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ABSTRACT

For future autonomous vehicles, the system development life cycle

must keep up with the rapid rate of innovation and changing needs

of the market.Waterfall is too slow to react to such changes, and

therefore, there is a growing emphasis to adopt Agile development

concepts in the automotive industry. Ensuring requirements trace-

ability, and thus proving functional safety, is a serious challenge

in this direction. Modern cars are complex cyber-physical systems

and are traditionally designed using a set of disjoint tools, which

adds to the challenge. In this paper, we point out that multi-domain

coupling and design automation using correct-by-design approaches

can lead to safe designs even in an Agile environment. In this con-

text, we study current industry trends. We further outline the chal-

lenges involved in multi-domain coupling and demonstrate using a

state-of-the-art approach how these challenges can be addressed

by exploiting domain-specific knowledge.
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physical systems; • Software and its engineering → Devel-

opment frameworks and environments;
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1 INTRODUCTION

Traditionally, automotive systems are developed according to the

waterfall process model [23], often represented by one big, or multi-

ple big staggered, V-diagrams. In this model, development proceeds

in a sequence of phases (requirements, analysis, design, implemen-

tation, testing) and iterations are strongly discouraged. Thus, the

requirements defined at the beginning of the development life cycle

must remain unchanged throughout. This is not sustainable for the

automotive industry in the current scenario [6].

More than 90% of the innovations in modern cars come from elec-

tronics and software. And the current rate, at which technology ad-

vances in these domains, easily outpaces the manufacturing cycle of

a car. With the advent of electric vehicles and even more so, with au-

tonomous driving, there is a growing urge to add the safest and the

latest technologies (available in the market) into a newly launched

car. Moreover, the preferences and needs of the buyers are also

changing rapidly. With waterfall model, it is very time-consuming

and expensive to incorporate such changes. Through this paper,

we would like to draw attention to Agile development process and

recommend its adoption in the automotive industry [13].

One important challenge towards implementing Agile processes

is the preservation of functional safety. For autonomous vehicles,

safety is of utmost importance from manufacturers’ perspective. In

case of failures (or accidents), the responsibility mostly lies with

them. Typically, automotive software is developed according to

ISO 26262 [1], the functional safety standard for road vehicles. ISO

26262 emphasizes on traceability of requirements throughout de-

sign, implementation and test phases. This essentially means that

any artifact produced during the development process must be

traced back to the requirements. However, in an Agile environ-

ment, requirements and designs evolve continuously and often

asynchronously. Thus, traceability management is an important

issue which needs to be addressed.

A modern car is a complex cyber-physical system (CPS) com-

prising several physical processes being controlled by a software

running on a distributed electrical and electronics (E/E) platform.

This platform consists of more than 100 electrical control units

(ECUs) connected over a network of communication buses and

gateways. Design of these systems involves a set of tools provided

by different suppliers [29]. The design of control algorithms (or

functions) and the subsequent code generation rely on tools like



Figure 1: Digital continuity between different levels of abstraction in EDS design [17].

MATLAB/Simulink. Different tools may be used to design and con-

figure different bus systems (CAN, FlexRay, Ethernet). A separate

tool is employed to integrate the generated binaries from MAT-

LAB/Simulink with network schedules, operating systems and dri-

vers for ECUs. These tools are mostly disjoint, and thus, it is chal-

lenging to maintain requirements traceability across these tools.

We propose multi-domain coupling and design automation to

maintain traceability which, together with correct-by-design ap-

proaches, can guarantee system safety. Ideally, tools from different

design domains should be integrated together and they should

co-synthesize different aspects of the overall system like control

algorithms, software, hardware, communication and wiring [12].

Towards an integrated framework, there have been efforts from

both industry and academia.

In this context, we study an industrial-strength tool suite called

Capital [16], provided by Mentor, a Siemens business, recently

acquired by Siemens Industry Software (SISW). Capital integrates

the physical topology with software and hardware architectures

for correct-by-construction electrical harness design. It also uses

design automation tools to achieve requirements traceability and

to facilitate easy and faster design adaptations.

In the academia, there has been a strong collaboration between

control and embedded systems communities in recent years [22].

New techniques are developed to design controllers taking into

consideration the details of the underlying platform [3, 9, 10].

Similarly, existing platform design methods are updated based on

control-theoretic properties [8, 25, 30]. In addition, works address-

ing the problem of control-platform co-design are also gaining

grounds [2, 24, 26].

