
Timing Variation-Aware High-Level Synthesis

Jongyoon Jung Taewhan Kim
School of Electrical Engineering and Computer Science School of Electrical Engineering and Computer Science

Seoul National University, Korea Seoul National University, Korea
bellrich@ssl.snu.ac.kr tkim@ssl.snu.ac.kr

Abstract-The timing closure problem is one of the most important
problems in the design automation. However, the rapid increase
of the impact of the process variation on circuit timing makes the
problem much more complicated and unpredictable to tackle in
synthesis. This work addresses a new problem of high-level
synthesis (HLS) that effectively takes into account the timing
variation. Specifically, the work addresses the following four
problems: (1) how can the statistical static timing analysis (SSTA)
used in logic synthesis be modified and applied to the delay and
yield computation in HLS? (2) how does the resource binding affect
yield? (3) how does the scheduling affect yield? (4) how can
scheduling and resource binding tasks be combined together to
efficiently solve the problem with the objective of minimizing latency
under yield constraint?

I. INTRODUCTION

The process variations cause a serious design problem today.
Designing architecture/logic under the consideration of the
worst case process margin is not a viable solution any more,
because the degree of the variations in the new process
technologies is very high. For example, variation on transistor
parameters causes to 20X chip leakage variation and 30% chip
performance variation across 1000 samples of a design
manufactured in an 180nm technology [1]. To deal with the
impact of these process variations on design, several analysis
and/or optimization methods are developed, using statistical
information. The works in [2], [3], [4], [5] attempted to
estimate the yield of design considering the impact of
variability on timing, whereas the works in [6], [7] estimated
the yield considering power. In addition, the works in [8], [9]
and in [10], [11] proposed timing yield and power yield
optimization approaches, respectively.

This work belongs to the performance (timing) yield
optimization in high-level synthesis (HLS). While there have
been proposed several effective approaches [2], [3], [4], [5] on
logic level optimization using statistical static timing analysis
(SSTA), the problem of HLS with the consideration of timing
variation has not been well established and solved so far. Very
recently, the HLS work in [12] took into account the timing
variation. However, its critical limitation is that the
performance yield constraint is not directly combined with the
scheduling and resource binding, in that once an iteration of
scheduling and binding of simulated annealing (SA) is
completed, SSTA is applied to the scheduled and bound DFG
(dataflow graph) to obtain delay distribution, which definitely
causes the low chance of finding a better solution of scheduling
and binding in SA.

II. TIMING VARIATION-AWARE HIGH-LEVEL SYNTHESIS

The two major tasks in HLS are operation scheduling and
resource binding. The conventional scheduling algorithms
usually use the worst case delay of each functional unit to
schedule operations to clock steps. However, too much is
sacrificed. That is, as the delay variation of the fabricated
functional unit continuously increases, the use of the worst
case delay is not possible because it allows too much slack
time to be wasted in clock steps even if it always guarantees
100% performance yield. A better method will be to find a
much tighter schedule at the expense of a slight loss of
performance yield. Consequently, statistical delay information
is necessary in the scheduling and resource binding. The key
concern is how the statistical information is efficiently
manipulated and effectively used in the process of scheduling
and resource binding.

First, let us show how trading performance yield with

latency looks like, using small examples. Fig. 1(a) and (b)
show the Gaussian delay distributions of a multiplier and an
adder, respectively. In addition, Fig. 1(c) shows the delay
distribution of a chain of multiplier in (a) followed by an adder

4ns

+

4.6ns
5ns

42ns 47.7ns

45ns 50ns

92.4% 7.6%

(10 cycles)(9 cycles)

*

38ns 43.7ns
40ns 45ns

85.3%
14.7%

(8 cycles) (9 cycles) (1 cycle)

* +

(a) Mul

(Sum of two gaussiandistributions)

(b) Add

(c) Mul + Add

*

+

Fig. 1. An example showing the trade-off between schedule length (in cycles)
and performance yield in the presence of timing variation of resources (1 cycle
delay = 5ns).

