
Procrastination Determination for Periodic Real-Time Tasks
in Leakage-Aware Dynamic Voltage Scaling Systems∗

Jian-Jia Chen
Department of Computer Science and

Information Engineering
National Taiwan University,Taiwan

r90079@csie.ntu.edu.tw

Tei-Wei Kuo
Department of Computer Science and

Information Engineering
Graduate Institute of Networking and Multimedia,

National Taiwan University, Taiwan

ktw@csie.ntu.edu.tw

ABSTRACT
Many computing systems have adopted the dynamic voltage scaling
(DVS) technique to reduce energy consumption by slowing down op-
eration speed. However, the longer a job executes, the more energy
in leakage current the processor consumes for the job. To reduce the
power/energy consumption from the leakage current, a processor can
enter the dormant mode. Existing research results for leakage-aware
DVS scheduling perform procrastination of real-time jobs greedily so
that the idle time can be aggregated as long as possible to turn off the
processor. This paper proposes algorithms for the procrastination deter-
mination of periodic real-time tasks in uniprocessor systems. Instead of
greedy procrastination, the procrastination procedures are applied only
when the evaluated energy consumption is less than not procrastina-
tion. Evaluation results show that our proposed algorithms could derive
energy-efficient solutions and outperform existing algorithms.

Keywords: Energy-aware systems, Scheduling, Leakage-aware
scheduling, Dynamic voltage scaling, Job procrastination.

1. INTRODUCTION
With the advanced technology of VLSI circuit designs, many mod-

ern processors can operate at different supply voltages. Technologies,
such as Intel SpeedStep R© and AMD PowerNOW!TM, provide dynamic
voltage scaling (DVS) for laptops to prolong battery lifetime. Different
supply voltages lead to different execution speeds on a dynamic voltage
scaling processor. The power consumption of processors in dynamic
voltage scaling is usually a convex and increasing function of processor
speed [18]. The lower the processor speed is, the less the power con-
sumption of the dynamic voltage scaling is. However, executing a task
at a lower processor speed stretches its execution time, and, hence, the
energy consumption resulting from leakage current increases [10].

For real-time systems, energy-efficient task scheduling is to mini-
mize the energy consumption while completing all tasks in time. In the
past decade, energy-efficient task scheduling with various deadline con-
straints received much attention. Recently, researchers have started ex-
ploring energy-efficient scheduling with the considerations of leakage
current since the power consumption resulting from leakage current is
comparable to the dynamic power dissipation [4,6,8–10,12,16]. To re-
duce the energy consumption resulting from leakage current, a proces-
sor might be turned off (to enter a dormant mode). When the processor
is turned to the dormant mode, the power consumption of the processor
can be treated as negligible. However, turning on the processor requires
time and energy overheads, resulting from the wakeup/shutdown of the
processor and data fetch in the register/cache. For example, the Trans-
meta processor with the 70nm technology has 483µJ energy overhead
and less than 2 millisecond timing overhead [9,10]. For some practical
real-time applications, the periods of tasks are generally in the range of
10 milliseconds and 125 milliseconds.

∗Support in parts by research grants from ROC National Science Coun-
cil NSC-96-2752-E-002-008-PAE and Excellent Research Projects of
National Taiwan University, 96R0062-AE00-07.

For non-DVS systems with dormant states, Baptiste [3] proposed an
algorithm based on dynamic programming to determine when to turn
on/off the processor when aperiodic real-time jobs with the same exe-
cution time are considered. For multiple idle states, Augustine et al. [1]
determined the state that the processor should enter for aperiodic real-
time jobs and proposed a competitive algorithm for on-line use.

Leakage-aware scheduling has been recently explored on DVS plat-
forms, such as [4, 8–10, 12]. In particular, Jejurikar et al. [10] and
Lee et al. [12] proposed energy-efficient scheduling on a uniproces-
sor by procrastination scheduling to decide when to turn off the pro-
cessor. Jejurikar and Gupta [9] then further considered real-time tasks
that might complete earlier than its worst-case estimation by extending
their previous work [10]. Fixed-priority scheduling was also consid-
ered by Jejurikar and Gupta [8] and Chen and Kuo [4]. For unipro-
cessor scheduling of aperiodic real-time tasks, Irani et al. [6] proposed
a 3-approximation algorithm for the minimization of energy consump-
tion with the considerations of leakage current on a uniprocessor DVS
system with continuous available speeds. Niu and Quan [16] applied
similar procrastination strategies for periodic real-time tasks with leak-
age considerations under different procrastination interval calculations
by expanding all the jobs in the hyper-period of the given tasks. The
basic idea behind the above results is to greedily procrastinate the exe-
cution of the real-time jobs as long as possible so that the idle interval is
long enough to reduce the energy consumption. However, greedy pro-
crastination at this moment might sacrifice the possibility to turn off the
processor in the near future, and, hence, might consume more energy.

