
Unlocking Fine-Grain Parallelism for AIG Rewriting

Vinicius Possani1, Yi-Shan Lu2, Alan Mishchenko3, Keshav Pingali2,
Renato Ribas1 and Andre Reis1

1Institute of Informatics, Universidade Federal do Rio Grande do Sul, Brazil
2Department of Computer Science, The University of Texas at Austin, USA

3Department of EECS, University of California, Berkeley, USA

ABSTRACT
Parallel computing is a trend to enhance scalability of elec-
tronic design automation (EDA) tools using widely avail-
able multicore platforms. In order to benefit from paral-
lelism, well-known EDA algorithms have to be reformulated
and optimized for multicore implementation. This paper in-
troduces a set of principles to enable a fine-grain parallel
AND-inverter graph (AIG) rewriting. It presents a novel
method to discover and rewrite in parallel parts of the AIG,
without the need for graph partitioning. Experiments show
that, when synthesizing large designs composed of millions
of AIG nodes, the parallel rewriting on 40 physical cores is
up to 36x and 68x faster than ABC commands rewrite -l
and drw, respectively, with comparable quality of results in
terms of AIG size and depth.

Keywords
AND-Inverter Graph; K-Cuts; Logic Rewriting; Parallel Com-
puting; Operator Formulation; Galois System.

1. INTRODUCTION
Fast algorithms for electronic design automation (EDA)

are crucial in the design flow of current and future gener-
ations of integrated circuits (IC). The high complexity of
system-on-chips (SoCs) and the increasing demand for hard-
ware accelerators impose new challenges on the EDA field.
Moreover, short design cycles are essential for improving
productivity and reducing project cost. This has led to the
concept of EDA 3.0, which emphasizes the need for a new
generation of parallel and distributed computer-aided design
(CAD) tools able to quickly handle large designs [21, 22].

In this scenario, some EDA algorithms must be rethought
to work in parallel environments. In this paper, we revisit
the multi-level optimization, which aims to prepare a logic
network for technology mapping into standard cells or pro-
grammable devices [6]. Multi-level optimization is an im-
portant and time-consuming task during logic synthesis be-
cause the underlying logic representation has direct impact
on the quality and speed of technology mapping, also known
as structural bias [7, 14].

Local transformations, such as logic rewriting, play an im-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
c© 2018 ACM. ISBN 978-1-4503-5950-4/18/11. . . $15.00

DOI: https://doi.org/10.1145/3240765.3240861

port role in logic synthesis. Typically, the rewriting pro-
cess uses a hash table of precomputed structures to incre-
mentally update the underlying logic representation to im-
prove a cost function. The common costs used to guide the
rewriting techniques are the network size and depth (that
is, the number of nodes and levels in a direct acyclic graph
(DAG)). In recent years, many approaches for logic rewriting
have been proposed, which consider different sets of precom-
puted structures and are based on logic representations, such
as AND-inverter graph (AIG) and majority-inverter graph
(MIG) [17, 13, 23, 20, 10]. Even though Boolean function
decomposition and factorization are general, logic rewrit-
ing is a fast alternative that can be applied incrementally,
allowing different trade-offs between runtime and quality-
of-results (QoR). As a result, rewriting techniques are often
more suitable than Boolean decomposition for multi-level
optimization of large IC designs.

It is predicted that future generations of integrated cir-
cuits will contain trillions of logic gates [21, 22]. Currently,
the time needed to synthesize large AIGs with more than
ten million nodes has become considerable, even when fast
rewriting methods are applied. Consider, for instance, com-
mand rewrite [17] in the logic synthesis tool ABC [1]. This
command takes approximately 18 minutes on a modern pro-
cessor to perform a single iteration of rewriting for a 35-
million-node AIG, as shown in our experiments. The com-
mand rewrite is one of the main algorithms used in the well-
known ABC scripts resyn2 and dc2 for delay- and area-
oriented synthesis, respectively. Moreover, rewriting tech-
niques are often applied many times to compensate for the
local nature of the transformations. Therefore, the runtime
may become a significant part of logic synthesis. These ob-
servations and the wide availability of multi-core proces-
sors have motivated the investigation of parallel solutions
for logic synthesis problems.

This paper introduces a fine-grain parallel AIG rewriting
that relies on the operator formulation and the Galois sys-
tem [19, 11], in a multicore environment with shared mem-
ory. The proposed approach is based on the AIG rewriting
proposed by Mishchenko et al. in [17]. Fine-grain paral-
lelism allows us to rewrite multiple nodes of the graph at
the same time, rather than applying graph partitioning and
rewriting each partition sequentially. The operator formu-
lation is a data-centric abstraction of algorithms, which are
described in terms of a collection of atomic actions on data
structures [19]. These actions are determined using an op-
erator, which specifies an atomic update to the data struc-
ture, and a schedule for applying the operator to certain
sites in the data structure. The Galois system provides a
programming model where a specified operator is specula-
tively executed to exploit parallelism in irregular algorithms
such as graph applications [11]. AIG rewriting is an irregu-
lar algorithm that fits well in the Galois approach in which
non-overlapping subgraphs are discovered and rewritten in

parallel.
The main contribution of this paper is a set of princi-

ples that describe how to unlock the parallelism during AIG
rewriting. Our experiments show that the proposed ap-
proach is able to speed up the multi-level optimization of
huge designs without penalty in the QoR when compared to
the reference method.

