
INVITED: Building Robust Machine Learning Systems:
Current Progress, Research Challenges, and Opportunities

Jeff (Jun) Zhang∗, Kang Liu∗, Faiq Khalid†, Muhammad Abdullah Hanif†,Semeen Rehman†,

Theocharis Theocharides§, Alessandro Artussi§, Muhammad Shafique†, Siddharth Garg∗

∗New York University, U.S.A; † Technische Universität Wien (TU Wien), Austria; §University of Cyprus, Cyprus
{sg175,jeffjunzhang,kang.liu}@nyu.edu;{ttheocharides,aartus01}@ucy.ac.cy

{muhammad.hanif,faiq.khalid,semeen.rehman,muhammad.shafique}@tuwien.ac.at

ABSTRACT

Machine learning, in particular deep learning, is being used in almost
all the aspects of life to facilitate humans, specifically in mobile and
Internet of Things (IoT)-based applications. Due to its state-of-the-art
performance, deep learning is also being employed in safety-critical
applications, for instance, autonomous vehicles. Reliability and secu-
rity are two of the key required characteristics for these applications
because of the impact they can have on human’s life. Towards this,
in this paper, we highlight the current progress, challenges and re-
search opportunities in the domain of robust systems for machine
learning-based applications.

KEYWORDS

Machine Learning, Deep Learning, Reliability, Security, Robustness,
Permanent Faults, Timing Errors, Adversarial Attacks.

1 INTRODUCTION

Machine learning (ML) has emerged as a leading tool for data analysis
because of its ability to learn directly from raw data, with minimal
human intervention. In particular, Deep Neural Networks (DNNs)
offer state-of-the-art accuracy for many ML applications. Current
research in ML is focused on improving state-of-the-art DNNs to de-
velop learning algorithms which can help learn proper functionalities
without bias and thereby can help improve the accuracy of ML-based
systems. Moreover, as DNNs are inherently compute intensive, op-
timization methods are also being studied which can significantly
reduce the computational complexity as well as the memory require-
ments of these algorithms. Apart from the aforementioned-objectives,
the digital system design community is focusing on developing effi-
cient hardware accelerators which can further boost the efficiency
gains by designing application-specific hardware for DNN-based ap-
plications [25]. Moreover, driven by the current progress, DNNs are
also being explored for use in safety-critical applications; for example,
autonomous driving [8] and smart healthcare [7]. These applications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3323472

DrainSource

p+ p+

n – substrate

Gate
Oxide Layer

Vg= – Vdd

Si HTR
AP

OH+

NBTI

Aging

HCID

Process Variations Soft Errors

n+ n+

P-Well

P-Substrate

Isolation
Gate

+-
+-

+-
+- +-

+- +- +-

+-

+- Depletion
Region

High-Energy Particle
(Neutron or Proton)

Side Channel Attacks

1 0 1 1 0

Processing
Computations

M
em

oryPower Supply

Machine Learning-based System Src: google ImageHardware Trojans

Software Attacks Training/Inference Attacks

+

Training

Inference

Figure 1: Reliability and security threats on machine learning-based

systems. (Source of Images: [23, 24])

have stringent robustness constraints as defined by the standardiza-
tion authorities because of the risks involved in the operation of these
systems.

Robustness refers to two main characteristics of a system, i.e., re-
silience against reliability threats and against security vulnerabilities.
Several reliability and security vulnerabilities are highlighted in Fig. 1,
which are later discussed in Section 2 and 3.

In this paper, we discuss the current state-of-the-art related to
DNN reliability and security. We also highlight the challenges which
are being faced in building reliable and secure yet efficient DNNs.

2 RELIABLE MACHINE LEARNING

Reliability threats are mainly due to faults that arise at the hardware-
layer of a system and can propagate all the way to the application-
layer, potentially causing mis-predictions. There are many types of
reliability faults, e.g., soft errors, timing faults, and permanent faults.
Different techniques have been proposed for mitigating these faults.
However, most of them are based on redundancy-based approaches
where spatial/temporal redundancy is exploited for executing mul-
tiple instances of an application that vote to ensure the correctness
of execution [29]. Based on the compute-intensive nature of DNNs,
naively applying these approaches might obviate many of the gains
obtained from hardware acceleration.

