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Abstract-The timing closure problem is one of the most important 
problems in the design automation. However, the rapid increase 
of the impact of the process variation on circuit timing makes the 
problem much more complicated and unpredictable to tackle in 
synthesis. This work addresses a new problem of high-level 
synthesis (HLS) that effectively takes into account the timing 
variation. Specifically, the work addresses the following four 
problems: (1) how can the statistical static timing analysis (SSTA) 
used in logic synthesis be modified and applied to the delay and 
yield computation in HLS? (2) how does the resource binding affect 
yield? (3) how does the scheduling affect yield? (4) how can 
scheduling and resource binding tasks be combined together to 
efficiently solve the problem with the objective of minimizing latency 
under yield constraint? 

  

I. INTRODUCTION 

The process variations cause a serious design problem today. 
Designing architecture/logic under the consideration of the 
worst case process margin is not a viable solution any more, 
because the degree of the variations in the new process 
technologies is very high. For example, variation on transistor 
parameters causes to 20X chip leakage variation and 30% chip 
performance variation across 1000 samples of a design 
manufactured in an 180nm technology [1]. To deal with the 
impact of these process variations on design, several analysis 
and/or optimization methods are developed, using statistical 
information. The works in [2], [3], [4], [5] attempted to 
estimate the yield of design considering the impact of 
variability on timing, whereas the works in [6], [7] estimated 
the yield considering power. In addition, the works in [8], [9] 
and in [10], [11] proposed timing yield and power yield 
optimization approaches, respectively. 

This work belongs to the performance (timing) yield 
optimization in high-level synthesis (HLS). While there have 
been proposed several effective approaches [2], [3], [4], [5] on 
logic level optimization using statistical static timing analysis 
(SSTA), the problem of HLS with the consideration of timing 
variation has not been well established and solved so far. Very 
recently, the HLS work in [12] took into account the timing 
variation. However, its critical limitation is that the 
performance yield constraint is not directly combined with the 
scheduling and resource binding, in that once an iteration of 
scheduling and binding of simulated annealing (SA) is 
completed, SSTA is applied to the scheduled and bound DFG 
(dataflow graph) to obtain delay distribution, which definitely 
causes the low chance of finding a better solution of scheduling 
and binding in SA. 

II. TIMING VARIATION-AWARE HIGH-LEVEL SYNTHESIS 

The two major tasks in HLS are operation scheduling and 
resource binding. The conventional scheduling algorithms 
usually use the worst case delay of each functional unit to 
schedule operations to clock steps. However, too much is 
sacrificed. That is, as the delay variation of the fabricated 
functional unit continuously increases, the use of the worst 
case delay is not possible because it allows too much slack 
time to be wasted in clock steps even if it always guarantees 
100% performance yield. A better method will be to find a 
much tighter schedule at the expense of a slight loss of 
performance yield. Consequently, statistical delay information 
is necessary in the scheduling and resource binding. The key 
concern is how the statistical information is efficiently 
manipulated and effectively used in the process of scheduling 
and resource binding. 

 
First, let us show how trading performance yield with 

latency looks like, using small examples. Fig. 1(a) and (b) 
show the Gaussian delay distributions of a multiplier and an 
adder, respectively. In addition, Fig. 1(c) shows the delay 
distribution of a chain of multiplier in (a) followed by an adder 
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Fig. 1.  An example showing the trade-off between schedule length (in cycles)
and performance yield in the presence of timing variation of resources (1 cycle
delay = 5ns). 
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in (b). A conventional scheduling method schedules a 
multiplication operation in Fig. 1(a) in 9 cycles because the 
worst case delay of a multiplier is 9 cycles. However, if we 
sacrifice 14.7% yield, we can schedule the operation in 8 
cycles, saving 1 cycle. Furthermore, if multiple operations are 
involved in scheduling, much shorter latency of schedule can 
be obtained even with a better performance yield. For example, 
for the two consecutive operations in Fig. 1(c), the 
conventional method schedules them in 10 cycles (= 1 + 9). 
However, if we examine the delay distribution of the 
corresponding hardware modules, as shown in Fig. 1(c), we 
can schedule the operations in 9 cycles at the expense of only 
7.6% yield loss. 