The rest of this paper is organized as follows. Section
2 presents preliminary definitions. Section 3 presents an
overview of related works on AIG and MIG rewriting. A
more detailed view of the Galois system is presented in Sec-
tion 4. Section 5 presents the proposed approach for paral-
lel AIG rewriting. Experimental results are summarized in
Section 6, and an analysis of speedup and QoR is presented.
Finally, Section 7 discusses conclusions and future work.

2. PRELIMINARIES
An AND-inverter graph (AIG) is a directed acyclic graph

adopted as the data structure in logic synthesis. AIG is
a homogeneous circuit representation containing four type
of nodes: the constant, primary inputs (PI), primary out-
puts (PO), and two-input AND (AND2) gates, possibly with
complemented inputs. Sequential elements such as latches
can be viewed as special nodes or pseudo-PIs/POs. The
graph edges play the role of directed or complemented in-
terconnections. A majority-inverter graph (MIG) is defined
similarly [2]. However, instead of two-input AND gates, a
MIG comprises three-input majority (MAJ3) gates.

The set of nodes connected to the inputs (outputs) of a
given AIG node is called its fanins (fanouts). In the context
of AIGs, structural hashing is a technique adopted to ensure
that there is no AND2 gates with the same pair of fanins,
even up to permutation [15]. Conventionally, the AIG man-
ager stores each AND2 node in a hash table by building a
key in terms of its fanin edges and nodes. Before creating a
new node, the AIG manager performs a lookup in the hash
table and reuses the node with the same fanins if such node
exists.

A maximum fanout free cone (MFFC) of a given AIG
node n is a subset S of the predecessors of n such that
every path from any node in S to a PO passes through n.
In other words, the MFFC of a given node n contains the
nodes that are exclusively used to define the logic function
of n. Therefore, if the node n is removed, all nodes in its
MFFC can also be removed [15].

A cut C rooted in a given AIG node n is a set of nodes,
called leaves, such that every path from the PIs to the root
n contains at least one leaf ∈ C. A cut C1 is dominated by
another cut C2 if C2 ⊆ C1, i.e., C1 is a redundant cut. A
cut is k-feasible if it contains k nodes or less; such a cut is
known as a k-cut. A k-cut is associated with a local Boolean
function, which is defined by the logic cone of the root node
n and expressed in terms of the cut leaves. Boolean func-
tions of cuts up to 16 inputs can be represented by truth
tables, implemented using bit-strings, and manipulated us-
ing bitwise operations.

A Boolean function f1 is NPN-equivalent to another f2
if one of them can be obtained from the other by applying
negations/permutations of its inputs/output [15]. In the
context of logic rewriting, NPN classification is commonly
used to find logically equivalent but structurally different
implementations used to rewrite a cut in the subject graph.

3. RELATED WORKS ON REWRITING
In this section, we briefly describe the rewriting methods,

highlighting the main innovation that each one introduced.
First, we show that the recent rewriting methods are based
on the DAG-aware AIG rewriting method [17]. Therefore, if
we understand how to unlock the parallelism in this rewrit-

ing approach, we can exploit parallelism in other state-of-
art logic synthesis methods. In other words, we can extend
the proposed parallel rewriting to incorporate the best char-
acteristics of previous methods as well as investigate novel
solutions in this direction. Moreover, parallel logic synthesis
enables intensive and iterative optimizations while control-
ling computation time [9, 14].

3.1 DAG-Aware AIG Rewriting
Mishchenko et al. in [17] proposed a rewrite algorithm

that can be interleaved with two other techniques: refactor
[6] and balance [8]. The rewrite algorithm extends the prior
work [5] and comprises three main components:

A hash table of precomputed structures serves as a database
to represent 4-input AIGs used for replacement. The set of
all 4-input Boolean functions can be grouped in 222 NPN
classes. Many of these classes appear rarely in practical
designs and therefore only about one hundred of the NPN
classes are used in logic optimization. A hash table contain-
ing optimized AIG implementations for this useful subset is
precomputed in advance and loaded into the rewriting man-
ager. During the rewriting, the hash table is used to retrieve
a subset of the subgraphs.

The enumeration of 4-feasible cuts is performed to select
parts of the AIG structure to be rewritten. Thus, all cuts
that implement a 4-input Boolean function are candidates to
be replaced, if there exist a better and equivalent subgraph
in the hash table.

Overall procedure to find improved implementation for
AIG cuts works as follows. For each node n, in the topo-
logical order, the algorithm computes 4-input cuts and their
respective truth tables. The Boolean functions of the 4-
input cuts of n are mapped into their NPN classes, which
are used to find a new cut implementation in the hash table
of precomputed structures. The gain obtained by rewriting
a given cut, rooted in the node n, is calculated in terms of
the number of nodes that will be deleted and added into
the AIG. Thus, the cut/implementation that leads to the
best local improvement is greedily selected to replace the
old structure of the cut. The number of deleted nodes is
related to the MFFC of n. The number of added nodes is
related to the amount of nodes in the window of n that can
be reused (shared) to express the new implementation of
the cut. The structural hashing technique, mentioned in the
preliminaries of this paper, is commonly used to figure out
such logic sharing.

3.2 Recent Rewriting Methods
The local scope of 4-input cuts and the reduced set of 4-

input Boolean functions, used in the previous method [17],
motivated Li et al. in [13] to extend this approach to 5-
input cuts. The authors introduced a technique to build a
library of precomputed subgraphs that can implement 1,185
NPN classes of 5-input Boolean functions. The 5-input cut
enumeration and subgraph replacement is analogous to the
previous work.