1-4244-1382-6/07/$25.00 ©2007 IEEE 424

in (b). A conventional scheduling method schedules a
multiplication operation in Fig. 1(a) in 9 cycles because the
worst case delay of a multiplier is 9 cycles. However, if we
sacrifice 14.7% yield, we can schedule the operation in 8
cycles, saving 1 cycle. Furthermore, if multiple operations are
involved in scheduling, much shorter latency of schedule can
be obtained even with a better performance yield. For example,
for the two consecutive operations in Fig. 1(c), the
conventional method schedules them in 10 cycles (= 1 + 9).
However, if we examine the delay distribution of the
corresponding hardware modules, as shown in Fig. 1(c), we
can schedule the operations in 9 cycles at the expense of only
7.6% yield loss.

A. Statistical Static Timing Analysis in HLS
To check the timing of operations in the process of scheduling
and resource binding, a statistical static timing analysis (SSTA)
of the resources is required. There have been many SSTA
works on logic circuits. To accurately model the circuit delay
variations, most of the works use the continuous delay
distributions [4], [9], [13] of logic gates. However, in HLS
such a continuous delay distribution can cause a serious run
time problem because we need to recompute the delay
distribution for each attempt of scheduling and resource
binding. Consequently, a discrete delay distribution would be a
better choice for timing analysis in HLS. One noticeable work
on the discrete delay model is that in [14] where it generates a
discretized probability density function (PDF) based on the
continuous PDFs of logic cells. For example, Fig. 2(a) shows
discretized delay PDFs of resources Add1, Add2, Mul, and Div
where Add1 and Add2 take delays of 1 and 2 units of time with
probabilities of 2/5 and 3/5, respectively, Mul takes delay of 3
with probability of 1, and Div takes delays of 2 and 3 with
probabilities of 1/2 and 1/2, respectively.

B. Variation-Aware Resource Binding
Fig. 2 shows how the resource binding affects the performance
yield. Let us consider two binding solutions, CASE 1 and
CASE 2 in Fig. 2(b) for a scheduled DFG using the available
four resources in Fig. 2(a). Note that in the binding of CASE 2,
addition operations op1 and op3 scheduled in different clock
steps are both bound to Add1, but in CASE 1, op1 is bound to
Add1 and op3 is bound to Add2. From the results of resource
binding, we can compute their delays. The first four columns in
the table of Fig. 2(c) show all the delay combinations of
resources with their probabilities in the fifth column. For
example, 1, 1, 3, 2 in the row marked by ‘→’ in Fig. 2(c)
represent the delays of Add1, Add2, Mul, Div with
probabilities of 2/5, 2/5, 1, 1/2, respectively. The product of
those probabilities equals to 4/50 (=(2/5)*(2/5)*1*(1/2)) in the
fifth column. From each combination of delays, we can
compute the execution time at each clock step. The longest
execution time (i.e., final delay) will be the delay of the
corresponding binding solution. The last two columns in Fig.

2(c) show the final delays of bindings CASE 1 and CASE 2.
For example, the circled number ‘4’ in the last column is the
maximum delay of the delays in clock steps 1 and 2 whose
computation is shown in the right side of Fig. 2(c). When we
assume that clock period is 4 time units, the combinations of
delays which lead to no clock period violation for CASE 1 are
the first three (rows) in the table while the first four (rows) in
CASE 2. Consequently, the performance yield computations
for CASE 1 and CASE 2 are the sums of the probabilities of
the corresponding three and four combinations in the table,
respectively, as indicated by the dotted circles in Fig. 2(c). As
we can see the yield numbers in Fig. 2(b), resource “sharing”
gives a positive effect on the performance yield.

Observation 1: Let G1 be a scheduled and resource bound
DFG where operations op1 and op2, scheduled at clock step c1
and c2, are bound to the same resource r1, and G2 be the same
as G1 except op1 and op2 are bound to r1 and r2, respectively.
In addition, let YG denote the performance yield of G. Then,
YG1 ≥ YG2 . (We omit the proof due to space limitations.)