This paper considers energy-efficient scheduling of periodic real-
time tasks in a uniprocessor leakage-aware DVS system, in which the
processor might be turned off. As shown in the literature, e.g., [4,
10], there is a critical speed in the available processor speeds with the
minimum energy consumption for execution. We apply existing DVS
scheduling algorithms to determine the execution speeds of tasks in an
off-line manner by treating the critical speed as the minimum avail-
able speed, e.g., [2, 15]. On-line algorithms are proposed to determine
when to turn off/on the processor, and when to execute jobs at speeds
lower than the critical speed. When the processor is to be turned off,
we have to procrastinate the execution of real-time jobs arriving in the
future so that energy consumption can be reduced under the timing con-
straints. Distinct from greedy procrastination algorithms in the litera-
ture [4, 6, 8–10, 12, 16], we develop novel algorithms for procrastina-
tion determination of periodic real-time tasks in uniprocessor systems.
Procrastination of jobs is applied only when the evaluated energy con-
sumption is less than not procrastination. Moreover, our algorithms can
reduce the energy consumption by executing jobs at lower speeds than
the critical speed when the processor is decided not to be turned off. To
our best knowledge, this is the first approach that might execute jobs
at speeds lower than the critical speed with energy reduction. A series
of evaluations are conducted, and the results show that our algorithms
outperform the algorithm proposed by Jejurikar et al. [10].

The rest of this paper is organized as follows: Section 2 defines the
leakage-aware energy-efficient scheduling problem. Section 3 presents

1-4244-1382-6/07/$25.00 ©2007 IEEE 289

a motivational example. The proposed algorithms are in Section 4. Ex-
perimental results for the performance evaluation of the proposed algo-
rithms are presented in Section 5. Section 6 is the conclusion.

2. SYSTEM MODELS

2.1 Task models
This paper explores periodic real-time tasks that are independent in

their execution. A periodic task is an infinite sequence of task instances,
referred to as jobs. Each task τi is associated with its initial arrival time
(denoted by ai), its execution cycles (denoted by ci), and its period
(denoted by pi). The relative deadline of each task τi is equal to its
period pi. Namely, the arrival time and deadline of the j-th job of task
τi are ai + (j − 1) · pi and ai + j · pi, respectively. Let T be the set of
input tasks, and n is the number of tasks.

2.2 Power consumption and execution models
The power consumption function P (s) of speed s on a DVS pro-

cessor can be divided into two parts: Pd(s) and Pind, where Pd(s) is
dependent and Pind is independent on the speed [21]. Leakage power
consumption mainly contributes toPind, while the dynamic power con-
sumption resulting from the charging and discharging of gates on a
CMOS DVS processor and the short-circuit power consumption con-
tribute to Pd(s). For example, in CMOS DVS processors [18], the
power consumption Pswitch(s) due to gate switching at speed s is

Pswitch(s) = CefV
2
dds, (1)

where s = κ (Vdd−Vt)
2

Vdd
, and Cef , Vt, Vdd, and κ denote the effective

switch capacitance, the threshold voltage, the supply voltage, and a
design-specific constant, respectively (Vdd ≥ Vt ≥ 0, κ > 0, and
Cef > 0). The short-circuit power consumption is proportional to
the supply voltage. As a result, the speed-dependent power consump-
tion function Pd(s) is a convex and increasing function of the adopted
speed. The power consumption function can model many power con-
sumption models in [18, §5.5]. If the leakage power consumption is
related to the speeds/voltages, i.e., not a constant, the leakage power is
divided into two parts that contribute to Pd(s) and Pind accordingly.
In other words, Pd(s) models the voltage-related power consumption
while Pind models the voltage-independent power consumption.

The number of CPU cycles executed in a time interval is assumed to
be linear to processor speed, and the energy τi consumed at the pro-
cessor speed s for t time units is t · P (s). For the rest of this paper,
we only present the results on processors with a continuous spectrum
of the available speeds between the upper-bounded speed smax and the
lower-bounded speed smin, while the results can be easily extended to
processors with discrete speeds only by applying the results in [7, 11].

A processor here has two modes: dormant mode and active mode.
When the processor is turned to the dormant mode (or is turned off),
the power consumption of the processor can be treated as 0 by scaling
the static power consumption [6]. To execute jobs, the processor has
to be in the active mode. However, switching between the two modes
takes time and consumes energy. Since periodic tasks are considered,
the procedure to turn the processor to the dormant mode can be assumed
to be done instantaneously with negligible energy overhead by treating
the overhead as a part of the overhead to turn on the processor. We
denote Esw (tsw, respectively) as the energy (time, respectively) of the
switching overhead from the dormant mode to the active mode.

A processor is said idle at time t, if it does not execute any given task
at time t. When the processor is idle in the active mode, the processor
executes NOP instructions at processor speed smin for energy mini-
mization. When the processor is idle and the idle interval is longer than
break-even time Esw

P (smin)
, turning it to the dormant mode is worthwhile.

For notational brevity, let tθ be the break-even time, i.e., tθ = Esw
P (smin)

.
Without loss of generality, we assume that tsw is no more than tθ .

2.3 Scheduling policy

The earliest-deadline-first (EDF) scheduling algorithm is an optimal
uniprocessor scheduling algorithm for independent real-time tasks [13].
A set of tasks is schedulable by EDF if and only if the total utilization of
the set of tasks is no more than 100%, where the utilization of a task is
defined as its execution time divided by its period. Hence, if executing
every task at speed smax is with total utilization greater than 100%,
there does not exist any feasible schedule for such an input instance. For
the rest discussion, we only consider input instance T whose utilization
is less 1 by executing all tasks at speed smax, i.e.,

P
τi∈T

ci
pismax

≤ 1.