Another work presents an alternative to increase the size
of k-cuts and explore larger databases with more complex
Boolean functions, as introduced by Yang et al. in [23].
The paper presents an approach to extract several optimized
subnetworks from designs already synthesized with different
techniques. Similar to the previous methods, the extracted
subneworks are stored and viewed as a library of structures
to be used for logic rewriting.

Soeken et al. in [20] proposed an approach for rewriting
MIG in three different graph traversals, top-down, bottom-
up, and based on fanout-free regions. Moreover, the authors
proposed an exact MIG synthesis method, which was used
to build a hash table of precomputed structures to be used
during rewriting.

Recently, a new method for XOR Majority Graphs (XMG)
rewriting was proposed by Haaswijk et al. in [10]. This ap-
proach uses a LUT-based technology mapper to mine use-
ful Boolean functions to be considered during the rewriting
process. Then, the exact MIG synthesis proposed in [20]
is used to compute implementations for the collected func-
tions. The implementations are stored in a database used
for logic rewriting, similarly to the previous work.

In the last year, two other techniques were proposed to
perform technology independent synthesis together with tech-
nology mapping [14, 4]. Liu et al. in [14] proposed a par-
allel iterative approach that applies logic transformations,
e.g., rewrite, balance, and refactor, as stochastic moves to
change the logic network during technology mapping. This
approach leads to improvements due to the ability to escape
local minima and overcome structural bias.

The most recent approach, proposed by Amarú et al. in
[4], is based on DAG-aware AIG rewriting. However, in-
stead of replacing k-cuts by improved AIG structures, the
method replaces k-cuts by combinations of standard cells
from a precomputed database. The paper introduces the
concept of equioptimizable arrival times, which retrieves the
combination that minimizes the delay at the cut output.

4. GALOIS SYSTEM
Galois is a system that provides a data-centric program-

ming model to exploit amorphous data parallelism in irreg-
ular graph algorithms [19]. It is based on an abstraction of
algorithms called the operator formulation. In this abstrac-
tion, there is a local view and a global view of algorithms.

• The local view is described by an operator, which spec-
ifies an action that modifies the state of the graph
atomically. Each application of the operator is called
an activity, and the region of the graph modified by an
activity is called its neighborhood.

• In general, there may be many places in a graph where
an operator can be applied. If there is an order in
which these operator applications must be performed,
that is specified by the schedule, which provides a global
view of the algorithm. For the algorithms of interest
in this paper, operator applications may be performed
in any order, so these are called unordered algorithms.

• Usually, each activity modifies only a small portion of
the overall graph. Therefore, for unordered algorithms,
activities that modify non-overlapping regions of the
graph can be performed in parallel without changing
the semantics of the program. A pair of activities with
overlapping neighborhoods can be performed in either
order but not concurrently.

From the programmer’s point of view, Galois provides
C++ thread-safe data structures such as graphs and sets,
and parallel executors such as for each, do all [11]. Thread-
safe sets are used to implement worklists to store active
nodes. The parallel executor consumes nodes from the work-
list and dynamically assigns them to threads. Operator ex-
ecution is speculative and optimistic in the sense that the
activities are assumed to be non-conflicting but Galois dy-
namically treats and reschedules activities if conflicts hap-
pen. Galois scheduling is non-deterministic although it can
be modified to work deterministically with some runtime
cost. The dynamic management of thread conflicts is needed
in irregular algorithms, unlike in regular algorithms in which
non-conflicting activities can be found and scheduled stati-
cally.

Optimistic scheduling of activities is implemented as fol-
lows. Graph elements have exclusive locks to ensure mutual
exclusion when threads are changing the graph. Therefore,

Galois manages thread conflicts in the owners of locks from
graph elements. Threads hold the abstract locks until the
end of an activity or until a conflict is detected. For instance,
consider two threads t1 and t2 that are processing the active
nodes n1 and n2, respectively, and n3 is a shared neighbor of
n1 and n2. If t1 acquires the lock of n3, then t2 will not be
able to proceed the execution of its operator until the lock
of n3 is released. In these cases, Galois detects the conflict
and aborts the execution of the operator at the active node
n2 by releasing its already acquired locks. Then, the active
node n2 is rescheduled to be processed later.

Intuitively, activities are processed in an all-or-nothing
approach in terms of the acquisition of the necessary locks.
When the execution of the operator in a given active node
is aborted due to conflicts, all computation performed at
this point is lost. In this sense, it is desirable to design
cautious operators, which first try to acquire all necessary
locks in the neighborhood of the active node and only then
perform the graph modifications. This way, after acquiring
necessary locks, it is possible to ensure that the operator
will be successfully executed without wasting time in the
complex computation before all locks are available.

Although Galois offers a high level of abstraction for pro-
grammers, recent studies have compared Galois to a native
thread implementation such as pthreads and have shown
that the abstraction penalty is small. An efficient paral-
lel FPGA router was designed using Galois [18]. In [18],
Moctar and Brisk state that they believe that the Galois
model is the right solution for parallel CAD. This statement
is based on the wide number of irregular graph-based algo-
rithms used to solve problems in EDA.

5. PARALLEL AIG REWRITING
This section presents our reformulation of the rewriting

method presented in [17] to unlock the parallelism using the
Galois programming model. Algorithm 1 describes the top-
level routine that aims to initialize the necessary components
and call the Galois parallel for each. This routine receives
as input the AIG and other parameters such as the number
of cuts stored per AIG node, the maximum number of pre-
computed structures tried per cut and the flag indicating if
the zero-cost replacement is enabled.

