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ABSTRACT

The emergence of hardware accelerators has brought about
several orders of magnitude improvement in the speed of the
deep neural-network (DNN) inference. Among such DNN
accelerators, Google Tensor Processing Unit (TPU) has tran-
spired to be the best-in-class, offering more than 15x speedup
over the contemporary GPUs. However, the rapid growth
in several DNN workloads conspires to escalate the energy
consumptions of the TPU-based data-centers. In order to re-

strict the energy consumption of TPUs, we propose GreenTPU—

a low-power near-threshold (NTC) TPU design paradigm.
To ensure a high inference accuracy at a low-voltage opera-
tion, GreenTPU identifies the patterns in the error-causing
activation sequences in the systolic array, and prevents fur-
ther timing errors from the same sequence by intermittently
boosting the operating voltage of the specific multiplier-and-
accumulator units in the TPU. Compared to a cutting-edge
timing error mitigation technique for TPUs, GreenTPU en-
ables 2X—-3X higher performance in an NTC TPU, with a
minimal loss in the prediction accuracy.

1. INTRODUCTION

The cessation of Dennard’s scaling, accompanied with the
diminishing throughput from the growing number of on-chip
cores, has led to the adoption of power-efficient domain-
specific architectures. With the recent confluence of arti-
ficial intelligence (AI) and high performance computing, the
domain-specific computing paradigm is already on the up-
rise, as evident by the success of the deep neural-network
(DNN) accelerators [3,10,17]. Among the multitude of such
ad-hoc AT architectures, the Google Tensor Processing Unit
(TPU) is at the forefront, claiming 15x - 30x faster infer-
ence, compared to the top of the line CPUs and GPUs [7].
However, the unprecedented growth in the DNN workloads
(e.g., speech recognition in Google Assistant [1,7]) portends
a rapid increase in the overall power consumption of the
Google data-centers. With a view to heavily curtailing the
power consumption while sustaining a high inference accu-
racy, we envision a near-threshold (NTC) operation of the
TPUs. However, operating a TPU at the NTC condition,
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can significantly dwindle the inference accuracy due to a
high rate of timing errors [5,20]. This paper aims to exploit
the inherent architectural artifacts of the TPUs, to predict
and tackle the timing errors at NTC, thus promoting a reli-
able and energy-efficient low-power TPU design paradigm.
The high delay sensitivity to voltage and process variation
(PV) at NTC necessitates a relaxed clock constraint to en-
sure an error-free execution. On the other hand, hardware
accelerators like TPUs are designed to offer a high through-
put in niche applications. So, in order to embrace the NTC
design paradigm for TPUs, we need to adopt a better-than-
worst case design strategy that can efficiently tolerate the
timing errors in its systolic array architecture (Section 2.1).
Prior research efforts delve into the challenges and solutions
of tackling timing errors in conventional CPU and contem-
porary TPU architectures [6,20]. Next, we discuss why such
existing techniques are not effective in an NTC TPU.
Razor—one of the most popular timing error detection
and recovery schemes—employs a double sampling flip-flop
to detect timing violations inside a pipeline stage [6]. The
erring instruction is replayed at a reduced clock frequency
to prevent a subsequent timing error. Adopting Razor in
TPUs will negatively impact the performance, as the global
timing error rate rapidly grows with the dimension of the
systolic array. Hence, any recovery penalty, associated with
correcting an erroneous computation, will significantly bloat
the execution time of the inference. Zhang et al. have re-
cently proposed TE-Drop—where an erring multiplier-and-
accumulator (MAC) in a TPU, steals a clock cycle from its
downstream MAC to correct the error, and bypasses the
downstream MAC’s update [20]. However, this approach
cannot tackle any timing error in the last row of MACs,
without incurring a significant performance penalty at NTC.
As the partial sums grow towards the bottom of the systolic
array, the impact of timing errors in the last row of MACs
is the most crucial. Moreover, as the rate of the timing er-
ror increases significantly at NTC, bypassing the update of
some MACs will greatly diminish the inference accuracy.
In the light of such shortcomings of the existing timing
error mitigation techniques, we propose a novel timing er-
ror prediction strategy, exploiting the wavefront propagation
of the data in a TPU systolic array. We observe that few
activation sequences are more likely to cause timing viola-
tions in the MACs (Section 2.3). As the activation data
streams through all the MACs in a row, an error-causing
activation sequence, can serve as an excellent predictor to
avoid subsequent errors in the rest of the MACs in the same
row. We combine this early error prediction scheme with
a low-complexity voltage boosting mechanism to propose
GreenTPU—a new frontier in the design of reliable and low-
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Figure 1: Figure 1(a) shows the plot of the sensitization delays for all possible weights and input changes for a MAC unit. The variance in
the input data can bring about ample delay variance. However, there are only few input sequences that can sensitize the longest delay paths,
as depicted by the CDF plot in Figure 1(b). Figure 1(c) exhibits a very high % of Commonality (Equation 2) in the error causing input
sequences for all the rows, during the inference of the MNIST dataset.

