan netlist. The reason behind this was not 
evaluated. The 35% partial scan netlist only achieves 
transition delay TC of 90.25% and may not be a good 
candidate for manufacturing. The pattern volume increases 
by 28% and 69% for the 9% and 15% netlists respectively.  
The test coverage loss for both SAF and TDF on the 9% 
and 15% partial scan netlists, though minimal, is still 
coverage loss. It must be considered what end markets 
may still be targeted for SoCs using the partial scan 
methodology. For instance, automotive would likely not be 
a good choice.  

The question we then asked is whether the PPA 
improvement is worth the extra test time. We evaluated the 
PPA of this core with a 19% non-scan netlist.  The full 
flow comprises synthesis � placement � clock tree 
synthesis (CTS) � postCTS hold � route � postroute � 
postroute hold. Table 2 shows the improvements shown in 
the partial scan netlist after the placement step. 

. 

Density 
Full design reg2cg reg2reg Difference

partial scan 4.71% 4.71% 0.00% -3.75%

Full design reg2cg reg2reg
partial scan -55.30% -34.32% -62.76%

Frequency Difference

TNS Difference

Placement Analysis - typical

 
Table 2: CPU Core Post-Route Timing Analysis 

There was an increase of 4.71% for frequency which 
came from the reg2cg (register to clock gate) paths, not the 
reg2reg (register to register) paths. The TNS (total 
negative slack) is the sum of all negative slacks. Though 
frequency did not improve for reg2reg, the number of 
paths with negative slack (paths missing the targeted 
frequency) vastly improved. TNS improved for all paths 
combined by 55% and the density of the circuit improved 
by 3.75%. When the density is reduced, it means that there 
is more room for routing, the frequency may be higher, 
power may be improved, and/or the design floorplan may 
be able to be reduced. These all contribute to helping the 
design reach its target frequency and routing more easily 

Table 3 shows the post-CTS hold analysis. In this run, 
the clock tree has been added and hold time analysis has 
been done. 
 

Density
Full design reg2cg reg2reg Difference

partial scan 0.00% 0.00% -0.29% -2.67%

Full design reg2cg reg2reg
partial scan -15.45% -7.67% -15.63%

TNS Difference

Frequency Difference
PostCTS  Hold Analysis

 
Table 3: CPU Core postCTS/Hold Analysis 

Now the frequency between the two netlists is very 
close. However, the TNS for all paths combined improves 
by 15.45% on the partial scan netlist and this is considered 
a more important metric since the tools have less paths to 
work on and so don’t have to work as hard. The density is 
better by 2.67%. The reg2reg paths have a slightly slower 
frequency on the partial scan netlist (.008 GHz). However, 
looking at the total picture, it is believed that the partial 
scan netlist is better than the full scan netlist with regard to 
meeting the PPA goals. But is it enough to make it 
worthwhile doing partial scan on this type of design? 

We then evaluated dynamic power with our maximum 
power (maxpwr) test. Table 4 shows that indeed the power 
during functional mode did reduce on the partial scan 
netlist by 2.41%, which is significant. The clock power 
increased. In the past this has been caused by the floorplan 
not being reduced for the smaller area of the partial scan 
netlist, which results in the clock signals traveling further. 

 

Difference Total DFF logic clock
partial scan -3.38% -3.56% -3.82% 2.68%

Difference Total DFF logic clock
partial scan -2.45% -2.00% -4.48% 2.77%

Dynamic power

Static power
Post-CTS Power Analysis maxpwr - Partial Scan Difference

 
Table 4: CPU Core Maxpwr Results 

Though we did not shrink the floorplan, we did analyze 
how much the area reduced for various instances. Table 5 
shows the difference in total instance area as well as a 
breakdown of several types of instances with regard to area 
or count. If this were resolved, then the total power savings 
would increase. 

Instance Difference
Total Instances -0.86%
Buffer Count -7.20%
Inverter Count 0.82%
DFF Area -4.75%
Total Standard Cell A -2.54%

PostCTS Hold Instance Area

 
Table 5: Partial Scan Instance Area/Count Differences 
The two largest reductions in the design were buffer count 
and flop area. Buffer count indicates that less hold fixing 
was needed and so less buffers were needed. Though 
inverter count is slightly higher, the reduction of buffers 
far surpasses the increase in inverters. The DFF area 
reduction has a direct relation to the number of DFFs that 
remained nonscan. 

4.2.  GPU shader Core results 
GPU shader cores are larger than CPU cores and could 

potentially show a bigger PPA advantage when utilizing 
partial scan. There can be multiple shader cores in a GPU, 
multiplying the benefits of partial scan. This GPU shader 
core contains over 500k DFFs. Initially we used just the 
Level1 checks and the ATPG results were below 
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expectations. We evaluated the reasons behind this and 
created the Level2 checks. 

Table 6 shows the GPU shader core ATPG results after 
adding the Level2 checks. We first performed full scan 
SAF and TDF ATPG and use these results as the 
benchmark. The first partial scan netlist (referred to as 
original partial scan netlist) was generated without overlap 
threshold/sequential redundancy/ problematic DFF 
identification checks. The resulting netlist is 30% non-
scan. The SAF and TDF test coverage (TC) drop by 0.74% 
and 1.62% respectively with regard to full scan. Pattern 
volume increases by 37% and 41% for SAF and TDF 
ATPG respectively. 

