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Abstract—In this work, we present the first implementation
of spike-timing-dependent plasticity (STDP) and unsupervised
learning in a mainstream NOR Flash memory array based on
floating-gate cells. A simple yet effective word-line and bit-line
pulse scheme is proposed to make a common-ground double-
polysilicon NOR array in 40 nm embedded technology work as
an artificial synaptic array in a spiking neural network learning
according to the STDP rule, with no change required either to
the array or to the cell design. With this scheme, long-term
potentiation and long-term depression of the synaptic weights
are achieved, respectively, by hot-hole injection and channel hot-
electron injection at the drain side of the cells. Unsupervised
learning is experimentally demonstrated in the array, paving
the way for the development of large-scale and high-density
neuromorphic systems based on mainstream nonvolatile memory
technologies.

I. INTRODUCTION

The idea of developing nonvolatile memory arrays working

as artificial synaptic arrays in neuromorphic networks has

been attracting considerable interest since its first proposal [1],

[2]. Among the different cell structures fit for the purpose,

those based on charge storage in floating-gate or charge-

trap layers offer the benefits of virtually analog tuning of

the synaptic weights, low-power consumption and excellent

CMOS compatibility [3]–[7]. In spite of all these benefits,

what may make a storage solution far more favorable than the

others is the possibility to create the articial synaptic array

directly from mature, reliable and highly-scaled mainstream

nonvolatile memory technologies with just slight changes in

the array design [4].

In this work, we demonstrate the operation of a mainstream

common-ground double-polysilicon NOR Flash array in 40 nm

embedded technology as an artificial synaptic array learning

according to the spike-timing-dependent plasticity (STDP)

rule [8]. With no change either in the cell or in the array

design, long-term potentiation (LTP) and long-term depression

(LTD) of the synaptic weights are achieved through a simple

yet effective word-line (WL) and bit-line (BL) pulse scheme,

triggering either hot-hole injection (HHI) or channel hot-

electron injection (CHEI) at the drain side of the cells. Starting

from this pulse scheme, unsupervised learning in the array is,

finally, experimentally proved.

II. ARRAY STRUCTURE AND OPERATION

Fig. 1 shows the schematic structure of the common-ground

NOR Flash array investigated in this work, featuring stacked-

gate nonvolatile memory cells. Test elements of the array,

developed in a mainstream 40 nm embedded technology by

STMicroelectronics [9] and allowing flexible external biasing

of the array lines, were experimentally tested for STDP and

unsupervised learning implementation. A mandatory require-

ment for this implementation is the possibility to perform

not only program but also erase operations with single-cell

selectivity, overcoming the parallel cell erase typical of Flash

arrays. Keeping the CHEI mechanism for cell programming,

this was achieved by moving from Fowler-Nordheim (FN)

tunneling erase to HHI erase (Tab. I). As schematically de-

picted in Fig. 2, in fact, both (a) CHEI and (b) HHI need

simultaneous WL and BL biases (VWL and VBL, respectively),

which guarantee the selectivity of the program and erase

operations at the single-cell level in the NOR array. Besides,

Fig. 3 shows that large threshold-voltage (VT , extracted as

the VWL giving a constant BL current IBL = 10 nA with

VBL = 200 mV) shifts can be achieved over comparable

timescales during (a) CHEI program and (b) HHI erase with

the same VBL = 4.5 V and relatively low |VWL| ranging from

3 to 8 V. No significant change of cell VT appears, instead,

in Fig. 3(b) when looking at the results for an FN tunneling

erase with VWL = −10 V and grounded BL, source and p-

well, confirming that the reduction of cell VT during the tests

with VBL = 4.5 V and negative VWL is due to HHI and not

to FN tunneling over the channel or the drain area. In order

to compare the efficiency of the CHEI and HHI mechanisms,

we directly measured IBL during the program and erase pulses

(Fig. 4) and compared it with the injection current (Iinj ) to the

floating-gate extracted from the VT transients of Fig. 3 [10],

avoiding any indirect assessment through equivalent transistor

analyses [10]. Results are shown in Figs. 5-6 and reveal that an

injection efficiency Iinj/IBL close to 10−6 can be extracted

for both the mechanisms in the explored biasing conditions.

This makes HHI an acceptable erase mechanism even from

the power consumption standpoint.

III. STDP AND UNSUPERVISED LEARNING

A. STDP

When operating in the subthreshold regime, each cell in

the NOR array can be considered as an artificial synapse

with weight w = exp(−qαGΔVT /mkT ) [1], [2], where q is

the elementary charge, αG is the control-gate–to–floating-gate

capacitive coupling ratio, m is the subthreshold slope ideality
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factor of the equivalent transistor, kT is the thermal energy and

ΔVT is the cell VT shift from a reference condition. Starting

from the CHEI and HHI results of the previous section, STDP

of the synaptic weight w can be easily achieved with the pulse

scheme depicted in Fig. 7. A presynaptic spike at time tpre
triggers a double-triangular pulse on the WL of the associated

synapse, making VWL linearly grow up to Vmax
WL = 4 V, then

suddenly drop to V min
WL = −7 V and finally linearly return

to zero. The total pulse duration was set to tWL = 2 ms,

equally split between the positive and the negative front of the

waveform. A postsynaptic spike at time tpost triggers, instead,

a rectangular pulse on the BL connected to the synapse,

delayed by tWL/2 = 1 ms and with duration tBL = 10 μs.