The proposed approach is based on 4-input cuts, NPN-
equivalence, and the same set of precomputed structures
used in the command rewrite from ABC [1]. The rewriting
manager and all the other necessary modules are instanti-
ated in line 3 of Algorithm 1. The initial set of active nodes
is defined by all AIG primary inputs, as shown in lines 6-7 of
Algorithm 1. When the AIG under optimization comprises
sequential elements, all latches can also start as active nodes,
similarly to the primary inputs. Active nodes are stored in a
Galois thread-safe worklist, where its items are distributed
in local worklists along the cores. In line 9 of Algorithm
1, the parallel for each dynamically assigns active nodes to
available threads as the computation proceeds. The activ-
ities are performed by executing the operator implemented
in the rewrite manager.

5.1 Rewriting Manager
Algorithm 2 presents an overview of the rewriting man-

ager, which implements the operator executed at each ac-
tive node. Essentially, the rewriting operator works just like
the reference method in the sequential code. However, its
main internal routines were rethought to support concur-
rent operations. Notice that the rewriting manager is con-
structed based on references to other shared-memory objects
e.g., AIG, cutMan, npnMan and strMan. These auxiliary
managers are discussed in the next subsection.

The operator receives as argument an active node and the

Algorithm 1: Parallel AIG Rewriting

1 Function parallelAIGRewriting()

Input : AIG, nCuts, nStr, useZero
Output: a rewritten AIG or the original one

2 // Instantiate all necessary components

3 RewritingManager rwMan(AIG, nStr, useZero,
cutMan(4, nCuts), npnMan(), strMan());

4 GaloisWorklist = ∅;
5 // All primary inputs and latches are active nodes

6 for each pi from AIG do
7 GaloisWorklist.push(pi);

8 // Parallel For

9 GaloisForEach(GaloisWorklist, rwMan);

GaloisCtx, which provides access to the Galois context such
as worklists and customized memory allocators. In order
to minimize the computation lost due to thread conflicts,
all logical locks in the neighborhood of an active node must
be acquired in advance. In the proposed approach, such a
neighborhood is defined by a window containing the fanouts
of the active node and the logic cones rooted into the ac-
tive node and expressed in terms of its k-cut leaves. The
operations performed in lines 4-7 of Algorithm 2 make the
operator cautious. In case of conflict, the operator is aborted
as soon as possible and does not lose any logic optimizations
already done. This way, only the k-cuts of the active node
are discarded (lost) because another thread can change the
graph structure and make such cuts inconsistent.

In the sequence, all 4-input cuts are evaluated in order to
figure out the best cut/structure to be used for rewriting.
The number of precomputed structures tried per cut can be
limited by using the parameter nStr, shown in line 15 of Al-
gorithm 2. When the operator reaches line 22, it means that
all necessary locks were acquired and the subgraph replace-
ment can be committed safely. In other words, the operator
cannot make the AIG inconsistent by aborting during the
subgraph replacement.

Finally, the last task of the operator is to evaluate the
fanouts of the active node and determine the ones that
may become active. We adopted other two auxiliary labels,
beyond the label active, to define the state of each AIG
node. Therefore, a node can be unprocessed (inactive), un-
der processing (active) or already processed (done). As the
k-cut enumeration is based on the cuts of previous levels,
an AND node can become active and pushed into the work-
list only when its two fanin nodes were already processed
(done). Such constraint is required to avoid inconsisten-
cies in k-cuts, which may be introduced when the operator
aborts its execution due to thread conflicts. The routine
pushFanoutNodes called in line 24 of Algorithm 2, is re-
sponsible for evaluating and pushing the fanout nodes that
are ready to become active.

5.2 Access to Shared Data Structures
This subsection presents the design of auxiliary data struc-

tures that work in a multi-threaded environment. Figure
1 shows how the data structures are organized and how
threads communicate.

Cut Manager is responsible for providing all necessary
routines and data structures for k-cut computation and stor-
age. When it comes to high-performance computing, it is
important to handle memory allocation efficiently. As the
k-cut enumeration creates a large set of cuts, it is wise to

Algorithm 2: Rewriting Manager Operator

1 RewritingManager begin

2 constructor(AIG, nStr, useZero, cutMan,
npnMan, strMan)

3 Function operator(node,GaloisCtx)

4 C = cutMan.computeKCuts(node);

5 lockFanoutNodes(node);
6 for each 4-input cut c in C do
7 lockFaninCone(node, c);

8 bestS = null;
9 bestG = -1;

10 for each 4-input cut c in C do
11 nSaved = computeMFFC(node, c);

12 f = cutMan.getCutFunction(node, c);
13 fnpn = npnMan.getRepresentative(f);
14 S = strMan.lookupStructures(fnpn);

15 for each structure s in S up to nStr do
16 nAdded = countAddedNodes(s, c);
17 gain = nSaved− nAdded;

18 if (gain > 0 || gain == 0 && useZero)
then

19 if (bestS == null || bestG < gain)
then

20 bestS = s;
21 bestG = gain;

22 if (bestS != null) then
23 updateAIG(node, bestS);

24 pushFanoutNodes(node, GaloisCtx);

use pre-allocated memory for cut storage. In this sense, we
designed the cut manager so that each thread has its own
memory pool. Thus, when a thread needs to compute k-
cuts, a thread-local pointer is used to get access to its own
memory pool, as shown in Fig. 1. This way, we unlock
the parallelism by avoiding dependencies among threads and
avoiding call to the operating system for memory allocation.
The initial size of each memory pool is defined according to
the initial AIG size and each memory pool is resized as neces-
sary. It is worth mentioning that, even though we are using
4-input cuts for rewriting, the proposed parallel k-cuts were
designed to compute cuts for any k. Moreover, the paral-
lel k-cut enumeration can be easily adapted to work during
technology mapping with priority cuts [16]. An evaluation
of parallel k-cuts is presented in the section of experimental
results showing scalability for large designs.