In this paper, we review a state-of-the-art control-platform co-

design approach [21] and discuss how the challenges of multi-

domain coupling can be addressed by exploiting control-theoretic

and platform-specific knowledge. We also study an integrated

toolchain called Co-Flex [19] which applies the co-design approach

in automotive software development. Furthermore, we describe our

efforts to integrate Co-Flex with Capital. Developers can model

specifications in Capital which can be imported into Co-Flex and

then the results from Co-Flex can be communicated back to Capi-

tal. This will ensure data coherency between Co-Flex, Capital, and

other downstream tools fed with specifications from Capital.

The rest of the paper is organized as follows. Sec. 2 discusses

the current industry trends towards digital continuity and design

automation using example of an automotive tool suite from SISW.

Sec. 3 mentions the need for and the challenges towards correct-by-

design approaches for automotive system development. It further

outlines how a state-of-the-art control-platform co-design tech-

nique for FlexRay-based systems can address the challenges. Sec. 4

states the importance of an integrated framework to maintain trace-

ability and explains one such framework which employs the co-

design technique of Sec. 3. Sec. 5 shows how the framework can

be used to synthesize software for an automotive case study. Sec. 6

provides concluding remarks.

2 CURRENT INDUSTRY TRENDS

As previously mentioned, automotive systems are developed in

several phases and involve different design domains. Traditionally,

the interactions between the phases and the design domains mostly

happen via plain texts, excel sheets or UML diagrams. This requires

manual interventionwhichmakes the whole process slow and error-

prone. Towards going Agile, the automotive industry is trying to get

rid of these manual processes and adopt a more integrated design

approach via digital continuity and design automation [11].

In this context, we study the Capital tool suite from SISW, which

aids in automotive system development. This tool suite applies

a data-driven approach to design electrical distribution systems

(EDSs). It offers a unified framework to specify functional and

architectural models and the relationship between the two. Using

in-built or customized rules, it is possible to verify the validity

of such models and therefore generate correct-by-construction

designs. Information from these models can then be used to design

the EDS and also generate the associated ordering information

using rule-driven design automation tool. These models can also

be exported into machine readable XML files which can be used by

other tools for hardware, software and network designs.



In Agile development, a development cycle after a change in

specification must be fast. It typically involves validation of require-

ments by assessing the generated design. In Capital, this is achieved

using design automation [15]. A change in functional model can

automatically affect a change in the corresponding architectural

model (if required). Moreover, it is possible to explore different im-

plementation options in negligible time and evaluate them based on

different metrics like weight, cost, CPU load, PCB area and volume.

For example, if two software components needs to communicate

via a signal over FlexRay, then the ECUs on which they are mapped

must be connected by a FlexRay bus. However, we can also evaluate

the impact of mapping both software components on the same ECU,

e.g., CPU load may increase beyond acceptable limits.

Capital also manages traceability between requirements and

their implementations to ensure safe design. Each component in

functional and architecture models is described by its attributes,

thus representing a data object. And the whole system contains

hundreds of thousands data artifacts which are constantly chang-

ing. Design automation plays a key role in capturing relationships

between objects in such a complex and hierarchical data model

and maintaining data coherency. These data are fed to the down-

stream domains such as electrical, hardware, network design and

embedded software thus ensuring digital continuity [15], as de-

picted in Fig. 1. Capital allows comprehensive system modeling, as

well as network and EDS designs in a single framework [18]. It can

also export models as ARXML which can be used for ECU designs.

Digital continuity together with such a comprehensive framework

promotes true multi-domain coupling thus enabling traceability.

Furthermore, Capital generates correct-by-construction designs

meeting the requirements specified in the functional model, thus

eliminating manual design errors.

It can be inferred from our study of Capital tool suite that auto-

motive industry realizes the importance of Agile development and

slowly moving towards it.

3 CORRECT-BY-DESIGN APPROACHES
FOR AUTOMOTIVE CPS

Typically, in a CPS, there is an interplay between the algorithm con-

trolling the physical process and its implementation on a given em-

bedded platform [5]. However, the state-of-practice is to design the

controllers and the embedded platform in their isolated design tra-

jectories followed by a long integration and debugging phase [14].