power TPU. Following are the key contributions of our work:

e We observe that only few input data sequences cause tim-
ing violations in MACs. Consequently, they serve as an
efficient predictor for impending timing errors (Section 2).

e We propose GreenTPU—a low-overhead NTC TPU de-
sign paradigm that predicts impending timing violations
in the TPU systolic array, and precludes them using a
novel voltage boosting mechanism (Section 3).

e Combining with our in-house statistical timing analyzer
tool, we develop a TPU systolic array simulator in C++-.
We support an end-to-end integration, by interfacing our
simulator with Keras [4], so as to closely emulate a real-life
TPU-accelerated inference eco-system for contemporary
DNN applications (Section 4).

e We demonstrate that GreenTPU provides two orders of
magnitude reduction in timing errors at NTC, with re-
spect to TE-Drop [20]—a cutting-edge timing error miti-
gation technique for TPUs (Section 5).

e Compared to TE-Drop, GreenTPU offers 2X—3X higher
performance in an NTC TPU, in 3 out of 4 DNN datasets,
with only 3% average loss in the inference accuracy. Esti-
mated from synthesis, place and route of a TPU systolic
array RTL, augmented with GreenTPU, we find the area,
power, and wire-length overheads to be ~1.8%, ~2.2%,
and ~4.1%, respectively (Section 5).

2. MOTIVATION

In this section, we demonstrate the opportunity of employ-
ing a predictive mechanism to tackle timing errors in NTC
TPUs. Section 2.1 provides a background on the TPU sys-
tolic array. Using a cross-layer methodology (Section 2.2),
we analyze the data-driven delay variance in the systolic ar-
ray of MAC units (Section 2.3), and motivate the need for a
timing error prediction scheme in NTC TPUs (Section 2.4).

2.1 Background
2.1.1 TPU Systolic Array

Matrix multiplication is the most expensive operation in
the inference phase of the DNN applications. The usage of
the systolic array of MAC units, has been recognized as a
promising direction to accelerate the matrix multiplication.
TPU-—a DNN accelerator—employs a 256 x256 systolic ar-
ray of MAC units, to multiply the weight matrix with the
activation (also referred to as input) matrix, maintaining a
precision of 8-bit integer [7]. The weights are pre-loaded into
the MACs. The activations stream from the left to the right
columns of the array at successive clock cycles. The par-
tial sums from the rows of MACs move downstream. Unlike

CPUs and GPUs, a TPU boasts a distinctly homogeneous
architecture with a highly predictable data-flow pattern.

2.1.2  Hazards and Opportunities of NTC TPUs

Operating a TPU at the NTC condition ideally contributes
to a quadratic saving in the energy consumption. However,
the performance of the TPU heavily declines due to a large
delay experienced by the circuits at an NTC voltage [5].
Moreover, a high delay sensitivity to PV and voltage vari-
ation at NTC, demands the clock frequency to be heavily
relaxed, compared to a super-threshold operation. Hence,
in order to operate with an aggressive clock constraint at
NTC, a TPU needs to efficiently tolerate a high rate of tim-
ing violations. Furthermore, due to a very deep pipelined ar-
chitecture of the systolic array (Section 2.1.1), even a small
rate of timing error aids to a severe drop in the inference
accuracy of the DNN applications [20].