 

A. Statistical Static Timing Analysis in HLS 
To check the timing of operations in the process of scheduling 
and resource binding, a statistical static timing analysis (SSTA) 
of the resources is required. There have been many SSTA 
works on logic circuits. To accurately model the circuit delay 
variations, most of the works use the continuous delay 
distributions [4], [9], [13] of logic gates. However, in HLS 
such a continuous delay distribution can cause a serious run 
time problem because we need to recompute the delay 
distribution for each attempt of scheduling and resource 
binding. Consequently, a discrete delay distribution would be a 
better choice for timing analysis in HLS. One noticeable work 
on the discrete delay model is that in [14] where it generates a 
discretized probability density function (PDF) based on the 
continuous PDFs of logic cells. For example, Fig. 2(a) shows 
discretized delay PDFs of resources Add1, Add2, Mul, and Div 
where Add1 and Add2 take delays of 1 and 2 units of time with 
probabilities of 2/5 and 3/5, respectively, Mul takes delay of 3 
with probability of 1, and Div takes delays of 2 and 3 with 
probabilities of 1/2 and 1/2, respectively. 
 

B. Variation-Aware Resource Binding 
Fig. 2 shows how the resource binding affects the performance 
yield. Let us consider two binding solutions, CASE 1 and 
CASE 2 in Fig. 2(b) for a scheduled DFG using the available 
four resources in Fig. 2(a). Note that in the binding of CASE 2, 
addition operations op1 and op3 scheduled in different clock 
steps are both bound to Add1, but in CASE 1, op1 is bound to 
Add1 and op3 is bound to Add2. From the results of resource 
binding, we can compute their delays. The first four columns in 
the table of Fig. 2(c) show all the delay combinations of 
resources with their probabilities in the fifth column. For 
example, 1, 1, 3, 2 in the row marked by ‘→’ in Fig. 2(c) 
represent the delays of Add1, Add2, Mul, Div with 
probabilities of 2/5, 2/5, 1, 1/2, respectively. The product of 
those probabilities equals to 4/50 (=(2/5)*(2/5)*1*(1/2)) in the 
fifth column. From each combination of delays, we can 
compute the execution time at each clock step. The longest 
execution time (i.e., final delay) will be the delay of the 
corresponding binding solution. The last two columns in Fig. 

2(c) show the final delays of bindings CASE 1 and CASE 2. 
For example, the circled number ‘4’ in the last column is the 
maximum delay of the delays in clock steps 1 and 2 whose 
computation is shown in the right side of Fig. 2(c). When we 
assume that clock period is 4 time units, the combinations of 
delays which lead to no clock period violation for CASE 1 are 
the first three (rows) in the table while the first four (rows) in 
CASE 2. Consequently, the performance yield computations 
for CASE 1 and CASE 2 are the sums of the probabilities of 
the corresponding three and four combinations in the table, 
respectively, as indicated by the dotted circles in Fig. 2(c). As 
we can see the yield numbers in Fig. 2(b), resource “sharing” 
gives a positive effect on the performance yield. 
 
Observation 1: Let G1 be a scheduled and resource bound 
DFG where operations op1 and op2, scheduled at clock step c1 
and c2, are bound to the same resource r1, and G2 be the same 
as G1 except op1 and op2 are bound to r1 and r2, respectively. 
In addition, let YG denote the performance yield of G. Then, 
YG1 ≥ YG2 . (We omit the proof due to space limitations.) 

According to Observation 1, it is highly desirable to perform 
as many resource sharings as possible. The problem is how to 
maximize the resource sharing systematically, taking into 
account the binding conflicts among the operations. This is the 
main concern of our proposed timing variation-aware HLS 
algorithm, HLS-tv, which will be presented in Section II-D. 
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Fig. 2.  Examples showing the effect of resource binding on performance yield.
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Observation 2: Note that in terms of performance yield 
calculation the two subgraphs in Fig. 3(a) are identical. We can 
easily check that the delay PDFs of the two subgraphs in Fig. 
3(b) are the same. This leads to defining a concept called yield-
equivalent. Combined with Observation 1, finding such a set of 
similar subgraphs in DFG and trying to bind resources among 
the operations in the subgraphs can improve the yield. 