In this section, we highlight the impact of reliability faults on the
accuracy of several state-of-the-art networks for different datasets.
The details of the networks and the datasets are presented in Table 1.
Later in the section, we also discuss a few methods which can be
used for efficiently mitigating the permanent faults and timing errors

a11a12

a21

…

…

…

… … …

PE PE PE

…

× +

a
8

w
8

PE

24

24

Accumulator Array

16

Partial Sum (psum)

a

psum

Systolic Array

psum psum

Ac
tiv

at
io

n
M

em
or

y
Weight Memory

psums

Activations

Time w

PE PE PE

PE PE PE

PEa1

PEa2

CLK
D D’

CLK CLK+Δ

CLK+Δ

Q1

Q2

Error

…

PE PE

PE PE

…

…Systolic
Array

…

PE

psum
110

…

PE

PE

psum psumpsum

PE

PE

PE

psum
010

ps

ps

PE PE…PE PE

(a) (b) (c)
Figure 2: (a) Architecture of a systolic array-based DNN accelerator that serves as a baseline; (b) Modified systolic array for permanent fault

mitigation; (c) Architectural modifications for mitigating timing faults. (Adapted from [32, 33])
Table 1: Datasets and the corresponding 8-bit DNNs used for evalua-

tion. (Adapted from [32])

Dataset Network Architecture Accuracy(%)

MNIST [18] Fully-Connected (L1-L4): 784×256×256×256×10 98.15

TIMIT [2] Fully-Connected (L1-L4): 1845×2000×2000×2000×183 73.91

ImageNet [5]

Convolutional (L1-L2): (224, 224, 3)×(27,27,64)×(13,13,192)

Convolutional (L3-L5): (13, 13, 384)×(13, 13, 256)×(6,6,256)

Fully-Connected (L6-L8): 4096×4096×1000

76.33

(Top-5)

(c) (d)

(a) (b)

Figure 3: (a) Classification Accuracy in the Presence of Stuck-at-Faults

in MAC units; (b) Impact of TPU Stuck-at-Faults on TIMIT’s activa-

tions; (c) Impact of timing error propagation on the classification accu-

racy on MNIST; (d) Local and Global timing error rates versus voltage

underscaling in the TPU-based architecture. (Adapted form [32, 33])

which mainly arise because of process variations [22] and aging [28].
All the case-studies and analyses are performed using a baseline Ten-
sor Processing Unit (TPU) [14] like accelerator. A block diagram of the
accelerator is shown in Fig. 2(a). More details about the architecture
can be found in [32].

2.1 Resilience of DNNs to Reliability Faults

Previous works have suggested that ML-based applications are inher-
ently error-resilient [9]. Therefore, to study the impact of permanent
and timing faults on the output of DNNs, we emprically evaluated
the baseline hardware shown in Fig.2(a) consisting of a large systolic
array of multiplier-and-accumulate (MAC) units.

2.1.1 Permanent Faults. For this analysis, we synthesized an RTL
implementation of the systolic array (shown in Fig. 2(a)) and gen-
erated its gate-level netlist. We then injected stuck-at-faults at the
internal nodes in the netlist. Next, we mapped DNNs for two different
classification tasks, i.e., digit classification using MNIST dataset and
speech recognition using TIMIT dataset, on the “faulty" baseline TPU.
Fig. 3(a) shows the impact of faulty MAC units on the DNN classifi-
cation accuracy. For TIMIT, we observed that even with only 4 faulty
MAC units (our baseline has 65 K MACs in total), the classification
accuracy from the 74.13% to 39.69%.

The reason behind this drop in accuracy is that faults frequently
affect higher order bits of the MAC output, which results in large
errors in the matrix-matrix/matrix-vector product. This is illustrated
with the help of Fig. 3(b) where the outputs computed using faulty
hardware are (in most cases) larger than the expected output.