NPN Manager provides a fast NPN classification tailored
to work with 4-input Boolean functions. It provides NPN
classification in constant time as all of the 65,536 4-input
Boolean functions and their respective 222 classes are stored
in a hash table, including the inputs/output phase assign-
ments and permutations of each function. This manager is
strongly based on the ABC code [1] and does not require
any significant modification to work in a parallel environ-
ment. The only restriction is that the hash table must be
read-only, designed in such way that all threads can access
the data without any kind of locks or synchronization.

Structure Manager stores a set of precomputed structures
containing efficient implementations for a subset of 134 use-
ful NPN classes selected out of all 222 NPN classes. In [17],

Figure 1: Relationship among rewriting operator,
thread-local, and shared-memory data structures.

the authors defined as useful all 4-input Boolean functions
appearing as functions of 4-input cuts selected during AIG
rewriting on a set of benchmarks. We consider the same
set of structures as used in the ABC command rewrite but
change the method used to try a structure for a given cut.

Generally speaking, the precomputed structures act as
templates to guide the construction of improved and logi-
cally equivalent arrangements of AIG nodes. In this sense,
when a given structure is tried as a candidate for replace-
ment, it is needed to keep a temporary one-to-one assign-
ment between each node of the precomputed structure (”tem-
plate nodes”) and its corresponding AIG node (”real nodes”).
This one-to-one assignment is used to figure out how many
AIG nodes can be reused or must to be created for imple-
menting the new subgraph. In the reference method, such
one-to-one assignment is done using pointers from the nodes
of precomputed structures to their correspondent nodes in
the AIG. In other words, when a precomputed structure
is tried, it is necessary to write information in such a struc-
ture. Therefore, the main challenge in this step is that many
threads can try to use the same set of precomputed struc-
tures simultaneously, requiring an strategy to ensure mutual
exclusion.

We solve this issue by making the table of precomputed
structures read-only and using a thread-local data structure
for tracking the one-to-one assignment of nodes. The IDs
of nodes from precomputed structures are used to index
a thread-local map, which contains pointers to temporary
copies of the corresponding AIG nodes. This approach en-
ables parallelism in AIG rewriting, since many threads can
use the same precomputed structures simultaneously with-
out using locks.

Parallel-aware structural hashing is a reformulation of the

Figure 2: Proposed approach for decentralized
structural hashing. Assuming h as a hash func-
tion applied on the pair of edges/nodes, where com-
plemented edges are represented as apostrophes (’)
added to node ids.

conventional AIG structural hashing, making it more suit-
able to work in a parallel environment. Conventionally,
structural hashing is performed using a global hash table.
Each AIG node is added to this table using its fanins as a
hash key. This hash table is built when the AIG is parsed
and used during the operations that change the AIG struc-
ture. For instance, when a synthesis method is about to add
an AND node to the AIG, the hash table is used to ensure
that there is no replicated AND nodes with exactly the same
fanins. Therefore, if an equivalent node is found in the table,
it can be reused (shared). Otherwise, a new AND is created
and added to the table. However, notice that handling a
global hash table in a multi-threaded environment may lead
to a bottleneck.

Structural hashing plays an important role in AIG rewrit-
ing, allowing the identification and sharing of equivalent
AND nodes during subgraphs replacement. In line 14 of Al-
gorithm 2, the structural hashing lookup is intensively called
as an internal routine to determine how many nodes can be
reused if the current structure is used for rewriting the AIG.
In this context, we propose to use a decentralized scheme of
hash tables, which works efficiently for performing parallel
lookup, insertion and deletion of AIG nodes. The proposed
approach is based on the observation that structural hash-
ing relies on: given a pair of nodes (n1, n2) and a pair
of edge polarities (e1, e2), check if there exists a two-input
AND node n3, which is connected to the fanout of n1 and
n2 through the polarities e1 and e2, respectively. This task
can be solved by searching for node n3 directly in the fanout
of nodes n1 and n2, avoiding the use of a global hash table.

However, a linear search in the fanout of n1 and n2 may
be a time consuming task due to high fanout nodes. In this
sense, we are using a local hash table at each AIG node in
order to lookup its fanout nodes as fast as in conventional
structural hashing. Concerning the memory usage, we have
adopted a rule to ensure that each two-input AND node is
stored exactly once, only in the hash table of its fanin node
with the smallest identifier (id). For instance, assume that
node n3 has fanins n1 and n2 and assume that n1.id < n2.id.
In this case, n3 is stored only in the hash table of node
n1. This rule saves memory without losing the property of
conventional structural hashing.

In the context of the algorithm, it is only needed to per-
form a simple comparison of node ids to access the right hash

Table 1: Subset of EPFL arithmetic and random
control circuits after applying ABC double 10x (8x).