 
Definition 1: Two connected operation subgraphs u1 and u2 of 
DFG are called in yield-equivalent relation if they satisfy: 
(1) The numbers of paths from top to bottom in u1 and u2 are 
the same; 
(2) For every path in u1 (u2), there is a path in u2 (u1) such 
that the sets of the operations on the two paths are the same; 
(3) For every path in u1 (u2), there is a path in u2 (u1) such 
that the sets of the resources bound to the operations on the two 
paths are the same; 
(4) u1 and u2 are scheduled to the same number of clock steps. 

In addition, u1 and u2 are called potentially yield-equivalent 
if they satisfy conditions (1) and (2) only. The condition (3) 
defines yield-equivalent binding and the condition (4) defines 
yield-equivalent scheduling. So, if two potentially yield-
equivalent subgrahps u1 and u2 are yield-equivalently bound 
and scheduled, they become yield-equivalent. Since two yield-
equivalent subgraphs u1 and u2 have the same delay 
distribution, either u1 or u2 should be considered in calculating 
performance yield. Hence, a set of yield-equivalent subgraphs 
can be represented by one element in it. This element is called 
yield-equivalent pattern. 

 
Yield-equivalent pattern µ is characterized by two values, t 

and DP(t), that is, µ(t,DP(t)) where t is the number of clock 
steps the pattern takes for execution and DP(t) represents the 
discretized PDF of the pattern's delay. Then, the performance 
yield constrained HLS problem we want to solve can be 
formulated as: 
Problem 1: Under a given resource set R and a yield constraint 
κ (≤ 1) find the optimal set L = {µ1,µ2,…} of yield-equivalent 
patterns such that (i) L disjointly covers all the operations in 
DFG, (ii) (the performance yield of L) ≥ κ, where the 
performance yield is computed in the tabular method using 
DP(t)s of µis, and (iii) the total latency is minimal. 

C. Variation-Aware Scheduling and Binding 
The objective of variation-aware scheduling is to find a 
schedule of operations that minimizes the latency under 
resource and performance yield constraints. If only the worst 
case delays of resources are used in scheduling, the 
performance yield will be always satisfied, but the latency is 
too long. For example, Fig. 4(a) shows such a schedule, 
confirming 100% yield. On the other hand, Fig. 4(b) shows the 
case where the two subgraphs op1→op2 and op3→op4 are 
yield-equivalently bound to resources and scheduled in two 
clock steps rather than three clock steps, and another subgraph 
op5→op6 is scheduled in two clock steps, by which the overall 
yield is down. But it is still above the yield constraint of 80%, 
resulting in the latency reduced by one clock. Here, the key 
point in scheduling (together with resource binding) is to find 
as many subgraphs that are potentially yield-equivalent each 
other as possible, because only one of the PDFs of the yield-
equivalent subgraphs contributes to the resultant yield. 

In the example of Fig. 4(b), suppose the discretized 
probability (DP) that op1→op2 with op1 bound to Mul1 and 
op2 bound to Add1 to be executed in two clock steps is 0.9, 
and DP that op5→op6 with op5 bound to Mul2 and op6 bound 
to Add2 to be executed in two clock steps is 0.9. Then, since 
op1→op2 and op3→op4 are yield-equivalent and the 
operations other than op1 through op4 are scheduled and 
bound with their DPs all 1.0, the final yield becomes 0.9 (for 
op1→op2 and op3→op4) *0.9 (for op5→op6) = 81%. 

 

D. Integrated Algorithm for Variation-Aware Scheduling and 
Resource Binding 

As shown in the Fig. 4, to effectively find yield-equivalent 
patterns, it is necessary to perform scheduling and resource 
binding simultaneously. The input to our algorithm HLS-tv is a 
DFG with resource set R and yield constraint к to satisfy. 