2.1.2 Timing Errors. For this analysis, we naively allowed timing
errors to propagate (i.e., Timing Error Propagation (TEP) approach)
to subsequent stages of computation [31]. Fig. 3(c) shows the classifi-
cation accuracy for the MNIST benchmark as a function of the extent
of voltage when errors are allowed to propagate through the systolic
array. We note that as soon as timing errors start appearing, as shown
in Fig. 3(d), the classification accuracy for TEP drops quickly.

2.2 Mitigation techniques

2.2.1 Permanent Fault Mitigation. We proposed two techniques in
[33]: (1) fault-aware pruning (FAP); and (2) fault-aware pruning plus
retraining (FAP+T). The techniques enable the baseline TPU to op-
erate even at the fault rates upto 50% without significantly affecting
the classification accuracy of the DNNs. The proposed techniques are
based on the idea that a significant fraction of the overall connections
in a DNN can be pruned away without significantly affecting the
DNN accuracy. However, while the prior works use pruning to re-
duce the memory and the computational requirements of DNNs [11],
we use pruning to enable hardware fault tolerance. FAP prunes all the
network connections (network parameters) that map to faulty PEs
by enabling simple bypass circuitry shown in Fig. 2(b). The bypass
circuitry requires only minor modifications in the baseline accelerator
and also does not have much overheads. In FAP+T we additionally
retrain the DNN after pruning in order to regain the lost accuracy.
One drawback of FAP+T is that the fault map of each TPU chip can be
different, therefore, the retraining of a DNN has to be performed for
each TPU chip which comes at the cost of increased “test time” per
chip. Note that the FAP+T technique assumes static mapping policy.

(b) ImageNet(a) MNIST

0

5

10

15

20

25

30

0.68 0.72 0.76 0.8 0.84 0.88 0.92 0.96 1Ti
m

in
g

Er
ro

r P
ro

ba
bi

lit
y

[%
]

Voltage Underscaling Ratio

Layer 1
Layer 2
Layer 3

0

5

10

15

20

25

30

0.68 0.72 0.76 0.8 0.84 0.88 0.92 0.96 1Ti
m

in
g

Er
ro

r P
ro

ba
bi

lit
y

[%
]

Voltage Underscaling Ratio

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Figure 4: Timing error probabilities for each layer for two of the net-

works presented in Table 1. (Adapted from [32, 34])

i.e., one weight is mapped to only one specific PE while multiple
weights can be mapped to the same PE.

2.2.2 Timing Fault Mitigation. We proposed a novel technique (TE-
Drop) in [32] to mitigate timing errors in MAC units of a TPU-like
accelerator. TE-Drop equips each MAC unit with Razor flip-flops
[6] to detect timing errors, however, it mitigates the errors without
re-executing erroneous computations.

TE-Drop is built on the observation that the contribution of each
individual MAC computation to the output of a neuron is small [11].
When a MAC unit incurs a timing error, TE-Drop steals the next clock
cycle from its successor MAC unit to correctly add its contribution to
the partial sum, and bypasses/drops the subsequent MAC operation.
To support this functionality, TE-Drop also requires a multiplexer
(MUX) which is controlled by the error signal from the previous
(upstream) MAC unit. If the previous MAC unit incurs a timing error,
the MUX forwards the previous MAC’s correctly computed partial
sum to the next MAC unit; otherwise, the current MAC unit updates
the partial sum and forwards its output to the next MAC. As shown in
Fig. 2(c), TE-Drop requires minimal hardware changes in the baseline
TPU.

Fig. 4 illustrates the timing error rate for each layer of two DNNs
as a function of the voltage underscaling ratio. In both the networks,
we observe that the timing errors vary significantly across layers of
a network. Therefore, based on this analysis, we proposed a per-layer
voltage underscaling scheme in [32] which distributed the available
timing error budget equally among layers to achieve high energy
efficiency.

3 SECURE MACHINE LEARNING

Similar to the traditional computing systems, DNN-based systems are
also vulnerable to several security threats, i.e., data manipulation[12,
16], model/IP stealing [30], and denial-of-service attacks [12]. How-
ever, to handle these vulnerabilities in such relatively complicated
systems raises its own challenges. Therefore, in the subsequent sub-
sections, we present the different security attacks and their respective
countermeasures.