Fortunately, the architectural homogeneity and a predictable
data-flow pattern in TPUs, offer a unique opportunity to ef-
ficiently tackle timing errors at NTC. Owing to a fixed 8-bit
precision in the arithmetic operations, we get a finite state
space of different sensitized path delays, experienced by the
MAC units. Isolating the subset of the relatively high delays,
and correlating that subset with the concerned data patterns,
can facilitate the prediction of the impending timing errors
in the TPU systolic array.

2.2 Methodology

We synthesize a MAC unit at an NTC operating condi-
tion (Section 5), by using the 15-nm FinFET library from
NanGate [16]. We employ our in-house statistical timing
analysis tool to study the delay distributions of the sensi-
tized paths for different inputs to the MAC unit. For a
conservative estimate, we consider PV-induced delays, ob-
tained from VARIUS-NTV [18], in randomly chosen 2% of
the gates in the MAC circuit [19]. We further elaborate on
our cross-layer methodology in Section 4.

2.3 Results and Significance

The multiplier block of a MAC unit has a relatively deeper
logic depth, compared to the accumulator. Hence, we model
the delay distribution of the MAC, as a function of the
change in inputs to the multiplier, i.e., the activation se-
quence, and the weight. We create an exhaustive set of 8-bit
activation sequences for all possible 8-bit weights, leading to
a total of 16,777,216 unique combinations.

Figure 1(a) shows the delay profile of a PV-affected MAC
unit at NTC, obtained by providing all the aforementioned
combinations of weights and input changes. A value of X in
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(a) A conceptual block diagram of GreenTPU.
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Figure 2: Figure 2(a) shows that the TECUs are pipelined between the activation memory and the rows of the systolic array of MACs. A
timing error inside a MAC unit is detected and tackled using Razor and TE-Drop techniques, respectively. A TECU comprises an ELT, an
SeMU, and a BCU. ELT stores the error-causing input patterns. SeMU, on the other hand, monitors the input data stream and queries the
ELT, to identify potential error-causing input sequences. The BCU (Figure 2(b)), comprising two 256-bit registers—ESU and BCR—prevents
future timing errors by boosting the operating voltage of the MACSs in a row.

Figure 1(a), corresponds to a specific input change sequence,
for a specific weight W, as expressed in equation 1.

X

Weight (W) = L65536

], S = X mod 65536
; 1)

525 ) = (8 mod 256)

The delay profile shows ample variation, resulting from
the variance in the input data. This delay variation is sta-
tistically shown as a CDF plot of the delay values in Figure
1(b), where we conservatively attribute the maximum delay
to be the clock period. The key observations from Figure
1(a) and 1(b) are: (a) no paths are sensitized when the
same activation sequence is applied in two consecutive cy-
cles, and (b) a majority of the multiplication operations sen-
sitize paths with low delays. For instance, we notice that the
set of delays with more than 60% of the clock cycle is only
3.6% of the entire state space of delays. This sparse sensiti-
zation of the higher delay paths, eases the prediction of the
recurring timing errors from the same input sequence. Next,
we discuss the insight to our proposed design of GreenTPU.

Input change : |

2.4 Timing Error Prediction in TPUs

We aim to systematically study the likelihood of an error-
causing input sequence in a MAC, to produce timing errors
in the subsequent MACs, belonging to the same row. In this

pursuit, we propose a Commonality metric in Equation 2.
255

UJ UES;
Commonality; (%) = 100x <1 - L) (2)
ST, UES,

where, UES; is the set of unique input sequences that
cause timing errors in the j** MAC unit of the i*" row.

Figure 1(c) shows a plot of the Commonality(%), mea-
sured across all the 256 rows during the inference of 1000
test inputs of the MNIST dataset. We observe that, for
all the rows, the commonality of the error-causing input se-
quences is more than 85%. This result indicates a landslide
effect of timing errors in the systolic array of a TPU. In
other words, if an input sequence causes a timing error in a
MAC unit, that sequence is very likely to cause timing errors
in the subsequent MACs, until the sequence is alive in the
row. Hence, predicting errors based on the input sequences,
and adopting a row-wise control strategy can greatly reduce
the number of timing errors in a TPU. With this insight,
we next discuss GreenTPU—our proposed energy-efficient

TPU systolic array design, for a near-threshold operation.