According to Observation 1, it is highly desirable to perform
as many resource sharings as possible. The problem is how to
maximize the resource sharing systematically, taking into
account the binding conflicts among the operations. This is the
main concern of our proposed timing variation-aware HLS
algorithm, HLS-tv, which will be presented in Section II-D.

1

3

+ + * /

+

*

+

/

+

* /

discretized
delay PDF

resource

Add2 Mul Div

CASE 2
delay delay delay delay

CASE 1

final delay in (b)

(a) The given resources and discretized PDFs of their delays.

(b) Two possible resource bindings for a scheduled DFG and performance yield
 computation using the statistical delay data in (c), assuming clock_period = 4

(c) Statistical delay calculations for resource bindings in (b) using the PDFs in (a)

prob.

1 1 3 2 4 4

1 1 3 3 4 4

1 32 2 44

1 3 3 52 4

12 3 5 52

12 3 3 5 5

2 2 3 5 52

2 3 3 5 52

4/50

4/50

6/50

6/50

9/50

9/50

6/50

6/50

3/5

1 2 1 2 2 3

1/2 1/2

3/5

2/52/5

of Mulof Add2of Add1 of Div

= max{4,4} = 4

= max{4,5} = 5

max{D(Add1)+D(Mult), D(Add2)+D(Div)}

cases of no timing violation

when clock_period=4

bound to Add2

max{D(Add1)+D(Mult), D(Add1)+D(Div)}

data path

Add1

data path
Add2

Mul Div Mul Div

Add1 Add1

D: delay

+

op2

op3

op4

+
op1

/

*

c_step1

c_step2

CASE 1

bound to Add1

yield = 4/50+4/50+6/50 = 28%

resource sharing

+

op2

op3

op4

+
op1

/

*

CASE 2

bound to Add1

bound to Add1

yield = 4/50+4/50+6/50+6/50
= 40%

Fig. 2. Examples showing the effect of resource binding on performance yield.

425

Observation 2: Note that in terms of performance yield
calculation the two subgraphs in Fig. 3(a) are identical. We can
easily check that the delay PDFs of the two subgraphs in Fig.
3(b) are the same. This leads to defining a concept called yield-
equivalent. Combined with Observation 1, finding such a set of
similar subgraphs in DFG and trying to bind resources among
the operations in the subgraphs can improve the yield.

Definition 1: Two connected operation subgraphs u1 and u2 of
DFG are called in yield-equivalent relation if they satisfy:
(1) The numbers of paths from top to bottom in u1 and u2 are
the same;
(2) For every path in u1 (u2), there is a path in u2 (u1) such
that the sets of the operations on the two paths are the same;
(3) For every path in u1 (u2), there is a path in u2 (u1) such
that the sets of the resources bound to the operations on the two
paths are the same;
(4) u1 and u2 are scheduled to the same number of clock steps.

In addition, u1 and u2 are called potentially yield-equivalent
if they satisfy conditions (1) and (2) only. The condition (3)
defines yield-equivalent binding and the condition (4) defines
yield-equivalent scheduling. So, if two potentially yield-
equivalent subgrahps u1 and u2 are yield-equivalently bound
and scheduled, they become yield-equivalent. Since two yield-
equivalent subgraphs u1 and u2 have the same delay
distribution, either u1 or u2 should be considered in calculating
performance yield. Hence, a set of yield-equivalent subgraphs
can be represented by one element in it. This element is called
yield-equivalent pattern.

Yield-equivalent pattern µ is characterized by two values, t

and DP(t), that is, µ(t,DP(t)) where t is the number of clock
steps the pattern takes for execution and DP(t) represents the
discretized PDF of the pattern's delay. Then, the performance
yield constrained HLS problem we want to solve can be
formulated as:
Problem 1: Under a given resource set R and a yield constraint
κ (≤ 1) find the optimal set L = {µ1,µ2,…} of yield-equivalent
patterns such that (i) L disjointly covers all the operations in
DFG, (ii) (the performance yield of L) ≥ κ, where the
performance yield is computed in the tabular method using
DP(t)s of µis, and (iii) the total latency is minimal.