3.1 Security Attacks on DDNs

DNN-based classifiers are vulnerable to specially crafted adversarial
noise patterns in inputs. These noise patterns can either perform tar-
geted or untargeted misclassification or confidence reduction (which
can make DNNs even more vulnerable to reliability threats). Two of
the most dangerous attacks are adversarial perturbations and back-
dooring attacks.

Single-Pixel
Backdoor

Original
Image

Yellow Square
Backdoor

Original
Image

Figure 5: Original images of MNIST digit "7" and US "stop sign", and

their respective backdoored images.

3.1.1 Adversarial attacks. These attacks targets inference of DNNs
and assume that an attacker does not have access to the training
process including the dataset but have access to the trained DNN
in both black-box and white-box settings. Therefore, these attacks
generate imperceptible noise either by exploiting the gradient (e.g.,
Fast Gradient Sign (FGS), Iterative Fast Gradient Sign (IFGS) and
Jacobian-based saliency map attack (JSMA) methods [21]) or using
more complex optimization procedures (Limited Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) [26] and Carlini & Wagner (CW) [3]). For
example, a recently proposed attack, TrISec [17], exploits gradient
information and optimization of back-propagating effects of the tar-
geted label to the inputs. However, generating the attack image using
traditional adversarial attack methodology requires lager number of
inferences and output probabilities, therefore, these attacks may fail
in resource-constrained DNN-based systems, i.e., autonomous vehi-
cles. To address these limitations, resource-efficient decision-based
(RED-Attack [16]) attacks have been proposed, which leverages the
half-interval search algorithm to find an appropriate attack image
along the learned classification boundary.

3.1.2 Backdoor or neural Trojan attacks. Unlike the adversarial at-
tacks, these attacks targets the outsourced ML training where at-
tacker has the access to training procedure and train the DNN for a
well crafted high density perceptible noise pattern (act as a hidden
backdoor) while maintaining the validation accuracy and perform-
ing well on its intended task. So, whenever this backdoor trigger is
present in the input DNN performs targeted or random misclassifi-
cations [10][19]. In targeted misclassification this backdoor is asso-
ciated with a target label but in random misclassification it reduces
the confidence or classification accuracy for backdoored inputs. An
illustration of this attack on clean MNIST digit and the US stop sign
and respective backdoor images is shown in Fig. 5.

To achieve her goal, attacker canmakemodifications in the training
procedure, like augmenting the training data with target samples
and labels (training set poisoning [13]), modifying the configuration
settings of the training algorithm, i.e., learning rate or the batch size,
or even directly modifying the trained network parameters (Θ).

Moreover, DNNs are also vulnerable to model stealing attacks [30]
that extract or estimate the behavior of the DNN IP (trained IP) to
breach IP copyrights and eventually leads to financial loss. Due to
recent advancement in ML-based systems, several novel and efficient
DNN-algorithms, i.e., spiking neural networks and capsule nets, have
been proposed. However, these NNs are also vulnerable to adversarial
perturbations, as shown in the analysis in [20].

3.2 Defenses Against Security Attacks on DDNs

To address the above-mentioend security attacks, i.e., adversarial
perturbation and backdooring attacks, several countermeasures have
been proposed and some of them are discussed below.

L-
BF

G
S

FG
SM

99.47%

Case I

99.47%

99.47%

85.68%

75.68%

89.68%

72.74%

Case I: Classification of the Original
Samples (without any attacks)
Case II: Classification of the
Perturbed Images without
preprocessing filters or attacker has
the access to output of the
preprocessing filters
Case III: Classification of the
Perturbed Images when attacker do
not have the access to output of the
preprocessing filters
Case IV: Classification of the
Perturbed Images (after incorporating
the preprocessing) when attacker
donot have access to the
preprocessing filters
Confidence: Stop Stop Sign
Confidence: Stop Speed 60 km/h

78.45%

70.39%

78.64%

68.45%

85.64%

BI
M

Case II Case III Case IV

Figure 6: Impact of the preprocessing filtering on the adversarial at-

tacks (i.e., L-BFGS, FGSM, BIM) with different attack models with and

without the access of filters. (adapted from [15])