Essentially, HLS-tv is based on the branch-and-bound strat-
egy in an attempt to search all (potentially) yield-equivalent 
subgraphs. The algorithm builds an optimal set of yield-
equivalent patterns iteratively. To speed up the search process, 
our algorithm adopts a concept of window-based search in 
DFG. 
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Definition 2: Window W is defined to be the maximum 
consecutive clock steps beyond which no subgraphs satisfy the 
resource constraint. Frontier operations in a window are the 
operations scheduled in the beginning clock step of the 
window. 

HLS-tv recursively performs the two steps: (Step 1) select-
ing the frontier operations and setting a window; (Step 2) 
extracting yield-equivalent subgraphs from the window and 
finding their combination that minimizes the latency under the 
yield constraint. We explain the procedure of HLS-tv with the 
example in Fig. 5. 

Suppose the available resources are two multipliers (Mul1, 
Mul2) and two adders (Add1, Add2) for the DFG in Fig. 5(a). 
Moreover, we assume the performance yield κ=0.8. For a 
multiplication DP(t =1cycle) = 0.7 and DP(t =2cycles) = 1.0, 
for an addition, DP(t = 1cycle) = 1.0 and DP(t = 2cycles) = 1.0, 
for two consecutive additions, DP(t =1cycle) = 0.75, and for an 
addition followed by a multiplication (or a multiplication 
followed by an addition), DP(t = 2cycles) = 0.9 and DP(t = 
3cycles) = 1.0. 

In Step 1, we extract W from DFG with frontier operations. 
Let's focus on clock step 1 where operations op1, op2, and op3 
become the frontier operations. We set a window W (i.e., Step 
1) for the frontiers according to Definition 2. The outer box 
shows W. We can see that if another operation were added to 
W, some pattern extracted from W would violate resource 

constraint (e.g., if op5 were added to W, pattern {op1, op2, 
op5} would require 3 multipliers). In Step 2, from W, we can 
extract yield-equivalent operation patterns; there are four 
patterns: (case1) multiplication to be scheduled in a single 
clock step; (case2) multiplication in two clock steps; (case3) 
addition in a single clock step; (case4) two consecutive 
additions in a single clock step. Here, the valid ones are case2 
and case3 because the other cases’ DP(·) values are less than κ 
(=0.8). Furthermore, since the DP(·) values of cases2 and 
cases3 are all 1.0, we don’t need to include the patterns in the 
set L of yield-equivalent patterns. Then, the two steps are 
repeated. The selection of new frontier operations is performed 
by the following rules: 
(a) The children (operations) of previous frontiers whose yield-
equivalent patterns are not in L; 
(b) The children (operations) of the last yield-equivalent 
patterns included in L; 
(c) The unscheduled operations which can be scheduled at the 
same clock steps with some operations obtained by (a) and (b). 
In Fig. 5(b), new frontier op4 and op5 are obtained by (a), op6 
by (c). An example of applying rule (b) will be found in the 
next iteration. Window W now includes op4,…, op8. Note that 
a window is not always rectangular. Among subgraphs in W, 
suppose we select subgraph {op5, op7} (Fig. 5(c)). Since its 
DP(t =2cycles) is greater than κ, it is added to L. Note that we 
can also select subgraph {op6, op8}. However, it can be easily 
seen that adding one more pattern to L doesn't reduce the 
latency any more at the expense of the decrease of yield from 
0.9 to 0.81=0.9*0.9. Now, we proceed to the next iteration. In 
Fig. 5(d), new frontier op10 is obtained by rule (b). In the new 
window, we choose two subgraphs: {op8, op10}, {op9, op11}. 
The first subgraph is potentially yield-equivalent to the element 
in L. Thus, we perform yield-equivalent binding from L: op8 is 
bound to Add1, op10 to Mul1. The second subgraph is also 
potentially yield-equivalent, but there is no yield-equivalent 
binding from L because the first one has already used Add1 
and Mul1. In this case, we need to find a binding that 
maximizes resource sharing to minimize the decrease of yield. 
(See Observation 1.) There is only one binding choice: op9 to 
Mul2 and op11 to Add2. The bound subgraph is included to L 
and yield is updated to 0.81(=0.9*0.9), which is still above κ = 
0.8, as shown in Fig. 5(e). Now, all operations are scheduled 
and bound with the latency of 6. We are now in the final stage 
of finding one of solutions, following through one branch of 
search tree, from which HLS-tv applies the backtracking 
strategy in the branch-and-bound method. 
 