C. Variation-Aware Scheduling and Binding
The objective of variation-aware scheduling is to find a
schedule of operations that minimizes the latency under
resource and performance yield constraints. If only the worst
case delays of resources are used in scheduling, the
performance yield will be always satisfied, but the latency is
too long. For example, Fig. 4(a) shows such a schedule,
confirming 100% yield. On the other hand, Fig. 4(b) shows the
case where the two subgraphs op1→op2 and op3→op4 are
yield-equivalently bound to resources and scheduled in two
clock steps rather than three clock steps, and another subgraph
op5→op6 is scheduled in two clock steps, by which the overall
yield is down. But it is still above the yield constraint of 80%,
resulting in the latency reduced by one clock. Here, the key
point in scheduling (together with resource binding) is to find
as many subgraphs that are potentially yield-equivalent each
other as possible, because only one of the PDFs of the yield-
equivalent subgraphs contributes to the resultant yield.

In the example of Fig. 4(b), suppose the discretized
probability (DP) that op1→op2 with op1 bound to Mul1 and
op2 bound to Add1 to be executed in two clock steps is 0.9,
and DP that op5→op6 with op5 bound to Mul2 and op6 bound
to Add2 to be executed in two clock steps is 0.9. Then, since
op1→op2 and op3→op4 are yield-equivalent and the
operations other than op1 through op4 are scheduled and
bound with their DPs all 1.0, the final yield becomes 0.9 (for
op1→op2 and op3→op4) *0.9 (for op5→op6) = 81%.

D. Integrated Algorithm for Variation-Aware Scheduling and
Resource Binding

As shown in the Fig. 4, to effectively find yield-equivalent
patterns, it is necessary to perform scheduling and resource
binding simultaneously. The input to our algorithm HLS-tv is a
DFG with resource set R and yield constraint к to satisfy.

Essentially, HLS-tv is based on the branch-and-bound strat-
egy in an attempt to search all (potentially) yield-equivalent
subgraphs. The algorithm builds an optimal set of yield-
equivalent patterns iteratively. To speed up the search process,
our algorithm adopts a concept of window-based search in
DFG.

*

+

+

*

Add1

Mul

(a)
= {Mul, Add1}

resoure set on path

+ +

* Mul
{Mul, Add2} {Mul Add1}

Add2 Add1

c_step1

c_step2 Add1

Mul

c_step3

c_step4

yield−equivalent

{Mul, Add2}{Mul Add1}
*

+ +

Mul

Add1 Add2

(b)

Fig. 3. Examples of yield-equivalent subgraphs.

+

+

+

+

+

+

+

1

2

3

4

5

6

7

c_step

1

*

2

3

+4

5

*

6

*

7

c_step

*

*

*

+

+

*

*

* *

Yield = 100%, latency = 7 Yield = 81%, latency = 6

*

*
Mul1

Add1 Mul2

Add2

Mul1

Add1

(a) A schedule using worst case timings only (b) A schedule using statistical timings

op1

op2

op3

op4

op5

op6

 under yield constraint of 80%

yield−equivalent (90% yield)

potentially yield−equivalent

(90% yield)

Fig. 4. Conventional scheduling and timing variation-aware scheduling under
yield constraint using yield-equivalent patterns.

426

Definition 2: Window W is defined to be the maximum
consecutive clock steps beyond which no subgraphs satisfy the
resource constraint. Frontier operations in a window are the
operations scheduled in the beginning clock step of the
window.

HLS-tv recursively performs the two steps: (Step 1) select-
ing the frontier operations and setting a window; (Step 2)
extracting yield-equivalent subgraphs from the window and
finding their combination that minimizes the latency under the
yield constraint. We explain the procedure of HLS-tv with the
example in Fig. 5.

Suppose the available resources are two multipliers (Mul1,
Mul2) and two adders (Add1, Add2) for the DFG in Fig. 5(a).
Moreover, we assume the performance yield κ=0.8. For a
multiplication DP(t =1cycle) = 0.7 and DP(t =2cycles) = 1.0,
for an addition, DP(t = 1cycle) = 1.0 and DP(t = 2cycles) = 1.0,
for two consecutive additions, DP(t =1cycle) = 0.75, and for an
addition followed by a multiplication (or a multiplication
followed by an addition), DP(t = 2cycles) = 0.9 and DP(t =
3cycles) = 1.0.