 Next, we determine the modules that have sequential 
redundancy and overlap threshold problems and apply 
overlap threshold and sequential redundancy checks for 
these modules. This results in a 20% non-scan netlist. We 
lose 10% non-scan DFFs by adding these checks but we 
gain 0.53% stuck-at TC and 1.14% transition delay TC 
compared to the original partial scan netlist. Also, pattern 
volume drops by 13% and 5.5% for stuck-at and transition 
delay ATPG respectively compared to the original partial 
scan netlist. While we lose a third of the non-scan DFFs, 
we regain two-thirds of the lost stuck-at TC. When 
compared to full scan, stuck-at TC is 0.21% less and 
pattern volume increases by 19%. Transition delay TC is 
0.48% less and pattern volume is 33% more. 

To improve the TC, we now perform problematic DFF 
identification on top of the existing checks. For the semi-
automatic problematic DFF identification, using the partial 
scan netlist with only overlap threshold/sequential 
redundancy checks, we gained 0.14% stuck-at TC and 
0.42% transition delay TC. With 20% non-scan DFFs, we 
are within 0.1% of full scan TC for both stuck-at and 
transition delay. The pattern volume increased by 8% for 
stuck-at and 24% for transition delay ATPG when 
compared to the pattern volumes for the full scan netlist. 

Next, we worked to reproduce the same results, seen 
with the semi-automatic problematic DFF identification, 
with automated problematic DFF identification. The 
results for both ways of identifying problematic DFFs are 
very close. When compared to the semi-automatic 
technique, the automatic technique showed a stuck-at TC 
loss of 0.03% and a transition delay TC loss of 0.26%. The 
pattern volume for TDF showed an 11% increase while 
that for SAF remained almost unchanged. 

PPA analysis was performed for the final partial scan 
netlist (using semi-automatic problematic non-scan DFF 
identification). Table 7 through Table 10 show the results. 
The numbers shown in these tables are percentage change 
in partial scan netlist with respect to the full-scan netlist. 
Standard cell area dropped by 0.92% and this is reflected 
on the total cell area. There is no change in RAM area 
which is expected. No work was done to reduce the 
floorplan, so there is no change in total die area. Physical 
utilization of the standard cells has dropped by 0.9%. We 
learned from our standard cell team that due to their 
limited usage, the non-scan DFF standard cells are not 
optimized to the same extent as their SDFF counterparts. 

 

Difference w.r.t. full-scan
Standard cell area -0.92%

Total Area -0.66%
Density -0.90%

Area/Density results

 
Table 7: GPU Shader Core Area/Density results 
Our vector-less power analysis results showed that 

leakage power dropped by 0.5% while dynamic power 
dropped by 1.3%.  Dynamic power simulations with 
vectors were not run on this design.  

 

 
 

Netlist 

Non-scan 
DFF % 

w.r.t. total 
DFFs (%) 

Stuck-at ATPG Transition Delay ATPG 
Test 

coverage 
(%) 

Pattern 
Count 

Pattern 
volume 

(K) 

Test 
coverage 

(%) 

Pattern 
count 

Pattern 
volume 

(K) 
Full scan  99.75 11573 11631 97.46 27200 27336 

Partial scan w/o overlap 
threshold/sequential redundancy 

and problematic DFF checks 

29.87 99.01 22396 15946 95.84 54243 38622 

Partial scan w/ overlap 
threshold/sequential redundancy 

check 

19.98 99.54 17194 13910 96.98 45101 36487 
 

Partial scan w/ 
overlap threshold/sequential 

redundancy and semi-automatic 
problematic DFF check 

20.36 99.68 15667 12612 97.40 42167 33945 

Final partial scan w/ 
overlap threshold/sequential 
redundancy and automatic 

problematic DFF check 

20.34 99.65 16077 12959 97.14 37250 30024 

Table 6: ATPG Results for GPU Shader Block 
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Difference w.r.t. full-scan
Dynamic power -1.30%

Static power -0.50%

Power analysis results

 
Table 8: GPU Shader Core Power analysis results 
Frequency results are shown in Table 9. Register to 

register (reg2reg) paths can now be clocked at a frequency 
that is 2.09% higher with respect to full-scan. Maximum 
frequency for input to register (in2reg) and register to 
output (reg2out) paths increased by 1.45%.  

As seen with the CPU core, the biggest benefit of 
partial scan is reflected in the total negative slack (TNS) 
results shown in Table 10. 

 

Difference w.r.t. full-scan
regreg paths 2.09%

in2reg/reg2out paths 1.45%

Frequency results

 
Table 9: GPU Shader Core Frequency results 

On reg2reg paths, TNS improved by 77.5%. On in2reg 
paths, TNS improved by 33.33%.  There is no change in 
TNS for reg2out paths. 

 

Difference w.r.t. full-scan
regreg paths -77.50%
in2reg paths -33.33%

reg2out paths 0.00%

Hold TNS results

 
Table 10: GPU Shader Core TNS results  

5. Conclusion and future work 

We presented our partial scan algorithm as a complex 
amalgamation of several checks. We introduced a new 
class of faults that manifest themselves during partial scan 
SAF ATPG and presented a way, not only to determine 
them, but also eliminate/contain them. We presented two 
different ways to identify problematic non-scan DFFs.  

We showed that different types of logic need different 
considerations when choosing non-scan DFFs and that 
there are benefits worth extra exploration in this area.  

One way to extend this work would be to analyze the 
presence of overlap threshold problem in an automated 
way. We determined overlap threshold manually by 
debugging the uncovered faults in the ATPG tool. Another 
area for future work would be to involve test point analysis 
to determine locations of problematic DFFs. Partial scan 
benefits should also be explored on a near-threshold 
design. 
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