Critical speeds. The concept of the critical speed has been adopted
in the literature e.g., [4, 6, 9]. The critical speed s∗ is defined as the
available speed to execute a cycle with the minimum energy consump-
tion. Although P (s) is a convex and increasing function of speed s,
the energy consumption P (s)

s
to execute a cycle at speed s is merely

a convex function of s. By solving equation d(P (s)/s)
ds

= 0, we can
derive the critical speed of the processor. For example, when P (s) =

s3 + β, the function P (s)/s is minimized when s is 3
q

β
2

. Suppose

that ŝ is the speed s with the minimum P (s)/s. Since the critical
speed s∗ has to be in the range of [smin, smax], we know that s∗ is
min{max{ŝ, smin}, smax}.

Without loss of generality, the critical speed s∗ is normalized to 1,
and the execution cycles of tasks, switching overheads, available speeds
are also normalized according to speed s∗. For example, the execution
time to execute task τi at the critical speed is ci after normalization.

Minimization of the execution energy consumption. After
determining the critical speed of the processor, we can apply existing
DVS algorithms to assign the execution speeds for tasks, e.g., [2,5,7,11,
15, 20], by treating the critical speed as the minimum available speed.
For periodic real-time tasks on processors with continuous available
speeds, the algorithm proposed by Aydin et al. [2] can be applied by
setting the minimum available speed as s∗. The algorithms in [5, 15]
can be applied when the processor has discrete speeds only.

3. A MOTIVATIONAL EXAMPLE
This section presents an example to demonstrate the shortcoming of

existing algorithms in [6, 10, 16] on the procrastination of real-time
tasks. Suppose that there are two tasks arriving at time 0, in which
p1 = 0.25, c1 = ε, p2 = 1, and c2 = 0.25 − 2ε with a small and
positive number ε. The power consumption function here is assumed
as P (s) = 2 + s3, and speed smin is 0.5. The critical speed is 1. The
energy switching overhead Esw is 0.25, while time switching overhead
tsw is less than 0.1. The break-even time is 0.25/(2 + 0.53) = 0.118.
We assume that the processor is in the active mode at time 0.

To minimize the energy consumption for task execution, both of
these two tasks would be executed at the critical speed s∗. The proces-
sor becomes idle at time 0.25− ε after executing the first task instances
of task τ1 and task τ2. The latest starting time of the second task in-
stance of task τ1 is 0.5 − ε. By applying the greedy procrastination
algorithms in [6,10,16], we can turn the processor off at time 0.25− ε,
and then turn it on so that the processor is ready for execution at time
0.5− ε. Similarly, the processor would be in the dormant mode in time
interval (0.5+ε, 1−ε]. The schedule in time interval (0, 1] is repeated.
Figure 1(a) shows the schedule in time interval (0, 2]. The energy con-
sumption for task execution in time interval (0, 2] is 6(0.25 − ε), and
the energy consumption while the processor is idle is 1.

Figure 1(b) provides a better schedule for procrastination. At time
0.25 − ε, instead of procrastinating the execution of the second task
instance of task τ1, the processor is idle in the active mode for ε time
unit, and then executes the job arriving at time 0.25. In such a schedule,
we sacrifice the possibility to turn the processor to the dormant mode
instantly at time 0.25−ε, and then have a longer idle interval in the near
future, i.e., (0.25 + ε, 0.75 − ε], to turn the processor to the dormant
mode. Similarly, at time 1.5 − ε, the processor is idle in the active

290

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 time

τ1 τ2 dormant active

(a) A greedy procrastination schedule

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 time

(b) A better procrastination schedule

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 time

(c) A better procrastination schedule with speed reduction

Figure 1: A motivational example.

mode for ε time unit, and then executes the job arriving at time 1.5 to
create longer time interval, i.e., (1.5 + ε, 2 − ε], to turn the processor
to the dormant mode. Then, the above schedule in time interval (0, 2]
is repeated. The energy consumption while the processor is idle in the
schedule in time interval (0, 2] is 0.75 + 2ε(2.125).

When ε is very small, the schedule in Figure 1(b) reduces 25% en-
ergy consumption while the processor is idle. The ratio of the energy
consumption of the schedule in Figure 1(b) to that in Figure 1(a) is
2(3(0.25−ε))+0.75
2(3(0.25−ε)+0.5)

≈ 0.9. The reason why the greedy procrastination
algorithms in [6, 10, 16] perform worse in energy efficiency is because
turning the processor off might result in a schedule that turns the proces-
sor off more frequently, and, hence, might consume more energy. Since
the processor is idle in the active mode in time intervals [0.25−ε, 0.25]
and [1.5− ε, 1.5] in the schedule in Figure 1(b), we can slow down the
execution in time intervals (0, 0.25] and (1.25, 1.5] to further reduce
the energy consumption as shown in Figure 1(c).

4. THE PROPOSED ALGORITHMS
This section presents our proposed algorithms. We assume that the

speed, i.e., the supply voltage, of each task has been determined by
applying existing DVS algorithms to assign the execution speeds for
tasks, e.g., [2, 5, 7, 11, 15, 20], in which the critical speed is treated as
the minimum available speed. Let si be the determined execution speed
for task τi after applying a DVS algorithm, where si ≥ s∗. For proces-
sors with continuous speeds in a specified range, all the tasks in T are
executed at a common speed [2]. Procrastination algorithms are used
to turn the processor on/off on the fly.