III. EXPERIMENTAL RESULTS 

We have implemented our proposed timing variation-aware 
HLS algorithm HLS-tv in C++, ran on a PC equipped with 
3.06GHz XEON processor, and tested it on a set of HLS 
benchmarks to assess the effectiveness of HLS-tv. We use the 
data in [16] for the statistical delay distribution of resources, 
ALU (addition/subtraction) and MUL (multiplication): ALU 
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follows a normal Gaussian delay distribution of μ = 2.5ns, σ = 
0.125ns. We extract four sample points at μ-3σ, μ-σ, μ+σ, μ+3σ. 
MUL also follows a normal Gaussian distribution of μ = 25ns, 
σ = 1.25ns. We extract 11 points with delay of 0.75ns for the 
interval between the consecutive points. Table I and Table II 
show the comparisons of results produced by list scheduling 
based timing variation-unaware method [15] and our HLS-tv 
under yield constraints of 90% and 80%, respectively. In short, 
HLS-tv is able to reduce the latency by 18.8% and 20.2% on 
average with only 7.1% and 11.9% yield penalties, respectively. 

IV. CONCLUSION 

In this paper we presented a solid and effective solution to the 
problem of timing variation-aware high-level synthesis (HLS). 
Our study showed that both of resource binding and scheduling 
significantly affected the results of performance yield HLS. 
This work comprehensively investigated and addressed the 
following new problems in HLS: (1) how can the statistical 
static time analysis (SSTA) used in logic synthesis be modified 
and applied to the delay and yield computation in HLS? (2) 
how does the resource binding affect yield? (3) how does the 
scheduling affect yield? The key concept introduced to solve 
the problems efficiently and effectively was yield-equivalent 
pattern. This work (4) proposed a performance yield con-
strained integrated HLS algorithm based on the concept. It has 
been experimentally shown that our algorithm can effectively 
reduce the latency. 

ACKNOWLEDGMENT 

This research work has been supported by Nano IP/SoC 
Promotion Group of Seoul R&BD Program in 2007, and also 
by IT-SoC Program and ETRI project. This work was also 
partially supported by the Ministry of Science and Technology 
(MOST)/Korea Science and Engineering Foundation (KOSEF) 
through the Advanced Information Technology Research 
Center (AITrc). 

 REFERENCES 
[1] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, 

“Parameter variations and impact on circuits and microarchitecture,” In 
Proc. DAC, pp. 338-342, 2003. 

[2] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering 
spatial correlations using a single PERT-like traversal,” In Proc. ICCAD, 
pp. 621-625, 2003. 

[3] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and S. 
Narayan, “First-order incremental block-based statistical timing 
analysis,” In Proc. DAC, pp. 331-336, 2004. 

[4] A. Agarwal, V. Zolotov, and D. T. Blaauw, “Statistical timing analysis 
using bounds and selective enumeration,” IEEE TCAD, pp. 1243-1260, 
September 2003. 

[5] M. Orshansky and A. Bandyopadhyay, “Fast statistical timing analysis 
handling arbitrary correlations,” In Proc. DAC, pp. 337-342, 2004. 

[6] R. Rao, A. Srivastava, D. Blaauw, and D. Sylvester, “Statistical analysis 
of subthreshold leakage current for VLSI circuits,” IEEE  TVLS, pp. 131-
139, February 2004. 

[7] S. Narendra, V. De, S. Borkar, D. Antoniadis, and A. Chandrakasan, 
“Full-chip subthreshold leakage power prediction model for sub-0.18µm 
CMOS,” In Proc. ISLPED, pp. 19-23, 2002. 

[8] S. Raj, S. Vrudhula, and J. Wang, “A methodology to improve timing 
yield in the presence of process variation,” In Proc. DAC, pp. 448-453, 
2004. 

[9] S. Choi, B. C. Paul, and K. Roy, “Novel sizing algorithm for yield 
improvement under process variation in nanometer technology,” In Proc. 
DAC, pp. 454-459, 2004. 