In Step 1, we extract W from DFG with frontier operations.
Let's focus on clock step 1 where operations op1, op2, and op3
become the frontier operations. We set a window W (i.e., Step
1) for the frontiers according to Definition 2. The outer box
shows W. We can see that if another operation were added to
W, some pattern extracted from W would violate resource

constraint (e.g., if op5 were added to W, pattern {op1, op2,
op5} would require 3 multipliers). In Step 2, from W, we can
extract yield-equivalent operation patterns; there are four
patterns: (case1) multiplication to be scheduled in a single
clock step; (case2) multiplication in two clock steps; (case3)
addition in a single clock step; (case4) two consecutive
additions in a single clock step. Here, the valid ones are case2
and case3 because the other cases’ DP(·) values are less than κ
(=0.8). Furthermore, since the DP(·) values of cases2 and
cases3 are all 1.0, we don’t need to include the patterns in the
set L of yield-equivalent patterns. Then, the two steps are
repeated. The selection of new frontier operations is performed
by the following rules:
(a) The children (operations) of previous frontiers whose yield-
equivalent patterns are not in L;
(b) The children (operations) of the last yield-equivalent
patterns included in L;
(c) The unscheduled operations which can be scheduled at the
same clock steps with some operations obtained by (a) and (b).
In Fig. 5(b), new frontier op4 and op5 are obtained by (a), op6
by (c). An example of applying rule (b) will be found in the
next iteration. Window W now includes op4,…, op8. Note that
a window is not always rectangular. Among subgraphs in W,
suppose we select subgraph {op5, op7} (Fig. 5(c)). Since its
DP(t =2cycles) is greater than κ, it is added to L. Note that we
can also select subgraph {op6, op8}. However, it can be easily
seen that adding one more pattern to L doesn't reduce the
latency any more at the expense of the decrease of yield from
0.9 to 0.81=0.9*0.9. Now, we proceed to the next iteration. In
Fig. 5(d), new frontier op10 is obtained by rule (b). In the new
window, we choose two subgraphs: {op8, op10}, {op9, op11}.
The first subgraph is potentially yield-equivalent to the element
in L. Thus, we perform yield-equivalent binding from L: op8 is
bound to Add1, op10 to Mul1. The second subgraph is also
potentially yield-equivalent, but there is no yield-equivalent
binding from L because the first one has already used Add1
and Mul1. In this case, we need to find a binding that
maximizes resource sharing to minimize the decrease of yield.
(See Observation 1.) There is only one binding choice: op9 to
Mul2 and op11 to Add2. The bound subgraph is included to L
and yield is updated to 0.81(=0.9*0.9), which is still above κ =
0.8, as shown in Fig. 5(e). Now, all operations are scheduled
and bound with the latency of 6. We are now in the final stage
of finding one of solutions, following through one branch of
search tree, from which HLS-tv applies the backtracking
strategy in the branch-and-bound method.

III. EXPERIMENTAL RESULTS

We have implemented our proposed timing variation-aware
HLS algorithm HLS-tv in C++, ran on a PC equipped with
3.06GHz XEON processor, and tested it on a set of HLS
benchmarks to assess the effectiveness of HLS-tv. We use the
data in [16] for the statistical delay distribution of resources,
ALU (addition/subtraction) and MUL (multiplication): ALU

++ +

+

+

+

+

+

+ +

+

+ +

+ +

+

+

+ +

+ +

+

1 1

2 2

3 3

4 4

5 5

6 6

1 1

7 7

2 2

3 3

c_step c_step

1 1
op1

4 4

2 2

* *

op2

5 5

3 3

op3

6 6

+ +

44

op4 op4

7 7

5 5

op5
op5

op5

* *

c_step c_step

6 6

op6
op6

op6

7 7

* *

op8

op10

op9

op11

op7 op7 op8

op7

op8

op10

op8

op10

op9

op11

*

c_step

*

c_step

* *

++

* *

*

+ +

*

*

*

*

*

* *

*

*

+

*

*

*

+

*

Yield = 100%

Yield = 90% Yield = 90%

Yield = 81% Yield = 81%

Yield = 100%

(a) (b)