We will present two different approaches. The first approach is sim-
ilar to the greedy algorithm in [10] with an additional parameter for
the determination of procrastination. The second approach is based on
simulated scheduling to evaluate whether turning the processor to the
dormant mode at instant is worthwhile. If it is not worthwhile, tasks
might exploit the idle time for slowing down for energy saving.

4.1 Parametric Procrastination
When a job arrives, it is inserted into the ready queue. When the

processor is in the active mode, if the ready queue is not empty, the
scheduler executes the jobs in the ready queue in the earliest-deadline-
first order by adjusting the processor speed to satisfy their execution
speeds determined in off-line. If a job completes at time t, and the
ready queue is empty, we have to decide whether the processor should
be turned off or idle at speed smin in the active mode. At time t, we
first evaluate how long we can turn the processor to the dormant mode
without making the incomplete task instances miss their deadlines. The
procedure can be done in O(n) by applying the approach in [10].

The parametric procrastination here does not use a new method to
calculate the interval length for procrastination. The parametric pro-
crastination only decides whether we should turn the processor to the
dormant mode at time t. If we decide to turn the processor to the dor-
mant mode, we should use algorithms in [6, 10, 16] to decide when to
turn on the processor. Otherwise, the processor is idle in the active

Algorithm 1 : P-Procrastination
Input: α;

On arrival of a job of task τi:
1: insert the job to the ready queue;
2: if the processor is in the active mode then
3: schedule the job with the earliest deadline in the ready queue;
4: end if

On completion of a job at time t:
1: remove the completed job from the ready queue;
2: if there are jobs in the ready queue then
3: schedule the job with the earliest deadline in the ready queue;
4: else
5: ri,t ← ai + pi ·

l
t−ai
pi

m
for every task τi in T;

6: Wt ← minτi∈T{ri,t + Zi};
7: if minτi∈T ri,t − t+ α(Wt −minτi∈T ri,t) ≥ tθ then
8: turn the processor to the dormant mode at time t, and set a timer to

start to turn the processor to the active mode at time Wt − tsw ;
9: end if

10: end if
On turning the processor to the active mode at time t:

1: schedule the highest-priority job in the ready queue;

mode to serve the job arriving in the near future. For efficiency con-
siderations, we adopt the calculation of procrastination length in [10]
for the rest of this paper. (The procrastination length is denoted by pro-
crastination interval in [10].) The calculation of procrastination length
in [10] is as follows: First, let tasks be sorted by their periods such that
pi ≤ pj if i < j. Then, the procrastination length Zi of task τi is
pi(1−

Pi
j=1

cj

sjpj
). For example, the procrastination lengths of τ1 and

τ2 in the example in Section 3 are 0.25− ε, and 0.75−2ε, respectively.
Let ri,t be the arrival time of the next job of task τi in T arriv-

ing after time instant t, i.e., ri,t = ai + pi ·
l
t−ai
pi

m
. Let Wt be

minτi∈T{ri,t +Zi}, which is the time moment at which the processor
should be in the active mode for task execution after time t. If we turn
the processor to the dormant mode at time t, we have to turn on the
processor before time Wt − tsw so that no job will miss its deadline.
The greedy procrastination algorithm in [10] turns the processor to the
dormant mode greedily when Wt − t > tθ .

Instead of greedy procrastination, our algorithm, denoted by Algo-
rithm P-Procrastination for parametric procrastination, divides the time
interval (t,Wt] into two disjoint parts: the residual interval and the
procrastination interval. The residual interval is the time interval be-
tween t and the earliest arrival time of jobs after time t. That is, the
residual interval is (t,minτi∈T ri,t]. The procrastination interval is the
time interval from the earliest arrival time of jobs after time t to Wt.

Since the processor must be idle in the residual interval, we should
turn the processor to the dormant mode if the length of the residual in-
terval is greater than the break-even time tθ . However, the use of the
procrastination interval for turning the processor to the dormant mode
at that instant might divide a longer dormant interval into two dormant
intervals, and, hence, consume more energy. If we do not turn the pro-
cessor to the dormant mode, the time units in the procrastination in-
terval might be used for energy reduction in the near future. The idea
behind Algorithm P-Procrastination is to use a parameter to control the
portion of the procrastination interval to evaluate whether the processor
should go to the dormant mode at time t. Let α be a parameter specified
by users with 0 ≤ α ≤ 1. The processor enters the dormant mode if

min
τi∈T

ri,t − t+ α(Wt − min
τi∈T

ri,t) ≥ tθ. (2)

Algorithm 1 shows the pseudo-code of Algorithm P-Procrastination.
The time complexity for determining procrastination at time t is O(n).
Clearly, setting α as 1 makes Algorithm P-Procrastination as the same
as the algorithm in [10] for task procrastination.