3. GREENTPU

GreenTPU is a novel low-power TPU design paradigm,
that dynamically predicts and tackles timing errors in the
systolic array of MAC units. Section 3.1 outlines the design
overview. The details of the components of GreenTPU are
elaborated in Section 3.2 through 3.4.

3.1 Design Overview

Figure 2(a) depicts the top-level design overview of Green TPU.

The heart of GreenTPU is the Timing Error Control Unit
(TECU). TECU is responsible for predicting and prevent-
ing timing errors in the MAC units. In order to maintain
a low-complexity circuit design while incurring a negligible
performance overhead, we dedicate one TECU per row of
MACs, pipelined between the activation memory and the
systolic array. A TECU has three main components, viz.,
Error Log Table (ELT), Sequence Monitor Unit (SeMU),
and Boost Control Unit (BCU). When a timing error occurs
in any MAC unit of a row, the ELT logs the timing error
causing input sequence pattern. Simultaneously, the BCU
is alerted to boost the operating voltage of the subsequent
MAGCs in the row, in order to prevent any future timing er-
ror. The SeMU monitors the sequence of inputs, and tries
to find a matching pattern in the ELT in every clock cycle.
If a match is found, SeMU communicates with the BCU to
preclude future timing errors in all the MAC units of a row.

3.2 Error Log Table (ELT)

ELT is a look-up table which stores the patterns of the
input sequence that lead to timing errors in a MAC unit.
We observe that different bits of an input sequence have
different degrees of contribution to the sensitization delay.
As a consequence, many different input sequences can be
clubbed to fewer representative patterns in a space-efficient
manner. Algorithm 1 shows our heuristic to represent an in-
put sequence as a specific pattern. The pattern is simply a
bit-wise XOR of the inputs in the sequence, which captures
the information on the specific bits with different contribu-
tions to the sensitization delay. For any new input sequence,
the XOR-based pattern is computed and compared with the
stored patterns, based on an empirically determined pat-
tern_match_threshold (line 3 to 11 in Algorithm 1). If no
match is found, then the new pattern is stored in the table.

We augment each MAC unit with the capability to store



Algorithm 1 Pattern Matching Heuristic

1: TH < pattern_match_threshold
2: procedure MATCH(current_activ, previous_activ)
3: new_pattern <— current_activ @ previous_activ

4: for all saved_pat € saved_patterns do

5: similarity < saved_pat | new_pattern

6: num_zeros_sim < num_reset_bits(saved_pat)

7: num_zeros_new <— num_reset_bits(similarity)

8: if num_zeros_new > |TH X num_zeros_sim] then
9: return match_found

10: end if

11: end for

12: save(new_pattern)

13: end procedure

the previous clock cycle’s activation input, thus enabling
it to infer the input sequence. A timing error in each MAC
unit is sensed using a double-sampling flip-flop at the output,
similar to Razor [6]. We prevent an erroneous computation
from the timing error by employing TE-Drop [20], where
the errant MAC steals a clock cycle from its downstream
MAC to correctly finish its own update. An 8-bit pattern
corresponding to this error causing input sequence is sent
by the MAC unit as a new entry to the ELT, while the
correct output is being computed parallelly. Also, the BCU
is signalled with the errant MAC unit’s position in the row,
to prevent further timing errors in the MAC units, located
to the right of the errant MAC. The ELT is implemented as
a content addressable memory that enables a fast lookup.
When the ELT is full, a pseudo-LRU-based eviction policy
is used (not shown in Algorithm 1) to replace an existing
pattern with the new incoming pattern. The size of the ELT
is a trade-off between the hardware overhead and prediction
accuracy, which is discussed in Section 5.