Controllers are tuned in MATLAB/Simulink using closed-loop sim-

ulation of the plant model and the control law. The design objective

is to meet the requirement on quality-of-control (QoC). The con-

troller is then provided as a blackbox to embedded systems engineer

who integrates this into the software. An automotive software is

typically partitioned into tasks (or runnables) mapped on a dis-

tribued E/E platform. Now, platform design involves scheduling

these tasks onto ECUs and the data transmissions between them as

messages over the communication buses. There exists a set of tools

for generating different parts of platform configuration.

This approach is not correct-by-design as there is no systematic

interface between the controller and the platform designs. Con-

trollers are designed with certain assumptions which may be in-

feasible. These assumptions include negligible sensor-to-actuator

delay, zero jitter or continuous range for sampling periods. It is also

difficult for embedded systems engineer to evaluate the impact of

task and message schedules on QoC. Thus, the synthesized auto-

motive system needs to be tested extensively to guarantee safety.

If the test fails then the controllers and platform parameters are

redesigned may be with more pessimistic assumptions. However,

pessimism can lead to resource inefficiency which is also not desir-

able for cost-sensitive automotive systems. Thus, there is a need for

correct-by-design approaches which co-synthesize controllers and

platform parameters in a holistic optimization framework. How-

ever, there are several challenges towards this integrated design

approach for industrial-sized systems [4, 20].

First, controller and platform designs consider different objec-

tives. A controller is tuned for higher QoCwhile the platform design

aims at making effective use of resources (e.g., computation and

communication). Typically, a controller implemented using more

resources can give better QoC. Thus, there exists a trade-off be-

tween the QoC and the resource usage and it might be possible to

explore this trade-off.

Second, controller and platform design problems are very dif-

ferent in their formulations. Controller design involves manual or

automatic tuning of design parameters (like system poles) according

to certain heuristics. On the other hand, task and message schedul-

ing can be formulated as a constrained programming (CP) model

which can be solved using standard solvers like CPLEX and Gurobi.

Moreover, controllers for different applications are designed sepa-

rately while the platform design must consider all the applications

mapped on a shared platform. Considering that these two problems

have different characteristics, it is non-trivial to integrate them.

Third, the co-design problem consists of large number of dimen-

sions and can become intractable for industrial-sized systems. For

each application, tens of parameters need to be identified. For a

realistic system, there may be hundreds of unknowns. Consider-

ing that the holistic problem is non-convex and non-linear, it is

challenging to handle such a huge design space.

In recent years, control-platform co-design has gained impor-

tance as a research topic. There have been works addressing in-

tegrated modeling and design of automotive CPSs for different

platform architectures. In this section, we will review one such

technique that synthesizes controllers and the associated task and

message schedules together, in a correct-by-design manner, for

FlexRay-based automotive systems [21].

3.1 Control-platform co-design for
FlexRay-based automotive systems

Typically, automotive E/E architectures comprise different bus clus-

ters. Each cluster consists of several ECUs connected over a commu-

nication bus. A FlexRay cluster running number of safety-critical

control applications is considered as the problem setting. Each ap-

plication is composed of one or more software tasks. Distributed

implementation of application is also possible. And in such cases,

data is transmitted over the static segment of FlexRay. FlexRay

static segment offers time-division multiple access (TDMA-) based

communication which is appropriate for safety-critical applications

due to its inherent determinism.

For the above setting, we study a state-of-the-art control-platform

co-design approach. This approach formulates a holistic problem

for controller and platform designs from joint specifications. It con-

siders details of the plant models and QoC requirements on the



control side and the architectural specifications on the platform

side. A novel hybrid optimization technique, exploiting control-

theoretic and platform-specific properties, is applied to solve the

problem. Here, we will briefly outline how this technique addresses

the aforementioned challenges.

First, a multi-objective optimization problem is formulatedwhere

QoCs of all applications and resource usage are considered simulta-

neously. Resource usage U is defined as the percentage of TDMA

slots allocated to the control applications in the FlexRay static seg-

ment. MinimizingU would imply that slots are not conservatively

reserved for control applications and unused slots can be used by

other real-time data, thus improving resource efficiency. On the

control side, each application can be designed based on different

QoC metrics (like settling time or quadratic cost) as per require-

ments. It must be noted here that QoCs of different applications

can be interdependent as these applications share a limited plat-

form resource. A single objective determining the average control

performance J of all applications must be formulated to make the

problem tractable. Thus, the individual QoCs are first normalized

with respect to their required values. And J is given by the weighted
sum of the normalized QoCs. Now, for these objectives of U and J ,
it is desirable to obtain a Pareto front depicting the trade-off.