3.2.1 Defenses against Adversarial ttacks. Typically these attacks ex-
ploit the gradient, therefore to protect the gradient of DNN, some
countermeasures like DNNmasking, gradient masking and adversarial
training based defenses have been proposed but they are either limited
to known attacks or can be breached by modifying the optimization
function. Another defense is to perform preprocessing (e.g., quanti-

zation [1], filtering [27]) of the CNN inputs [4] which can increase
the perceptibility of attack noise or reduces it overall effects. For
examples, analysis in [15] shows that low-pass pre-processing filters
can nullify adversarial attacks if unknown to the attacker.

3.2.2 Defenses against Backdoor Attacks. Typically, since backdoors
exploit the spare capacity in DNNs [10], pruning is a natural defense.
The pruning-based defense reduces the size of the backdoored net-
work by eliminating dormant neurons, that either limits or disables
the backdoor behaviour. Although the pruning defense successfully
nullifies all naive backdoor attacks, a “pruning-aware” attack (under
the assumption that attacker is aware of the pruning) can break the
pruning-based defense by mapping the clean and backdoor behaviour
onto the same set of neurons which remain active in most of the cases.
Finally, to defend against such pruning-aware attacks, a defender can
perform the local pruning-aware retraining on a small clean training
dataset (fine-tunning) which effectively disables backdoors.

4 FUTURE RESEARCH DIRECTIONS

Frameworks for Studying Error-Resilience: Empirical analysis,
although provides significantly accurate results, takes a considerable
amount of time to analyze the impact of specific reliability vulnera-
bilities. Therefore, there is a dire need to develop frameworks which
can precisely and efficiently simulate the effects of reliability threats.
These frameworks are envisioned to be highly useful for studying
the impact of concurrent reliability threats.
Design Methods for Building Robust DNNs: Significant research
has been carried out in developing energy- and performance-efficient
DNNs. However, only a limited number of methods are available
which allow to cater the effects of reliability threats. Towards this,
analysis of different network architectures is required, and methods
have to be developed which can build inherently resilient DNNs.
RobustMLTraining:Most of the traditionalML training algorithms
focus on achieving high accuracy for specific application/dataset
which make the ML-based systems vulnerable to several security and
reliability threats. Although, several algorithms have been developed
to assist the trainingwith respect to adversarial perturbation, but their

scope is limited the known adversarial perturbations. Therefore, such
ML-training algorithms are required which can ensure the robustness,
in terms of safety, security, privacy and reliability.

ACKNOWLEDGEMENT

A part of this work was funded by NSF Grant 1801495.

REFERENCES
[1] Hassan Ali et al. 2018. QuSecNets: Quantization-based Defense Mechanism for

Securing Deep Neural Network against Adversarial Attacks. arXiv:1811.01437
(2018).

[2] Jimmy Ba et al. 2014. Do Deep Nets Really Need to be Deep? In Advances in Neural
Information Processing Systems 27. Curran Associates, Inc., 2654–2662.

[3] Nicholas Carlini et al. 2016. Towards evaluating the robustness of neural networks.
arXiv preprint arXiv:1608.04644 (2016).

[4] Anirban Chakraborty et al. 2018. Adversarial Attacks and Defences: A Survey.
arXiv:1810.00069 (2018).

[5] J. Deng et al. 2009. ImageNet: A large-scale hierarchical image database. In CVPR.
248–255. https://doi.org/10.1109/CVPR.2009.5206848

[6] Dan Ernst et al. 2004. Razor: circuit-level correction of timing errors for low-power
operation. IEEE Micro 24, 6 (2004), 10–20.

[7] Andre Esteva et al. 2019. A guide to deep learning in healthcare. Nature medicine
25, 1 (2019), 24.

[8] Maximilian Fink et al. 2019. Deep Learning-BasedMulti-scaleMulti-object Detection
and Classification for Autonomous Driving. In Fahrerassistenzsysteme. Springer.

[9] Anteneh Gebregiorgis et al. 2017. Error propagation aware timing relaxation for
approximate near threshold computing. In DAC. ACM, 77.