3.3 Sequence Monitor Unit (SeMU)

SeMU identifies the possibility of a recurring timing error.
The input activation data, coming to each row, is intercepted
by SeMU, as the TECU is placed in pipeline between the
activation memory and the systolic array. For a given acti-
vation sequence coming from the activation memory, SeMU
checks if a corresponding pattern is already present in the
ELT, based on Algorithm 1. If a match is found, the BCU is
alerted to boost the operating voltage of some of the MACs
in the row (Section 3.4). This action is taken in order to
prevent the timing errors that would have been caused by
the input sequence. Due to its pipelined architecture, SeMU
adds a negligible performance overhead.

3.4 Boost Control Unit (BCU)

BCU is responsible for boosting the operating voltage
of the MAC units, in order to prevent timing errors. As
shown in the Figure 2(b), a BCU houses two 256-bit regis-
ters: Boost Control Register (BCR) and Error Sensing Unit
(ECU). Each bit of these registers corresponds to each MAC
unit in a row. We adopt the boosting technique proposed
in [15], where every MAC unit has access to two voltage
rails, VNrc and Vg, representing a near-threshold and a
boost voltage, respectively. The reset (set) value in any bit
of the BCR, indicates the corresponding MAC unit to oper-
ate with the Vxrc (VB) voltage. In our experiments, we set
Vnrc and Vg to 0.45V and 0.65V, respectively. Employ-
ing the transition infrastructure of [15], we notice that the
switching between Vyrc and Vp can be performed within

one clock cycle of the NTC TPU.

We observe that if the pre-loaded weight of a MAC unit
is zero, it is unlikely to encounter a timing error. Hence,
a MAC with weight zero can disable the voltage boost for
itself, to conserve energy. Whenever a timing error occurs
in any MAC unit, the corresponding bit in the ESU regis-
ter is set. Based on the position of this set bit, a certain
number of bits in the BCR, that are located to the right of
that position, are periodically set. As a result, the MAC
units, specific to those set bits in the BCR, will be boosted
in the subsequent cycles, precluding any probable timing
violations. The number of bits in the BCR to be set, is de-
termined empirically, so as to trade-off between the tolerable
timing errors, and the energy overhead due to boosting.

If an errant pattern is found by the SeMU (Section 3.3),
BCU periodically sets a certain number of bits of the BCR
in succeeding epochs. Once again, the number of bits to
set, as well as the size of the epoch, are empirically ascer-
tained. These choices are guided by the energy budget of
the GreenTPU implementation, and the noise margin of the
TPU systolic array at NTC.

4. METHODOLOGY

In this section, we explain our extensive cross-layer method-
ology, used to implement and evaluate GreenTPU.

4.1 Device Layer

We estimate the NTC energy consumptions by performing
HSPICE simulations on the basic logic gates (viz., NAND,
NOR and Inverter). We use the 31-stage FO4 inverter-
chain as a representative of various combinational logics in
a TPU. The simulation parameters are obtained from the
16-nm Predictive Technology Model [21]. We incorporate
the impact of the PV at NTC using the VARIUS-NTV (8]
model. The FinFET characteristics are obtained using the
VARIUS-TC model [9]. The delays of the basic gates are
used in the circuit layer (Section 4.2) to ascertain the sensi-
tized path delays in a MAC.

4.2 Circuit Layer

We develop the Verilog RTL description of a systolic ar-
ray, and augment it with the GreenTPU components. We
synthesize the RTLs using the Synopsys Design Compiler, at
various operating conditions. We perform place and route of
the synthesized netlist using Cadence SoC Encounter, and
estimate the area, power, and wirelength overheads at the
NTC operating condition. Using both synthetically gener-
ated, as well as, real dataset driven inputs, we obtain the
sensitized path delays in the MAC array with our in-house
statistical timing analysis (STA) tool. Based on a library of
the delay files of the basic logic gates at different operating
voltages, the STA tool reports the delays of the sensitized
paths of the MAC circuit.