(d)

(f)

(c)

(e)

*

*

*

*

*

*

*
* *

* *

*

*

+ +

+ +

Mul1 Mul1

Mul1 Mul1

*

Add1 Add1

Add1 Add1

* *
+ +

Mul1

Mul2 Mul2

Add2 Add2

Add1

Mul1

Add1 Mul2

Add2

Yield-equi.
patterns

Yield-equi.
patterns

Yield-equi.
patterns

Yield-equi.
patterns

Yield-equi.
patterns

Yield-equi.
patterns

Fig. 5. Steps showing the generation of yield-equivalent patterns by HLS-tv.

427

follows a normal Gaussian delay distribution of μ = 2.5ns, σ =
0.125ns. We extract four sample points at μ-3σ, μ-σ, μ+σ, μ+3σ.
MUL also follows a normal Gaussian distribution of μ = 25ns,
σ = 1.25ns. We extract 11 points with delay of 0.75ns for the
interval between the consecutive points. Table I and Table II
show the comparisons of results produced by list scheduling
based timing variation-unaware method [15] and our HLS-tv
under yield constraints of 90% and 80%, respectively. In short,
HLS-tv is able to reduce the latency by 18.8% and 20.2% on
average with only 7.1% and 11.9% yield penalties, respectively.

IV. CONCLUSION

In this paper we presented a solid and effective solution to the
problem of timing variation-aware high-level synthesis (HLS).
Our study showed that both of resource binding and scheduling
significantly affected the results of performance yield HLS.
This work comprehensively investigated and addressed the
following new problems in HLS: (1) how can the statistical
static time analysis (SSTA) used in logic synthesis be modified
and applied to the delay and yield computation in HLS? (2)
how does the resource binding affect yield? (3) how does the
scheduling affect yield? The key concept introduced to solve
the problems efficiently and effectively was yield-equivalent
pattern. This work (4) proposed a performance yield con-
strained integrated HLS algorithm based on the concept. It has
been experimentally shown that our algorithm can effectively
reduce the latency.

ACKNOWLEDGMENT

This research work has been supported by Nano IP/SoC
Promotion Group of Seoul R&BD Program in 2007, and also
by IT-SoC Program and ETRI project. This work was also
partially supported by the Ministry of Science and Technology
(MOST)/Korea Science and Engineering Foundation (KOSEF)
through the Advanced Information Technology Research
Center (AITrc).

 REFERENCES
[1] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,

“Parameter variations and impact on circuits and microarchitecture,” In
Proc. DAC, pp. 338-342, 2003.

[2] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering
spatial correlations using a single PERT-like traversal,” In Proc. ICCAD,
pp. 621-625, 2003.

[3] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and S.
Narayan, “First-order incremental block-based statistical timing
analysis,” In Proc. DAC, pp. 331-336, 2004.

[4] A. Agarwal, V. Zolotov, and D. T. Blaauw, “Statistical timing analysis
using bounds and selective enumeration,” IEEE TCAD, pp. 1243-1260,
September 2003.

[5] M. Orshansky and A. Bandyopadhyay, “Fast statistical timing analysis
handling arbitrary correlations,” In Proc. DAC, pp. 337-342, 2004.

[6] R. Rao, A. Srivastava, D. Blaauw, and D. Sylvester, “Statistical analysis
of subthreshold leakage current for VLSI circuits,” IEEE TVLS, pp. 131-
139, February 2004.

[7] S. Narendra, V. De, S. Borkar, D. Antoniadis, and A. Chandrakasan,
“Full-chip subthreshold leakage power prediction model for sub-0.18µm
CMOS,” In Proc. ISLPED, pp. 19-23, 2002.