For understanding the algorithm, we use the following example for
explanation. Suppose that there are three tasks arriving at time 0 in
the system in which p1 = 0.1, p2 = 0.2, p3 = 0.25, c1 = 0.0125,
c2 = 0.035, and c3 = 0.05. The power consumption function in this

291

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time

τ1 τ2 τ3 dormant active

(a) The schedule by Algorithm P-Procrastination with α = 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time

(b) The schedule by Algorithm P-Procrastination with α = 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time

(c) The schedule by Algorithm P-Procrastination with α = 1

Figure 2: An example for Algorithm P-Procrastination.

example is assumed as P (s) = 2 + s3, and the minimum available
speed smin is 0.5. The energy of switching overhead Esw is 0.2. The
break-even time is 0.2/(2+0.53) = 0.0941. The procrastination length
of tasks τ1, τ2, and τ3 are 0.0875, 0.14, and 0.125, respectively.

Figure 2(a), Figure 2(b), and Figure 2(c) show the resulting sched-
ules for the example when the parameter α is set as 0.3, 0.5, and 1,
respectively. These three schedules are the same before time 0.45. At
time 0.45, the length of the residual interval is 0.05 and the length of the
procrastination interval is 0.0875. When α is 0.3, 0.05+0.3 ·0.0875 is
less than the break-even time, and, hence, the processor remains active.
At time 0.9125, since the lengths of the residual interval and the pro-
crastination interval are both 0.0875, the value 0.0875 + 0.3 · 0.0875
is greater than the break-even time, and, hence, the processor is turned
to the dormant mode at time 0.9125. When α is 0.5 or 1, at time 0.45,
the processor is determined to be turned to the dormant mode. At time
0.985, since 0.015 + 0.5 · 0.0875 is less than the break-even time, the
schedule in Figure 2(b) makes the processor remain in the active mode.
Since 0.015 + 0.0875 is greater than the break-even time, the proces-
sor enters the dormant mode at time 0.9875 when α is 1 as shown in
Figure 2(c). The energy consumptions while the processor is idle in the
schedules in Figure 2(a), Figure 2(b), and Figure 2(c) for 100 time units
are about 72.06, 64.78, and 80.86, respectively.

4.2 Simulated-Scheduling Procrastination
Another approach on the determination of whether we should turn

the processor to the dormant mode is to evaluate whether it is worth-
while by simulated scheduling. Suppose that we perform simulated
scheduling to derive virtual EDF schedules at time t∗, which is 0 at
initialization. Based on the virtual EDF schedules, we would like to
know the best (earliest) moment to turn the processor to the dormant
mode when the system is idle. We use the concept of the effective idle
power consumption to determine when to turn the processor to the dor-
mant mode. The effective idle power consumption in a time interval is
defined as the energy consumption when the processor is idle divided
by the length of the idle intervals in the specified time interval. That
is, if the processor is idle in the active mode for w1 time units and in
the dormant mode for w2 time units with mode switching for k times
in a specified time interval, the effective idle power consumption in the
time interval is P (smin)w1+k·Esw

w1+w2
.

The simulated-scheduling procrastination simulates two schedules to
determine when to turn off the processor. The first one is to simulate
the schedule by applying the greedy procrastination. Suppose that t′ is
the earliest time instant after time t∗ withWt′−t′ > tθ by applying the
greedy procrastination, and t′′ is the earliest time instant afterWt′ when
the system is idle in the virtual schedule, where Wt′ is defined in Sec-
tion 4.1 as the time instant that the processor must be in the active mode
when the processor is turned off at time t′. If the system is turned to the
dormant mode at time instant t′′ in the virtual schedule, the effective
idle power consumption of the virtual schedule is 2Esw

Wt′′−t′′+Wt′−t′ in

time interval (t′,Wt′′]; otherwise, the effective idle power consumption

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.25
0.5
0.75
1

time

speed
τ1 τ2 τ3 dormant active

(a) without speed recution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.25
0.5
0.75
1

time

speed

(b) with speed reduction

Figure 3: An example for simulated-scheduling procrastination.

of the virtual schedule is Esw+P (smin)(R−t′′)
(R−t′′)+Wt′−t′ in time interval (t′, R],

where R is the earliest time instant at which a job arrives after time t′′.
The second virtual schedule is to simulate scheduling to find the ear-

liest time instant t̂ after t∗ to turn off the processor such that the effec-
tive idle power consumption in time interval (t′,Wt̂] is less than that
in the first virtual schedule, where Wt̂ is defined in Section 4.1. If t̂
exists in a specified length for simulated scheduling, the actual) sched-
ule would not turn the processor to the dormant mode in time interval
(t∗, t̂], but turn off the processor at time t̂ with the update of t∗ to Wt̂;
otherwise, the greedy procrastination is applied at time t′, and t∗ is
updated to Wt′ .

The following example demonstrates the simulated-scheduling pro-
crastination. Suppose that there are three tasks in the system in which
p1 = 0.2, p2 = 0.25, p3 = 0.5, c1 = 0.05, c2 = 0.0375, and
c3 = 0.05. The power consumption function in this example is as-
sumed as P (s) = 2 + s3, and the minimum available speed smin is
0.5. The energy of switching overhead Esw is 0.2. Suppose that t∗

is 0. Then, t′ is 0.1375 with Wt′ as 0.35 and t′′ is 0.4875 with Wt′′
as 0.65 so that the effective idle power consumption in time interval
(0.1375, 0.65] in the first schedule is 1.067. The effective idle power
consumption in time interval (0.1375, 0.55] in the second schedule is
1.024 with t̂ = 0.2875, and, hence, the processor is idle in the ac-
tive mode in time interval (0.1375, 0.2]. Figure 3(a) shows the result-
ing schedule by applying the simulated-scheduling procrastination with
4.034 total energy consumption in time interval (0, 2.15], while the to-
tal energy consumption by applying the greedy procrastination is 4.2 in
time interval (0, 2.15] by turning the processor off for 6 times.