Benchmark PIs POs ANDs Levels

sin 10xd 24,576 25,600 5,545,984 225
arbiter 10xd 262,144 132,096 12,123,136 87
voter 10xd 1,025,024 1,024 14,088,192 70
square 10xd 65,536 131,072 18,927,616 250
sqrt 10xd 131,072 65,536 25,208,832 5,058
mult 10xd 131,072 131,072 27,711,488 274
log2 10xd 32,768 32,768 32,829,440 444
mem 10xd 1,232,896 1,260,544 47,960,064 114
hyp 8xd 65,536 32,768 54,869,760 24,801
div 10xd 131,072 131,072 58,620,928 4,372

table and, then, apply the conventional operations for node
lookup, insertion and deletion. Moreover, if a given thread
owns the locks for the pair of nodes n1 and n2, it means
that such thread has exclusive access to the hash tables of
these nodes, ensuring mutual exclusion. In other words, this
approach fits well with the Galois strategy to handle logical
locks.

Figure 2 illustrates an example of the decentralized ap-
proach for structural hashing. In this case, the structural
hashing for the AIG presented in the left side of Fig. 2 leads
to the set of non-empty hash tables of nodes 1, 2, 3, 5 and
7. In this case, nodes 4, 6, 8, 9 and 10 have empty ta-
bles because their respective fanouts are already registered
in the hash table of some node with smaller identifier. No-
tice that, such AIG has six AND nodes and the hash ta-
bles, altogether, also store only six nodes. This way we effi-
ciently manage memory usage, compared to the conventional
structural hashing. The benefits of the proposed approach
become more evident because logic sharing increases when
rewriting is applied to large AIGs.

6. EXPERIMENTAL RESULTS
The parallel AIG rewriting was implemented in C++ 11

using Galois system [19, 12]. Both the proposed method and
ABC [1] were compiled using GNU g++ version 6.1.0 and
executed in a 64-bit Linux distribution. The results were
collected on a server with 128GB of shared RAM and 4
processors Intel R©Xeon R©CPU E7- 4860 at 2.27GHz, where
each processor has 10 physical cores. We ran command &cec
in ABC to check the correctness of the parallel rewriting on
a large set of MCNC, ISCAS, and EPFL benchmarks.

In all of the experiments, we ran ABC and the parallel
rewriting five times for each design and for each number of
threads, in order to minimize the effects of external noise on
the runtime. Therefore, the results under comparison were
obtained by computing the average among five executions.
Since the Galois scheduling for handling thread conflicts is
non-deterministic, we compute the average size and depth
of the AIGs optimized by the parallel rewriting.

6.1 Benchmarks
The parallel rewriting is designed to target large AIGs.

However, the largest test cases available in public bench-
marks are three AIGs with more than ten million (MtM)
nodes from EPFL benchmark suite. These synthetic cir-
cuits contain structures that are quite different from those
found in practical designs. Therefore, we selected ten more
realistic designs: seven largest AIGs among the arithmetic
and three largest control circuits from EPFL benchmark [3].

In order to derive larger AIGs from these test cases, the
ABC command double was applied 10 times to each design,
except for the large “hyp” design, to which command double
was applied 8 times. This command doubles the size of a

Figure 3: Scalability of parallel k-cut compared to
ABC commands: (a) cut, K=4 and (b) cut, K=6.

given AIG by creating a copy of the original design. The
test cases generated using command double are still syn-
thetic but they are arguably more realistic than the MtM
designs. In the real designs, synthesis tools are applied to a
combinational logic cloud located between flip-flops in mul-
tiple design blocks. Since design blocks are often unrelated
to each other, the resulting logic cloud may look somewhat
similar to a set of copies of the same design used in the
adopted benchmarks. Table 1 presents test cases derived by
applying the command double.

6.2 Parallel K-Cuts Scalability
First, we present an evaluation of the standalone parallel

k-cut computation, since the cut enumeration is commonly
used in other logic synthesis methods. In this experiment,
the performance of the parallel k-cut enumeration is com-
pared to command cut in ABC [1], using 4-input and 6-input
cuts. The number of cuts per AIG node is limited to 20 for
6-input cuts and unbounded for 4-input cuts, i.e., ABC com-
mands: ”cut -K 6 -M 20 -a -t -x” and ”cut -K 4 -a -t -x” .
The remaining flags are used to disable some extra compu-
tations in order to perform a fair comparison between the
methods.

The parallel k-cut computation is executed using a given
number of threads, going from 1 to 40. Fig. 3(a) and Fig.
3(b) present the scalability of the 4-input and 6-input cut
enumeration, respectively. The parallel k-cut enumeration,
is up to 25x and 36x faster than the sequential version when
using k = 4 and k = 6 respectively. It can be observed that
the parallel k-cut enumeration scales reasonably well, which
could also motivate its use in a parallel technology mapping.

6.3 Parallel AIG Rewriting Scalability
In the following experiments, we compare the proposed

parallel AIG rewriting with commands rewrite and drw in

Table 2: Runtimes, in seconds, of the rewriting
methods under comparison.

Benchmark
ABC

rewrite -l
40 thr.

unbounded
ABC
drw

40 thr.
bounded

sin 10xd 155.96 6.54 99.13 2.86
arbiter 10xd 227.73 8.17 177.90 6.89
voter 10xd 425.49 13.86 238.05 10.29
square 10xd 492.96 14.09 302.75 6.49
sqrt 10xd 784.64 32.82 1,368.16 22.18
mult 10xd 770.70 21.38 460.28 11.39
log2 10xd 1,077.12 34.37 602.86 17.31
mem 10xd 623.16 23.41 611.56 19.91
hyp 8xd 1,451.22 40.93 988.28 19.74
div 10xd 1,575.80 81.15 1,223.83 58.39

ABC. In most of the practical applications, rewriting is ap-
plied to the same AIG several times, but since we focus on
comparing the parallel rewriting against the sequential one,
a single pass is used in each run.