Second, the problems of controller design and scheduling can be

integrated by correctly modeling the interplay between them. The

sampling period and the delay with which a controller is designed

depend on the task and message schedules and vice-versa. Proper-

ties of control theory and FlexRay protocol can be exploited here to

formulate a holistic problem efficiently. According to control the-

ory, the impact of delay on the QoC can be mostly compensated by

appropriately placing the system poles. Thus, delay can be assumed

to be a linear function of the sampling period. In FlexRay [7], mes-

sage cycle repetition rates can take only limited number of values.

The sampling period of a controller can be assumed to be equal to

the period with which the corresponding tasks and messages are

scheduled. Thus, sampling periods are also restricted to a prescribed

set of values. Exploiting these properties, optimal controllers can

be predesigned at all possible values of sampling period for each

application. The controller design can therefore be integrated into

the co-design problem where the solver needs to select one of these

predesigned controllers. In addition, application-level constraints

(like data dependency, sampling period and delay) and implemen-

tation rules (like non-conflicting resource allocations and finite

resource capacities) are considered in the CP problem model.

Third, the constrained multi-objective optimization considered

here cannot be solved efficiently by existing solvers. A combination

of iterative search and integer linear programming (ILP) is applied

to solve the problem. Note that only a finite set of values are possible

for resource usage U according to its definition. These values are

traversed in ascending order. For a given value ofU , an optimization

problem is formulated with average control performance J as the
only objective and an equality constraint on U . To ensure Pareto-

optimality, an additional constraint is added, i.e., the J of the current
solution must be the best among all the solutions obtained so far.

This single-objective optimization problem is solved in two nested

layers to improve scalability, as illustrated in Fig. 2. On the outer

layer, an ILP is solved with only sampling periods as variables and

J as the objective such that the equality constraint on U and the

Pareto criterion are satisfied. Inner layer solves a CP problem to

Get the next feasible 
value of U

If all values of resource 
usage (U) explored?

YES

YES

Optimize average 
control performance (J)

IF feasible, not 
dominated

Find 
Feasible Schedules

IF feasible

Valid Pareto Point
Add to Pareto Front

NO

NO

YES

Not Valid Pareto Point

NO

Return Pareto Front

Inner Layer 

Outer Layer

Figure 2: A customized hybrid optimization technique for

control-platform co-design.

determine a valid set of task and message schedules satisfying the

application-level and implementation-specific constraints. If a valid

configuration is found then it represents a Pareto point. Otherwise,

the next best set of sampling periods (still satisfying the Pareto

criterion) is evaluated for feasibility.

Note that with control-platform co-design, we can do away with

the long debugging and integration phase of the traditional ap-

proach. This facilitates Agile development. A change in specification

at any stage would mean re-calculation of the parameters by just

clicking a button. In traditional practice, adding a new application

would mean keeping the current configuration intact and incremen-

tally designing the new application. This is not cost-optimal when

current configuration prevents adding the new application, while

a complete redesign can accommodate all applications without

adding any new device.

4 INTEGRATED TOOL SUPPORT FOR
DESIGN AUTOMATION

It is established in the last section that we can compute control

and platform parameters for FlexRay-based systems in a correct-

by-design manner. To apply the co-design technique for industrial-

sized systems, it must be integrated with the commercial off-the-

shelf (COTS) tools used in the automotive industry. However, this

is not trivial as the tools used for controller and platform designs

are separate and are products of different suppliers. These tools are

developed based on years of domain-specific experience. It is chal-

lenging for one supplier to build a holistic framework and maintain

the same quality across all domains. The key to go Agile in the real

sense is to bring the tool suppliers together for an integrated frame-

work. And it must be possible to maintain traceability automatically

across all the tools involved in the development process.



In this context, we study an integrated toolchain [19] employing

the control-platform co-design approach discussed in Sec. 3.1. Here,

we call this toolchain as Co-Flex. Co-Flex is based on COTS tools for

the design and development of FlexRay-based distributed automo-

tive CPS. These COTS tools are MATLAB/Simulink for controller

design and SIMTOOLS/SIMTARGET [27, 28] toolboxes (by Elektro-

bit) for platform configuration and software implementation.