The pulse amplitude was set to VBL = 4.5 V. Depending

on the time delay Δt = tpost − tpre between the post- and

the pre-synaptic spike, the scheme makes the BL pulse occur

either during the negative (Fig. 7(a), Δt > 0) or during the

positive (Fig. 7(b), Δt < 0) front of the WL waveform. As a

result, HHI (reducing cell VT ) and CHEI (increasing cell VT )

take place, respectively, in the former and in the latter case,

giving rise to LTP and LTD of w and reproducing the STDP

learning rule. This is proved in Fig. 8, where the evolution

of w when repeatedly applying the pulse scheme of Fig. 7

with Δt equal to 0+ (max. LTP) or 0− (max. LTD) is shown,

taking VT = 4 V as a reference for ΔVT extraction. Results

reveal that large changes of w can be achieved through the

cumulative effect of the LTP and LTD pulses. Besides, Fig. 9

shows that the ratio between the final (wf ) and the initial (wi)

value of w when applying the STDP pulse scheme displays

an exponential dependence on Δt, mimicking the behavior of

biological synapses [8]. LTD and LTP, moreover, display a

relevant dependence on wi, with the former getting weaker

for decreasing wi (from part (a) to (c) of Fig. 9) and the

latter showing the opposite trend. Finally, Figs. 10-11 show

that synapses can withstand large changes of their w for at

least 105 times with relatively low degradation and preserving

their STDP learning capability.

B. Unsupervised learning

We implemented unsupervised learning in the NOR array

by considering it as an artificial synaptic array which receives

voltage pulses on its WLs as a result of the activity of Ni

input neurons and produces an excitatory postsynaptic current

(EPSC) on each of its BLs, increasing the membrane potential

(Vm) of an output neuron (Fig. 12). Firing of the output neuron

occurs when Vm overcomes a threshold value. Following [11],

synchronous firing of the input neurons with time periodicity

tWL was assumed, switching the firing pattern between a

signal pattern (SP) to be learned and a noise pattern (NP). To

achieve LTP of the synapses excited by the SP and LTD of the

other synapses, we modified the pulse scheme of Fig. 7 by: i)

simplifying the WL waveform in a double-rectangular pulse of

positive and negative amplitude equal to, respectively, Vmax
WL

and V min
WL ; and ii) introducing a second BL pulse delayed

by tWL/2 with respect to the first (Fig. 12). This allows to

maximize CHEI and HHI in the presence of the BL pulse,

speeding up the learning process. Besides, timings allow to

reproduce an unsupervised STDP rule thanks to the uniform

firing of the output neuron during the positive interval of the

WL waveforms. This results in the application of the first BL

pulse during the negative interval of the WL waveforms of

the same pattern, giving rise to the LTP of the synapses that

fired before the output neuron. The second BL pulse, instead,

occurs during the positive interval of the WL waveforms of the

subsequent pattern, contributing to the LTD of the synapses

that fired after the output neuron.

To prove the functionality of the proposed unsupervised

learning scheme, Fig. 13 demonstrates, first of all, that no

change in the w of a synapse occurs when (a) only BL pulses

or (b) only WL pulses are applied, confirming that LTP and

LTD take place just when a postsynaptic spike occurs in the

presence of an excited synapse. LTP of the synapses excited

by the SP and LTD of the other synapses are experimentally

proved in Fig. 14, where the evolution of the w of 8 synapses

is reported as a function of the learning epoch (number of SP

and NP applied at the input). As done in [11], the definition of

the firing patterns of the input neurons, the integration of the

EPSC and triggering of the BL pulses were performed by an

ad-hoc circuit board driven by a microcontroller. By keeping

the number of input neurons firing during the NP low, firing

of the output neuron occurs mainly in the presence of the SP.

This results in the LTP of the synapses excited by the SP and

in the LTD of the other synapses during the subsequent NP

phases, giving rise to unsupervised learning in the array.

IV. CONCLUSIONS

In this work, we reported the first implementation of

STDP and unsupervised learning in a mainstream NOR Flash

memory array operated as an artificial synaptic array in a

spiking neural network. LTP and LTD of the synaptic weights

according to the STDP learning rule were achieved by a simple

pulse scheme triggering HHI and CHEI at the drain side of the

cells, without the need of changes either in the cell or in the

array design. Results are an important step to the development

of large-scale and high-density neuromorphic systems based

on mainstream memory technologies.
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Fig. 1: Schematic for the connections of
the stacked-gate cells in the common-ground
NOR Flash array investigated in this work.
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Fig. 2: Schematic for the stacked-gate cells
in the investigated NOR array, highlighting
the biasing conditions used for (a) CHEI
program and (b) HHI erase (holes are gener-
ated by band-to-band tunneling at the drain
and become hot by moving towards the p
region). The source-line and the p-well were
always grounded throughout our work.
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Fig. 3: Experimental cell VT transients dur-
ing (a) CHEI program and (b) HHI erase,
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(b) the results for an FN tunneling erase at
VWL = −10 V are also reported.
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Tab. I: Physical mechanisms used for cell
programming and erasing in the standard
operation of the NOR array and in this work.
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