Command rewrite by default does not limit the number
of cuts per node and the number of precomputed structures
tried per cut. Therefore, we ran the parallel rewriting with
these two parameters unbounded. Moreover, preserving logic
level during rewriting was disabled using switch ”-l”, i.e.,
rewrite -l. To measure the parallel rewriting scalability as
the number of threads increases, we ran the parallel method
with 1 to 40 threads. Fig. 4(a) shows the parallel rewriting
scalability. Rewriting with one thread is approximately 2x
faster than command rewrite while rewriting with 40 threads
is up to 36x faster. The proposed method running with one
thread is faster than command rewrite -l mainly due to dif-
ferent graph representation and structural hashing organi-
zation. Table 2 presents the runtimes for ABC rewrite -l
and for parallel rewriting with 40 threads unbounded.

Command drw is an improved version of command rewrite.
One of the main differences is the larger set of precomputed
structures used during rewriting. Moreover, drw accepts
some parameters to trade off QoR and runtime, making it
possible to limit the number of cuts per node and the num-
ber of precomputed structures per cut. In this experiment,
both methods under comparison were limited (bounded) to
eight cuts per node and five precomputed structures per cut,
which are the default values in drw. We also ran both meth-
ods without preserving logic level and increasing the number
of threads from 1 to 40. Fig. 4(b) shows that the parallel
rewriting had super-linear speedups in some cases.

Overall, the rewriting bounded running with one thread
is approximately 2.5x faster than the sequential command
drw while rewriting with 40 threads is up to 50x faster.
Since drw uses a more complete table of precomputed struc-
tures containing 222 Boolean functions, it is expected to
have variations in both runtime and QoR when compared
to the parallel method. This difference between algorithms
justifies the super-linear speedups and the particular behav-
ior in the scaling curve for the ”sqrt 10xd” design, shown in
Fig. 4(b). When processing ”sqrt 10xd”, drw algorithm per-
formed many more attempts for replacing subgraphs, lead-
ing to a higher execution time. In this test case, the pro-
posed method with one thread is approximately 6x faster
than drw, reaching a speedup peak of 68x with 28 threads.
The runtimes of command drw and parallel method with 40
threads bounded are presented in Table 2.

6.4 Parallel AIG Rewriting QoR
We also report the number of AIG nodes (size) and levels

(depth) obtained at each execution, allowing for compari-
son the parallel rewriting with commands rewrite and drw

Figure 4: Scalability of parallel rewriting compared
to ABC commands: (a) rewrite -l and (b) drw.

in terms of AIG size and depth. We consider the size and
depth of the rewriting with 40 threads as the baseline be-
cause it produced the largest speedup. Table 3 shows that
the parallel rewriting presents a small variation in the AIG
size and depth when compared to command rewrite (ref-
erence method). As shown in Table 4, the command drw
was able to reduce the AIG size and depth due to its more
complete set of precomputed structures. It is expected that,
using the same set of precomputed structures, the parallel
rewriting and the command drw present the same quality in
both the AIG size and depth.

6.5 QoR Variation
We performed previous experiments considering 10 differ-

ent designs, 12 different thread counts and 5 executions of
the same design for each thread count. This way, we pro-
duced 600 samples of runtime, AIG size and depth, i.e., 60
samples per design. Table 5 presents a comparison of QoR
variation for many executions of parallel rewriting. For each
design, we consider as the baseline the minimum size and
depth observed among the 60 samples. We calculate the
maximum percentage of variation from the minimum val-
ues. Table 5 shows that, the variations in AIG size have
been negligible. Besides, variations in terms of AIG depth
were zero for all the 600 executions. In summary, even when
different thread counts are used, the proposed approach pro-
duces similar solutions in terms of AIG size and depth.

7. CONCLUSIONS
This paper introduces a set of principles that allow for the

use of parallel computation in DAG-aware AIG rewriting.
We redesign the data structures and the implementation of
the traditional rewriting to match the Galois system. The
experiments demonstrate that the proposed approach speeds

Table 3: QoR of rewriting with 40 threads un-
bounded over ABC command rewrite -l.

ABC
rewrite -l

40 thr.
unbounded

Benchmark size depth size depth

sin 10xd 5,465,088 223 1.00 1.00
arbiter 10xd 12,123,136 87 1.00 1.00
voter 10xd 11,553,792 63 0.99 1.06
square 10xd 18,803,712 250 1.00 1.00
sqrt 10xd 18,923,520 6,048 1.00 1.00
mult 10xd 27,551,744 274 1.00 1.00
log2 10xd 32,304,128 443 1.00 1.00
mem 10xd 47,885,312 114 1.00 1.00
hyp 8xd 54,854,144 24,801 1.00 1.00
div 10xd 42,138,624 4,406 1.00 1.00

Table 4: QoR of rewriting with 40 threads bounded
over ABC command drw.

ABC
drw

40 thr.
bounded

Benchmark size depth size depth

sin 10xd 5,313,053 223 1.04 1.01
arbiter 10xd 12,123,136 87 1.00 1.00
voter 10xd 10,640,603 68 1.12 1.07
square 10xd 18,184,830 250 1.04 1.00
sqrt 10xd 18,924,544 6,048 1.00 1.00
mult 10xd 25,355,760 273 1.08 1.00
log2 10xd 30,475,035 423 1.05 1.05
mem 10xd 47,401,984 115 1.01 0.99
hyp 8xd 54,566,159 24,801 1.01 1.00
div 10xd 42,186,609 4,406 1.00 1.00

up logic synthesis without sacrificing QoR, when compared
to the traditional rewriting. The proposed approach scales
to many cores when applied to AIGs composed of millions of
nodes. Our implementation extends to other state-of-the-art
techniques, including technology mapping. Moreover, our
approach can be used in the context of stochastic synthesis
and technology mapping similar to Liu et al. [14].