4.3 Architecture Layer

Based on the architectural description detailed in [7], we
develop a cycle-accurate TPU systolic array simulator—TPU-
Sim—in C++4, and implement the GreenTPU components
in TPU-Sim. We integrate the STA tool (Section 4.2) with
TPU-Sim, to accurately model timing errors in the MACs,
based on real data-driven sensitized path delays. We cre-
ate a real TPU-based inference eco-system by conjoining
TPU-Sim with Keras [4]. First, we train several DNN ap-
plications (viz., MNIST [12], Reuters [2], CIFAR-10 [11],
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Figure 3: Number of timing errors encountered in different com-
parative schemes across 4 DNN datasets.

IMDB [14]) using Keras, running TensorFlow in the back-
end. We extract each layer’s activation inputs and trained
model weights, and pre-process them into multiple 256 x 256
8-bit-integer matrices. TPU-Sim is invoked with each pair
of the pre-processed input and weight matrices. The output
matrices from the TPU-Sim are combined to evaluate the in-
ference accuracy. We parallelize our framework for handling
numerous test data using Python Multiprocessing.

S. EXPERIMENTAL RESULTS

In this section, we evaluate the efficacy of different timing
error-resilient schemes, when a TPU operates at a better-
than-worst-case scenario. Our baseline NTC operating con-
dition (0.45V, 67MHz) guarantees an error-free execution
of the TPU. Section 5.1 describes the comparative schemes.

Section 5.2 elaborates the timing error resilience of the schemes.

Section 5.3 presents the inference accuracy and the energy
consumption of the TPU under different schemes. Finally,
Section 5.4 discusses the hardware overheads of GreenTPU.

5.1 Comparative Schemes

e TE-Drop (TD): This is a recently proposed technique
that can tackle timing errors in the systolic array of a
TPU [20]. The errant MAC steals the next clock cycle
from its downstream MAC to correct the error, while the
downstream MAC bypasses its own operation.

e GreenTPU (GT): This is our proposed design strategy
that stores the error-causing patterns in order to predict
any imminent timing errors from those patterns (Section
3). The imminent errors are precluded by boosting the
operating voltage of the rows of MACs. GT employs
the pattern matching heuristic (i.e., Algorithm 1), with
a pattern-match threshold of 90%, and an ELT size of 10.

e GreenTPU-Lite (GTL): This is a variant of GreenTPU
that stores only one error-causing pattern. The design
complexity is significantly reduced by replacing the ELT
with an 8-bit register. GTL utilizes Algorithm 1, with
the pattern-match threshold set to 100%, thereby trigger-
ing the boosting mechanism only upon an exact match
between the incoming pattern and the stored pattern.

5.2 Timing Error Resilience

Figure 3 depicts the number of timing errors encountered
during the inference of the DNN datasets under different
schemes, when the TPU operates at a higher frequency, com-
pared to the baseline. However, at all frequency—denoted
by the X-axis—the operating voltage is kept constant at
0.45V. The Y-axis values are represented in a logarithmic
scale. We notice that, on an average, GT encounters two
orders of magnitude less timing errors, with respect to TD,
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Figure 4: Normalized inference accuracy (Acc) from the compar-
ative schemes, and the voltage boost energy (VBE) consumptions
of GreenTPU and GreenTPU-Lite, at different normalized perfor-
mance levels, across 4 DNN datasets.

across all the datasets, at any higher performance level. This
is due to the fact that unlike TD, GT can predict imminent
timing errors and prevent them from occurring. GTL, de-
spite being significantly more error-resilient than TD, incurs
more timing errors than GT. The storage of only one error-
causing pattern substantially dwarfs the prediction mecha-
nism in GTL. For CIFAR-10, GT cannot outplay GTL at
higher performance points. This anomaly is attributed to
the extreme variance in the activation patterns of CIFAR-
10. Such a variation engenders frequent ELT evictions while
vastly widening the intervals of recurrent errors from the
same patterns. Consequently, even a moderate size of the
ELT is ineffective in tackling the impending timing errors.

5.3 Inference Accuracy and Energy

Figure 4 presents the variations in the inference accuracy
at different performance points (Section 5.2), under vari-
ous comparative schemes (Section 5.1), for 4 DNN datasets.
The accuracy values of the datasets are normalized to the
corresponding error-free accuracy (IMDB: 0.90, CIFAR-10:
0.77, MNIST: 0.98, REUTERS: 0.80) from the baseline NTC
TPU. Figure 4 also shows the voltage boosting energy (VBE),
associated with the boosting mechanism in GT and GTL.
VBE is calculated as a percentage of the energy consumption
of the baseline NTC systolic array with no augmentation.