Specification

Design 
Parameters

Implementation 
Model

Code and 
BInaries

Design

Implementation

Code 
Generation

• Simulink
• Platform 

Design tools

• Simulink
• SIMTOOLS
• SIMTARGET

• RTW
• SIMTARGET

Conventional Flow Integrated Flow

Tools

Spec. Extract

App. 
Modeling

• Design

Tools

• Parse

• Configure

• Dissemble
• Simulink
• SIMTARGET

Co-Design

Manual Automatic

Writeback

• Template 
toolbox
• SIMTOOLS

• RTW
• SIMTARGET

Specification

Specification 
Model

Implementation 
Model

Code and 
BInaries

Specification 
Modeling

Design and 
Implementation

Code 
Generation

Figure 3: Integrated design flow and the tool support.

With the COTS tools, embedded control software is developed in

three distinct phases as illustrated in Fig. 3. (i) In the design phase,

the controllers and platform parameters are calculated based on

specification. (ii) In the software implementation phase, the appli-

cation software is modeled and configured using the parameters

obtained from the design phase. (iii) In the code generation phase,

codes and binary files are generated from the models which are

then deployed on the hardware.

The available tools aid in certain steps of the whole flow as fol-

lows: (i) SIMTOOLS/SIMTARGET provide specific blocksets which

enable modeling of FlexRay network and ECU, configuration of

tasks and frames and their schedules, and definition of input and

output interfaces. (ii) the Simulink RealtimeWorkshop and SIMTAR-

GET can be used to generate C-code and binary files. Nevertheless,

the design flow also involves manual processes which are tedious,

time-consuming and error prone, e.g., formulation of the design

problem, modeling of the application tasks and configuration of

control and platform parameters.

Towards design automation, Co-Flex offers (i) a template tool-

box that can be conveniently used to model automotive control

applications through easy parametrization, and (ii) some specific

tools to automate the flow between different phases, e.g., specifica-

tion extraction from partially specified models, re-configuration of

the control models with the obtained values of control parameters,

and synthesizing the implementation model with correct platform

parameters, i.e., task and message schedules.

Here, we study a customized automated tool flow as shown in

Fig. 3. It starts with a specification modeling phase where the tem-

plate blocks can be used to develop a specification model. This

model has details of controlled plant dynamics, E/E architecture

(ECU and network configuration), software details (tasks and mes-

sages) and QoC requirements. Based on the specification model,

the design and implementation is carried out in 4 stages. First, a

Parse tool is used to automatically extract the specifications from

the model and store it in a systematic way. Second, a Design tool is

invoked to co-design control and platform parameters according

to the technique in Section 3.1 and generates a Pareto front. The

systems engineer can select a Pareto point based on extensibility

requirements. Third, the parameter values corresponding to the

chosen Pareto point is configured on to the specification model

using a Configure tool. Fourth, a Dissemble tool removes the spec-

ification models which were only needed for the design and are

not parts of the implementation. In this stage, manual modeling of

application-specific details may also be required. After this phase,

code generation and hardware deployment are carried out in the

same way as in the traditional flow.

With Co-Flex, it is also required to adapt the design and imple-

mentation flow. Nevertheless, the adapted flow still exploits the

advantages of the existing toolchain, e.g., automated code genera-

tion and convenient modeling of ECUs and networks.

Note that Co-Flex only supports ECU software development for

safety-critical systems mapped on one FlexRay bus cluster. How-

ever, there are other ECUs in the same cluster and their designs

are strongly dependent on the results obtained from Co-Flex. The

related design domains of wiring and hardware will be impacted

as well. As discussed earlier, it is important to ensure traceability

across all design tools. In this context, an interface between Co-

Flex and Capital have been evaluated. It is possible to export the

functional and architectural models specified in Capital as XML

files. These files can be used to automatically configure the partially

specified Co-Flex models. And the results from Co-Flex can be di-

rectly inserted into these XMLs which can then be imported back

into Capital. This can ensure data consistency between Co-Flex and

Capital. And the integrated framework of Capital can be exploited

to maintain data coherency across design tools.

5 AN AUTOMOTIVE CASE STUDY

A case study of 5 control applications, C = {C1,C2,C3,C4,C5}, is
considered. For each application, a plant model is derived from the

automotive domain. C1 to C5 represent respectively the DC motor

speed control (DCM), the car suspension system (CSS), the elec-

tronic wedge brake (EWB), and two variants of the cruise control

(CC1) and (CC2). Each application Ci is composed of 3 tasks, i.e.,

sensor task (τs,i ), controller task (τc,i ) and actuator task (τa,i ). The
hardware platform consists of 3 ECUs, E = {E1,E2,E3}, communi-

cating over a FlexRay bus. The task mappings and the FlexRay bus

parameters are given in Table 1.