ACKNOWLEDGEMENT
This research was partially supported by the Brazilian Fund-
ing Agencies CNPq and CAPES-PDSE and by NSF grants
1337217, 1337281, 1406355, 1618425, 1725322 and by DARPA
contracts FA8750-16-2-0004 and FA8650-15-C-7563.

References
[1] Berkeley Logic Synthesis and Verification Group. ABC:

A System for Sequential Synthesis and Verification.
http://www-cad.eecs.berkeley.edu/˜alanmi/abc.

[2] L. Amarú, P.-E. Gaillardon, and G. De Micheli.“Majority-
inverter graph: A novel data-structure and algorithms
for efficient logic optimization”. In Proc. DAC’14.

[3] L. Amarú, P.-E. Gaillardon, and G. De Micheli. “The
EPFL Combinational Benchmark Suite”. In Proc. IWLS’15.

[4] L. Amarú, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko,
P. E. Gaillardon, J. Olson, R. Brayton, and G. D.
Micheli. “Enabling exact delay synthesis”. In Proc. IC-
CAD’17, pp. 352-359.

[5] P. Bjesse and A. Boralv. “DAG-aware circuit compres-
sion for formal verification”. In Proc. ICCAD’04.

[6] R. Brayton and C. McMullen. “The Decomposition
and Factorization of Boolean Expressions”. In Proc.
ISCAS’82, pp. 29-54.

Table 5: QoR variation, considering 600 executions
of the parallel AIG rewriting unbounded.

size depth
Benchmark min max var. min max var.

sin 10xd 5,460,989 0.0001% 223 0%
arbiter 10xd 12,123,136 0.0000% 87 0%
voter 10xd 11,387,187 0.0124% 67 0%
square 10xd 18,775,062 0.0005% 250 0%
sqrt 10xd 18,923,520 0.0000% 6,048 0%
mult 10xd 27,520,256 0.0011% 274 0%
log2 10xd 32,302,022 0.0001% 443 0%
mem 10xd 47,884,313 0.0005% 114 0%
hyp 8xd 54,859,255 0.0000% 24,801 0%
div 10xd 42,154,768 0.0009% 4,407 0%

[7] S. Chatterjee, A. Mishchenko, R. K. Brayton, X. Wang,
and T. Kam. “Reducing structural bias in technology
mapping”. IEEE Trans. on Comput.-Aided Design of
Integr. Circuits and Syst., 25(12), 2006.

[8] J. Cortadella. “Timing-driven logic bi-decomposition”.
IEEE Trans. on Comp.-Aided Design of Integr. Cir-
cuits and Syst., 22(6):675–685, 2003.

[9] M. Elbayoumi, M. Choudhury, V. Kravets, A. Sullivan,
M. Hsiao, and M. Elnainay. “TACUE: A timing-aware
cuts enumeration algorithm for parallel synthesis”. In
Proc. DAC’14.

[10] W. Haaswijk, M. Soeken, L. Amarù, P. E. Gaillardon,
and G. D. Micheli. “A novel basis for logic rewriting”.
In Proc. ASP-DAC’17, pp. 151-156.

[11] A. Lenharth and K. Pingali. “Scaling Runtimes for Ir-
regular Algorithms to Large-Scale NUMA Systems”.
Computer, 48(8):35–44, 2015.

[12] A. Lenharth, D. Nguyen, and K. Pingali. “Parallel
graph analytics”. Comm. of the ACM, 59(5), 2016.

[13] N. Li and E. Dubrova. “AIG rewriting using 5-input
cuts”. In Proc. ICCD’11, pp. 429-430.

[14] G. Liu and Z. Zhang. “A Parallelized Iterative Im-
provement Approach to Area Optimization for LUT-
Based Technology Mapping”. In Proc. FPGA’17.

[15] A. Mishchenko and R. K. Brayton. “Scalable logic syn-
thesis using a simple circuit structure”. In Proc. IWLS’06.

[16] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton.
“Combinational and Sequential Mapping with Priority
Cuts”. In Proc. ICCAD’07, pp. 354-361.

[17] A. Mishchenko, S. Chatterjee, and R. Brayton. “DAG-
aware AIG rewriting: a fresh look at combinational
logic synthesis”. In Proc. DAC’06, pp. 532-535.

[18] Y. O. M. Moctar and P. Brisk.“Parallel FPGA routing
based on the operator formulation”. In Proc. DAC’14.

[19] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher,
M. A. Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth,
R. Manevich, M. Méndez-Lojo, et al. “The tao of par-
allelism in algorithms”. In ACM Sigplan Notices, vol-
ume 46 of number 6, 2011.

[20] M. Soeken, L. G. Amarù, P. E. Gaillardon, and G. D.
Micheli. “Optimizing Majority-Inverter Graphs with
functional hashing”. In Proc. DATE’16, pp. 1030-1035.

[21] L. Stok. “Developing Parallel EDA Tools [The Last
Byte]”. IEEE Design Test, 30(1):65–66, 2013.

[22] L. Stok. “The Next 25 Years in EDA: A Cloudy Fu-
ture?” IEEE Design & Test, 31(2), 2014.

[23] W. Yang, L. Wang, and A. Mishchenko. “Lazy man’s
logic synthesis”. In Proc. ICCAD’12, pp. 597-604.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