Up to 1.4x the baseline performance, all the schemes can
efficiently prevent the impact of timing errors from affect-
ing the inference accuracy. However, as the performance
is further increased, GT and GTL offer considerably better
accuracies with respect to TD, for all the datasets. This
is due to the high timing error resilience of GT and GTL
(Section 5.2). The pattern matching capability, along with



a larger ELT, makes GT a more effective scheme, compared
to GTL. Our baseline NTC TPU, augmented with GT, can
be operated at 2x-3x the baseline frequency, with only 3%
average loss in the inference accuracy for 8 out of 4 DNN
datasets. For CIFAR-10, GT is only as effective as GTL,
which is consistent to their similar timing error resilience in
this dataset (Section 5.2).

The VBE of GTL—owing to its lower hardware footprint
and infrequent boosting—is usually less than the VBE of
GT. However, for CIFAR-10, both the schemes trigger the
boosting mechanism for the same number of time, thus in-
curring similar energy overheads. Despite a monotonic in-
crease with the performance, VBEs of our proposed schemes
are limited to ~6% of the baseline NTC TPU energy con-
sumption. This result is due to the sporadic occurrence
of the boosting. Hence, GreenTPU serves as an extremely
error-resilient and energy-efficient design paradigm that can
unlock a high performance in future low-power NTC TPUs.

5.4 Implementation Overheads

The hardware overheads of GreenTPU come from the
TECU components, the additional voltage rail, and the aug-
mentation of each MAC with the Razor capability. The area
overhead of GreenTPU is estimated to be ~1.8%. This small
footprint is attributed to the fact that the systolic array oc-
cupies only 24% of the overall TPU die area [7]. GreenTPU
incurs a power overhead of ~2.2%, compared to the vector-
less power consumption of the systolic array. From the de-
tailed route reports, GreenTPU’s wire-length overhead is
estimated to be ~4.1%.

6. RELATED WORK

Prior research efforts related to our work deal with im-
proving the energy efficiency of the DNN hardware acceler-
ators through various means. Chen et al. proposed an op-
timal MAC operation mapping rule, called Row-Stationary
dataflow, that optimizes the data movement inside a deep
convolutional neural network (CNN), resulting in a superior
system-level energy efficiency [3]. Reagen et al. demon-
strated an automated co-design approach across the algo-
rithm, architecture, and circuit to offer a staggering 8.1x
power reduction over a baseline DNN accelerator, without
compromising the accuracy [17]. Lin et al. presented a sta-
tistical error compensation technique to correct process vari-
ation induced timing errors in CNNs, operating under near-
threshold condition [13]. Zhang et al. proposed a timing
speculation approach that enables an aggressive voltage un-
derscaling in DNN accelerators without compromising the
classification accuracy [20]. Kim et al. presented a memory
adaptive training with in-situ canaries, that enables aggres-
sive voltage scaling of DNN-accelerator weight memories to
improve the energy-efficiency [10]. However, our work is the
first one that exploits the data-driven delay variance in the
systolic array of MACSs, to predict timing errors in TPUs,
operating under near-threshold condition.

7. CONCLUSION

The unprecedented growth of the DNN workloads in the
recent years, requires an energy-efficient DNN accelerator
design paradigm, that can offer an optimal inference ac-
curacy at a high performance. In this paper, we present
GreenTPU—an energy-optimized systolic array design for
Google TPU—a state-of-the-art DNN accelerator. Operat-
ing at the NTC condition, GreenTPU can efficiently predict

and prevent the imminent timing errors in its systolic array
of MACs, thus offering close to an error-free accuracy with a
high performance. Compared to a recently proposed timing
error mitigation strategy for TPUs, GreenTPU enables 2x—
3x higher performance in an NTC TPU, with a minimal loss
in the prediction accuracy, and minor hardware footprints.
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