Moreover, we also know that the processor is in the active mode in
time interval (t∗, t̂). We can simply ignore the energy consumption
Pind(t̂ − t∗) since it is a constant in the time interval. Suppose that
Jt∗,t̂ is the set of jobs completed in the time interval. We can slow
down the execution speeds of jobs in set Jt∗,t̂ to minimize the energy
consumption contributed from the speed-dependent power consump-
tion. The idea is as follows: (1) revise the deadline of a job in set Jt∗,t̂
as no later than t̂ or its original deadline. (2) schedule these jobs in set
Jt∗,t̂ by applying the speed determination algorithm for aperiodic real-
time tasks by Yao et al. [20] with the revised deadlines. For example, in
Figure 3(a), when t∗ = 0.1375 and t̂ = 0.2, all the jobs arrived at time
0 are revised to deadline 0.2 and are executed at speed 0.6875. Fig-
ure 3(b) shows the resulting schedule with speed reduction with total
energy consumption 3.881 in time interval (0, 2.15]. The simulated-
scheduling procrastination with speed reduction is denoted as Algo-
rithm SS-Procrastination. Let K be the number of jobs in time inter-
val (t′,Wt′′]. The time complexity of Algorithm SS-Procrastination is
O(K log2K), dominated by applying the algorithm by Yao et al. [20].

5. PERFORMANCE EVALUATION
This section provides performance evaluations of our algorithms with

comparisons to the existing greedy procrastination algorithm [10], de-
noted by Algorithm Greedy Procrastination, for periodic real-time tasks.

292

5.1 Experimental Setup
The power consumption model used here is P (s) = β1 + β2s

3.
We evaluate our algorithms for Intel XScale, in which there are five
speeds: (0.15, 0.4, 0.6, 0.8, 1) GHz with corresponding power con-
sumption (80, 170, 400, 900, 1600) mWatt. The power consumption
function can be modeled approximately as P (s) = 0.08 + 1.52s3Watt
by treating 1GHz as the speed unit. The critical speed for Intel XScale
in such a model is 297 MHz with power consumption 0.12W. To make
our presentation consistent, we normalize the speeds in [0.15, 1] GHz
by setting 0.297 GHz as 1. Hence, the power consumption P (s) after
normalization is 1

25
(2+ s3) Watt in our evaluations, where 1

25
is called

the power normalization factor denoted by γ. The minimum (maxi-
mum, respectively) available speed is about 0.5 (3.37, respectively).

We evaluate the performance of the proposed algorithms by using
synthetic real-time tasks, which are also adopted mostly in many leakage-
aware energy-efficient studies, such as, [10, 12, 19]. Based on real-life
task sets [14] with periods in the scale of milliseconds, for any given
task τi, period pi is generated as a random variable in milliseconds. We
assume the execution of each task at critical speed s∗. For each task τi,
the estimated utilization µ∗i is a random variable in (0, 1]. For a speci-
fied total utilization U of a set of tasks {τ1, τ2, . . . , τn}, the execution
time ti of task τi at s∗ is set as UPn

j=1 µ
∗
j
µ∗i pi, i.e., ci = UPn

j=1 µ
∗
j
µ∗i pi.

If U is greater than 1, executing all the tasks at speed U is the optimal
solution. Therefore, we only consider task sets with U no more than 1.

We perform many experimental settings but only representative re-
sults are presented. The first and second experiments simulate the effect
on the selection of user parameter α in Algorithm P-Procrastination for
specified task sets with different settings. The third one focuses on the
effect of the number of tasks in the system with U = 0.5 and Esw = 8
mJ, while the fourth one considers the impact of the utilization U at the
critical speed for 20 tasks with Esw as 8 mJ. The last one explores the
evaluated algorithms by varying Esw.

The baseline schedule for comparison is to apply the original EDF
scheduling by executing jobs at the critical speed without procrasti-
nation and by turning off the system when the idle interval is long
enough. The normalized total energy and normalized additional energy
are adopted as the performance metrics. The normalized total energy of
an algorithm for an input instance is the energy consumption of the de-
rived solution divided by the energy consumption of the baseline sched-
ule. The additional energy in a schedule is the total energy consumption
subtracts the energy consumption to execute all the tasks at the critical
speed. If all the tasks are executed at the critical speed, the additional
energy consumption is the energy consumption while the processor is
idle. The normalized additional energy of an algorithm for an input in-
stance is the energy consumption of the derived solution divided by the
additional energy of its baseline schedule. Each configuration is run for
256 times independently.