ECU Tasks

E1 τs,1, τc,2, τa,3, τa,4, τc,5
E2 τa,1, τs,2, τc,3, τs,4, τs,5
E3 τc,1, τa,2, τs,3, τc,4, τa,5

(a) Task mapping.

Bus Parameters Values

Cycle length 5ms

No. of staic slots 25

Slot size 100 μs

(b) FlexRay Bus Configuration.

Table 1: Case Study Configuration.



Figure 4: Partially specifiedmodel. (i) (left top) Closed-loop systemmodel (ii) (left bottom) Plant model (iii) (right) Distributed

controller implementation.

The tool flow discussed in Sec. 4 is used to develop the software

model for the system. First, a specification model is built using

SIMTOOLS and the offered template toolbox, as shown in Fig. 4.

Specifications are then automatically extracted using the Parse tool

based on which the co-design technique (Sec. 3.1) is applied.

Figure 5: Normalized QoCs of predesigned controllers.

P1

P10

P21

Figure 6: Pareto front for a case study.

The Design tool first determines optimal controllers at 7 possible

sampling periods for each application. Fig. 5 shows the normalized

QoCs of the designed optimal controllers for all the applications.

The red dashed line represents 100%, i.e., the required minimum

performance. Note that lower the value of QoC, better is the per-

formance. Observe that not all predesigned controllers satisfy the

minimum performance requirement. For example, in case of CC2,

controllers, designed for sampling periods of 5ms and 10ms, only

meet the requirement. Thus, only these sampling periods are feasi-

ble. This information can be used for design space pruning. Based

on this result, the Design tool automatically formulates and solves

the co-design problem. The Pareto front thus obtained is depicted in

Fig. 6 and consists of 21 Pareto points. The values ofU range from

14% to 32% and J varies between 45.82% and 80.14%. It is obvious
that there is a large freedom among these viable designs. For larger

system size we can expect more trade-off opportunities.

Three well-spaced Pareto points, i.e., P1, P10 and P21, as marked

in Fig. 6, are implemented. The specification model is configured

successively using the Configure tool with parameters correspond-

ing to these Pareto points and tested for plausibility. These fully

specified models are simulated according to 4th level of simulation

available in SIMTOOLS, where the ECUs and the communication

system are simulated based on the timings of application tasks,

communication tasks and bus schedules. The system responses are

recorded for each of the simulation runs and are shown in Fig. 7.

Note thatC1,C3,C4 andC5 are applied unit step references while

C2 is applied an unit impulse reference. In case of CC2, the system

response for P1 is different from the identical responses correspond-

ing to P10 and P21. This is because the synthesized sampling period

of CC2 corresponding to P10 and P21 is the same and is equal to

5 ms while it is 10 ms for P1. The responses of CC2 are identical
for P10 and P21 despite different task and message schedules. This

verifies that in the optimization stage, QoC depends only on the

sampling period of a controller. Furthermore, we can observe that

the settling times of the system responses of CC1 are respectively

52 ms, 212 ms and 413 ms corresponding to sampling periods of 5

ms, 20 ms and 40 ms and are approximately in the ratio 1:4:8. This

can be verified from Fig. 5. Similarly, QoCs of all applications are

verified against the calculated values from the simulation results.
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Figure 7: Control responses corresponding to the Pareto points P1, P10 and P21 (Sampling period values inms are given in brackets).

After software simulation, the Dissemble tool is used to automat-

ically remove the continuous-time plant models and expand the

subsystem blocks. Subsequently, we generated C-code and binary

files successfully using SIMTOOLS Split and Build, Simulink RTW

and SIMTARGET. The binaries can be flashed onto the ECUs.

6 CONCLUSION

Through this paper, we suggest Agile development in the automo-

tive industry. To go Agile, we need to have fast yet safe develop-

ment cycles for automotive systems. Towards this, while industry

is adopting a data-driven rule-based design approach, academic

researchers are introducing novel techniques to design safe yet

optimal systems. However, a bridge between the two developments

is largely missing. We have shown using a case study that it is

possible to integrate a state-of the-art design technique into an in-

dustrial toolchain. In the future, we believe different tool suppliers

and academia would come together to develop COTS integrated

toolchain for high quality future automotive CPSs.
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