[10] Tianyu Gu et al. 2017. Badnets: Identifying vulnerabilities in the machine learning
model supply chain. arXiv:1708.06733 (2017).

[11] Song Han et al. 2015. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv:1510.00149 (2015).

[12] Muhammad Abdullah Hanif et al. 2018. Robust Machine Learning Systems: Relia-
bility and Security for Deep Neural Networks. In IOLTS. IEEE, 257–260.

[13] Ling Huang et al. 2011. Adversarial machine learning. In AISec. ACM, 43–58.
[14] Norman P Jouppi et al. 2017. In-datacenter performance analysis of a tensor pro-

cessing unit. In ISCA. IEEE, 1–12.
[15] Faiq Khalid et al. 2019. FAdeML: Understanding the Impact of Pre-Processing Noise

Filtering on Adversarial Machine Learning. In DATE. IEEE.
[16] Faiq Khalid et al. 2019. RED-Attack: Resource Efficient Decision based Attack for

Machine Learning. arXiv:1901.10258 (2019).
[17] Faiq Khalid et al. 2019. TrISec: Training Data-Unaware Imperceptible Security

Attacks on Deep Neural Networks. arXiv:1811.01031 (2019).
[18] Y. Lecun et al. 1998. Gradient-based learning applied to document recognition. Proc.

IEEE 86, 11 (Nov 1998), 2278–2324.
[19] Kang Liu et al. 2018. Fine-pruning: Defending against backdooring attacks on deep

neural networks. In RAID. Springer, 273–294.
[20] Alberto Marchisio et al. 2019. SNN under Attack: are Spiking Deep Belief Networks

vulnerable to Adversarial Examples? arXiv:1902.01147 (2019).
[21] Nicolas Papernot et al. 2016. The limitations of deep learning in adversarial settings.

In EuroS&P. IEEE, 372–387.
[22] Bharathwaj Raghunathan et al. 2013. Cherry-picking: exploiting process variations

in dark-silicon homogeneous chip multi-processors. In DATE. IEEE, 39–44.
[23] Semeen Rehman, Muhammad Shafique, and Jörg Henkel. 2016. Reliable Software

for Unreliable Hardware: A Cross Layer Perspective. Springer.
[24] Muhammad Shafique et al. 2014. The EDA challenges in the dark silicon era:

Temperature, reliability, and variability perspectives. In DAC. ACM, 1–6.
[25] Vivienne Sze et al. 2017. Efficient processing of deep neural networks: A tutorial

and survey. Proc. IEEE 105, 12 (2017), 2295–2329.
[26] Christian Szegedy et al. 2013. Intriguing properties of neural networks. arXiv

preprint arXiv:1312.6199 (2013).
[27] Hammad Tariq et al. 2018. SSCNets: A Selective Sobel Convolution-based Technique

to Enhance the Robustness of Deep Neural Networks against Security Attacks.
rXiv:1811.01443 (2018).

[28] Abhishek Tiwari et al. 2008. Facelift: Hiding and slowing down aging in multicores.
InMICRO. IEEE Computer Society, 129–140.

[29] Ramakrishna Vadlamani et al. 2010. Multicore soft error rate stabilization using
adaptive dual modular redundancy. In DATE. IEEE, 27–32.

[30] Binghui Wang and Neil Zhenqiang Gong. [n. d.]. Stealing hyperparameters in
machine learning. In IEEE S&P.

[31] Paul N Whatmough et al. 2013. Circuit-level timing error tolerance for low-power
DSP filters and transforms. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 21, 6 (2013), 989–999.

[32] Jeff Zhang et al. 2018. Thundervolt: Enabling Aggressive Voltage Underscaling and
Timing Error Resilience for Energy Efficient Deep Learning Accelerators. In DAC.

[33] Jeff Jun Zhang et al. 2018. Analyzing and mitigating the impact of permanent faults
on a systolic array based neural network accelerator. In VTS. IEEE, 1–6.

[34] Jeff Jun Zhang et al. 2018. FATE: fast and accurate timing error prediction framework
for low power DNN accelerator design. In ICCAD. ACM.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 0
 1

 1

 HistoryList_V1
 qi2base