5.2 Experimental Results
Figure 4 shows the evaluation results for the normalized additional

energy of Algorithm P-Procrastination and Algorithm Greedy Procras-
tination by varying the parameter α from 0 to 1, stepped by 0.01, when
the energy of switching overhead Esw is 10mJ and there are 20 tasks.
Figure 4(a) is the results for U = 0.3, while Figure 4(b) is for U = 0.5.
As shown in Figure 4, with a proper setting of α, the improvement
of Algorithm P-Procrastination compared to the greedy procrastination
can be at most 12% in the energy consumption while the system is idle.

Figure 5 shows the evaluation results of Algorithm P-Procrastination
for α = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 by varying the parameter Esw
from 4mJ to 14mJ, when the number of tasks is 20. In Figure 5(a) and
Figure 5(b), α = 0.3 is a good choice when Esw is between 4mJ and
5mJ, α = 0.4 is good when Esw is between 5mJ and 6mJ, and so on.
When the energy of switching overhead increases, we have to choose
a greater value of α to have better results. Since the break-even time
is longer for greater Esw, job procrastination to create long enough
length of an idle interval can help reduce the energy. On the other hand,

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 0.2 0.4 0.6 0.8 1

A
v
er

ag
e

n
o
rm

al
iz

ed
 a

d
d
it

io
n
al

 e
n
er

g
y

α

Greedy Procrastination
P-Procrastination

(a) U = 0.3

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

A
v
er

ag
e

n
o
rm

al
iz

ed
 a

d
d
it

io
n
al

 e
n
er

g
y

α

Greedy Procrastination
P-Procrastination

(b) U = 0.5

Figure 4: Evaluation results of Algorithm P-Procrastination for
different values of user parameter α by varying α.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 6 8 10 12 14

A
v
er

ag
e

n
o
rm

al
iz

ed
 a

d
d
it

io
n
al

 e
n
er

g
y

Energy switching overhead (mJ)

Greedy Procrastination
P-Procrastination with α=0.2
P-Procrastination with α=0.3
P-Procrastination with α=0.4
P-Procrastination with α=0.5
P-Procrastination with α=0.6
P-Procrastination with α=0.7
P-Procrastination with α=0.8

(a) U = 0.3

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 6 8 10 12 14

A
v

er
ag

e
n

o
rm

al
iz

ed
 a

d
d

it
io

n
al

 e
n

er
g

y

Energy switching overhead (mJ)

Greedy Procrastination
P-Procrastination with α=0.2
P-Procrastination with α=0.3
P-Procrastination with α=0.4
P-Procrastination with α=0.5
P-Procrastination with α=0.6
P-Procrastination with α=0.7
P-Procrastination with α=0.8

(b) U = 0.5

Figure 5: Evaluation results of Algorithm P-Procrastination for
different values of user parameter α by varying Esw.

when Esw is smaller, if the next job will arrive soon, the processor
should try to remain active to prevent the processor from switching be-
tween the active mode and the dormant mode, and, hence, α should be
smaller. The best setting of α might be proportional to energy switch-
ing overhead Esw. By evaluating more settings, including the variation
of tasks, the variation of speed smin, and the energy of switching over-
head, we find that setting the user parameter α as 1

γ
P (s∗)Pind

P (smin)Pd(s∗)Esw
in Algorithm P-Procrastination could derive effective schedules on the
minimization of energy consumption, where γ is the power normaliza-
tion factor (γ is 0.04 here). Because of space limitation, we could not
include the extensive evaluation results here.

Figure 6 shows the evaluation results of Algorithm P-Procrastination
for α = 0.5, 0.6 and Algorithm SS-Procrastination with Esw = 8mJ
and 20 tasks by varying the utilization U at the critical speed. When
U is small, Algorithm SS-Procrastination has little chance to execute
tasks at speeds lower than the critical speed, and, hence, the perfor-
mance of Algorithm SS-Procrastination is almost the same as that of
Algorithm P-Procrastination. On the other hand, when U is large, Al-
gorithm SS-Procrastination outperforms Algorithm P-Procrastination,
especially when U > 0.85, because Algorithm SS-Procrastination has
more chance to execute tasks at speeds lower than the critical speed
to reduce the energy consumption. However, when U is large enough,
the improvement of Algorithm SS-Procrastination on the normalized
total energy is much smaller than that on the normalized additional en-
ergy. This is because the execution energy consumption to execute all
the tasks at the critical speed is much greater than the additional en-
ergy consumption. The variation of the number of tasks does not sig-
nificantly affect the performance of Algorithms P-Procrastination and
SS-Procrastination, and, hence, the results are omitted here.

Figure 7 shows the evaluation results of Algorithm P-Procrastination
forα = min{1, 1

γ
P (s∗)Pind

P (smin)Pd(s∗)Esw} and Algorithm SS-Procrastination
by varying energy switching overhead Esw, in which U is a random
variable in [0.2, 0.8] for 1024 runs. The reduction of energy consump-
tion of Algorithm P-Procrastination when the system is idle andEsw <
14mJ can be 3% to 11% compared to the greedy procrastination with
2% to 5% reduction in total energy. The reduction of total energy con-
sumption by Algorithm SS-Procrastination is about 5% to 15%. When
Esw is great enough, i.e., Esw > 14mJ, Algorithm P-Procrastination

293

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
v
er

ag
e

n
o
rm

al
iz

ed
 a

d
d
it

io
n
al

 e
n
er

g
y

Utilization

Greedy Procrastination
P-Procrastination with α= 0.5
P-Procrastination with α= 0.6

SS-Procrastination

(a) Additional Energy

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
v
er

ag
e

n
o
rm

al
iz

ed
 t

o
ta

l
en

er
g
y

Utilization

Greedy Procrastination
P-Procrastination with α= 0.5
P-Procrastination with α= 0.6

SS-Procrastination

(b) Total Energy

Figure 6: Evaluation results of Algorithm P-Procrastination for
α = 0.5 and α = 0.6 and Algorithm SS-Procrastination when Esw
is 8mJ and n = 20 by varying U .