[10] A. Srivastava, D. Sylvester, and D. Blaauw, “Statistical optimization of 
leakage power considering process variation using dual-Vth and sizing,” 
In Proc. DAC, pp. 773-778, 2004. 

[11] A. Davoodi, V. Khandelwal, and A. Srivastava, “Variability inspired 
implementation selection problem,” In Proc. ICCAD, pp. 423-427, 2004. 

[12] W.-L. Hung, X. Wu, and Y. Xie, “Guaranteeing performance yield in 
high-level synthesis,” In Proc. ICCAD, pp. 303-309, 2006. 

[13] A. Srivastava, D. Sylvester, and D. Blaauw, Statistical analysis and 
optimization for VLSI: timing and power, Springer 2005. 

[14] J. -J. Liou, K. -T. Cheng, S. Kundu, and A. Krstic, “Fast statistical timing 
analysis by probabilistic event propagation,” In Proc. DAC, pp.661-666, 
2001. 

[15] Giovanni De Micheli, Synthesis and Optimization of Digital Circuits, 
New York, McGraw Hill, 1994. 

[16] K. Kang, B. C. Paul, and K. Roy, “Statistical timing analysis using 
levelized covariance propagation,” In Proc. DATE, pp. 764-769, 2005. 

 
TABLE I 

COMPARISONS OF RESULTS PRODUCED BY A CONVENTIONAL LS BASED ON [15] 

AND OUR HLS-tv  UNDER  PERFORMANCE YIELD CONSTRAINT OF 90% 

 
 TABLE II 

COMPARISONS OF RESULTS PRODUCED BY A CONVENTIONAL LS BASED ON [15] 

AND OUR HLS-tv  UNDER  PERFORMANCE YIELD CONSTRAINT OF 80% 

 

Latency(cycles) Design
(#ops) 

#ALU,
#MUL

pclk 

(ns) LS[15] HLS-tv(Y) 
Reduction Run 

time(s)

3.5 32 28 (94.5%) 12.5% 928 
4.0 29 24 (90.7%) 17.2% 930 

 
DIFF 
(18) 

 
3, 3 

4.5 26 22 (93.2%) 15.4% 637 
3.5 47 36 (94.3%) 23.4% 2122 
4.0 42 32 (94.3%) 23.8% 3325 

 
LATT 
(22) 

 
3, 2 

4.5 37 30 (90.2%) 18.9% 1207 
3.5 57 45 (93.9%) 21.1% 1241 
4.0 51 40 (93.9%) 21.6% 1534 

 
AR 
(28) 

 
2, 3 

4.5 45 36 (90.8%) 20.0% 680 
3.5 46 37 (93.6%) 19.6% 157 
4.0 42 34 (93.6%) 19.0% 367 

 
EWF 
(34) 

 
2, 3 

4.5 38 33 (91.5%) 13.2% 113 
avg.    - (92.9%) 18.8%  

Latency(cycles) Design
(#ops) 

#ALU,
#MUL

pclk 

(ns) LS[15] HLS-tv(Y) 
Reduction Run 

time(s)

3.5 32 27 (80.8%) 15.6% 1267 
4.0 29 24 (90.7%) 17.2% 1210 

 
DIFF 
(18) 

 
3, 3 

4.5 26 21 (80.1%) 19.2% 1282 
3.5 47 36 (94.3%) 23.4% 4467 
4.0 42 32 (94.3%) 23.8% 4492 

 
LATT 
(22) 

 
3, 2 

4.5 37 29 (82.5%) 21.6% 3611 
3.5 57 45 (93.9%) 21.1% 2079 
4.0 51 40 (93.9%) 21.6% 2491 

 
AR 
(28) 

 
2, 3 

4.5 45 36 (90.8%) 20.0% 1216 
3.5 46 36 (80.2%) 21.7% 478 
4.0 42 33 (93.6%) 21.4% 490 

 
EWF 
(34) 

 
2, 3 

4.5 38 32 (81.9%) 15.8% 372 
avg.    - (88.1%) 20.2%  
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