[8] S. Raj, S. Vrudhula, and J. Wang, “A methodology to improve timing
yield in the presence of process variation,” In Proc. DAC, pp. 448-453,
2004.

[9] S. Choi, B. C. Paul, and K. Roy, “Novel sizing algorithm for yield
improvement under process variation in nanometer technology,” In Proc.
DAC, pp. 454-459, 2004.

[10] A. Srivastava, D. Sylvester, and D. Blaauw, “Statistical optimization of
leakage power considering process variation using dual-Vth and sizing,”
In Proc. DAC, pp. 773-778, 2004.

[11] A. Davoodi, V. Khandelwal, and A. Srivastava, “Variability inspired
implementation selection problem,” In Proc. ICCAD, pp. 423-427, 2004.

[12] W.-L. Hung, X. Wu, and Y. Xie, “Guaranteeing performance yield in
high-level synthesis,” In Proc. ICCAD, pp. 303-309, 2006.

[13] A. Srivastava, D. Sylvester, and D. Blaauw, Statistical analysis and
optimization for VLSI: timing and power, Springer 2005.

[14] J. -J. Liou, K. -T. Cheng, S. Kundu, and A. Krstic, “Fast statistical timing
analysis by probabilistic event propagation,” In Proc. DAC, pp.661-666,
2001.

[15] Giovanni De Micheli, Synthesis and Optimization of Digital Circuits,
New York, McGraw Hill, 1994.

[16] K. Kang, B. C. Paul, and K. Roy, “Statistical timing analysis using
levelized covariance propagation,” In Proc. DATE, pp. 764-769, 2005.

TABLE I

COMPARISONS OF RESULTS PRODUCED BY A CONVENTIONAL LS BASED ON [15]

AND OUR HLS-tv UNDER PERFORMANCE YIELD CONSTRAINT OF 90%

 TABLE II

COMPARISONS OF RESULTS PRODUCED BY A CONVENTIONAL LS BASED ON [15]

AND OUR HLS-tv UNDER PERFORMANCE YIELD CONSTRAINT OF 80%

Latency(cycles) Design
(#ops)

#ALU,
#MUL

pclk

(ns) LS[15] HLS-tv(Y)
Reduction Run

time(s)

3.5 32 28 (94.5%) 12.5% 928
4.0 29 24 (90.7%) 17.2% 930

DIFF
(18)

3, 3

4.5 26 22 (93.2%) 15.4% 637
3.5 47 36 (94.3%) 23.4% 2122
4.0 42 32 (94.3%) 23.8% 3325

LATT
(22)

3, 2

4.5 37 30 (90.2%) 18.9% 1207
3.5 57 45 (93.9%) 21.1% 1241
4.0 51 40 (93.9%) 21.6% 1534

AR
(28)

2, 3

4.5 45 36 (90.8%) 20.0% 680
3.5 46 37 (93.6%) 19.6% 157
4.0 42 34 (93.6%) 19.0% 367

EWF
(34)

2, 3

4.5 38 33 (91.5%) 13.2% 113
avg. - (92.9%) 18.8%

Latency(cycles) Design
(#ops)

#ALU,
#MUL

pclk

(ns) LS[15] HLS-tv(Y)
Reduction Run

time(s)

3.5 32 27 (80.8%) 15.6% 1267
4.0 29 24 (90.7%) 17.2% 1210

DIFF
(18)

3, 3

4.5 26 21 (80.1%) 19.2% 1282
3.5 47 36 (94.3%) 23.4% 4467
4.0 42 32 (94.3%) 23.8% 4492

LATT
(22)

3, 2

4.5 37 29 (82.5%) 21.6% 3611
3.5 57 45 (93.9%) 21.1% 2079
4.0 51 40 (93.9%) 21.6% 2491

AR
(28)

2, 3

4.5 45 36 (90.8%) 20.0% 1216
3.5 46 36 (80.2%) 21.7% 478
4.0 42 33 (93.6%) 21.4% 490

EWF
(34)

2, 3

4.5 38 32 (81.9%) 15.8% 372
avg. - (88.1%) 20.2%

428