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 4 6 8 10 12 14 16 18 20

A
v

er
ag

e
n

o
rm

al
iz

ed
 a

d
d

it
io

n
al

 e
n

er
g

y

Energy switching overhead (mJ)

Greedy Procrastination
P-Procrastination

SS-Procrastination

(a) Additional Energy

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 4 6 8 10 12 14 16 18 20

A
v

er
ag

e
n

o
rm

al
iz

ed
 a

d
d

it
io

n
al

 e
n

er
g

y

Energy switching overhead (mJ)

Greedy Procrastination
P-Procrastination

SS-Procrastination

(b) Total Energy

Figure 7: Evaluation results of Algorithm P-Procrastination
for α = min{1, 1

γ
P (s∗)Pind

P (smin)Pd(s∗)Esw} and Algorithm SS-
Procrastination by varying energy switching overhead Esw.

is almost as the same as Algorithm Greedy Procrastination. When
Esw > 16mJ, Algorithm P-Procrastination and Algorithm Greedy Pro-
crastination might lead to a schedule with more energy consumption
than the baseline schedule due to improper procrastination, and, hence,
the normalized additional energy of the algorithms might be greater
than 1. Algorithm SS-Procrastination has only marginal improvement
when Esw is small. However, when Esw is greater, the improvement
of Algorithm SS-Procrastination becomes significant, since the sched-
ule has more time intervals to execute tasks at speeds lower than the
critical speed instead of being idle in the active mode.

6. CONCLUSION
This paper explores energy-efficient scheduling of periodic real-time

tasks in a uniprocessor leakage-aware dynamic voltage scaling system,
in which the processor might be turned off. We propose two algorithms
to reduce the energy consumption. Algorithm P-Procrastination uses a
user-specified parameter α to determine whether the scheduler should
turn the processor to the dormant mode when there is no job for execu-
tion. Algorithm SS-Procrastination applies on-line simulated schedul-
ing to determine whether we should procrastinate or execute jobs at
speeds lower than the critical speed. To our best knowledge, Algo-
rithm SS-Procrastination is the first algorithm that might execute jobs at
speeds lower than the critical speed with energy reduction when a pro-
cessor can enter the dormant mode. The experimental results show that
Algorithm SS-Procrastination and Algorithm P-Procrastination could
greatly outperform existing greedy procrastination schemes. The re-
duction of energy consumption of Algorithm P-Procrastination when
the system is idle can be 3% to 11% compared to the greedy procras-
tination proposed in [10], while the total energy is reduced by about
2% to 5%. The reduction of total energy consumption by Algorithm
SS-Procrastination is about 5% to 15%.

Although we focus our discussions on dynamic-priority tasks with
the earliest-deadline-first scheduling policy, our proposed algorithms
can be easily extended to systems with fixed-priority tasks by using
different algorithms on the calculation of procrastination lengths of
jobs in [4, 8]. Moreover, the algorithms can also be extended easily

to processors with multiple modes for power reduction, such as dor-
mant mode, standby mode, etc. When tasks might complete earlier
than their worst-case estimations, slack reclamation algorithms in the
literature, such as [9, 17], can be applied to the proposed algorithms.
For future research, we will explore energy-efficiency for tasks with
resource competition.

References
[1] J. Augustine, S. Irani, and C. Swamy. Optimal power-down strategies. In

FOCS, pages 530–539. IEEE Computer Society, 2004.
[2] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez. Determining

optimal processor speeds for periodic real-time tasks with different power
characteristics. In Proceedings of the IEEE EuroMicro Conference on
Real-Time Systems, pages 225–232, 2001.

[3] P. Baptiste. Scheduling unit tasks to minimize the number of idle periods:
a polynomial time algorithm for offline dynamic power management. In
SODA, pages 364–367. ACM Press, 2006.

[4] J.-J. Chen and T.-W. Kuo. Procrastination for leakage-aware
rate-monotonic scheduling on a dynamic voltage scaling processor. In
ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES), pages 153–162, 2006.

[5] J.-J. Chen, T.-W. Kuo, and C.-S. Shih. 1+ε approximation clock rate
assignment for periodic real-time tasks on a voltage-scaling processor. In
the 2nd ACM Conference on Embedded Software (EMSOFT), pages
247–250, 2005.

[6] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 37–46, 2003.

[7] T. Ishihara and H. Yasuura. Voltage scheduling problems for dynamically
variable voltage processors. In Proceedings of the International
Symposium on Low Power Electronics and Design, pages 197–202, 1998.

[8] R. Jejurikar and R. K. Gupta. Procrastination scheduling in fixed priority
real-time systems. In Proceedings of the 2004 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems,
pages 57–66, 2004.

[9] R. Jejurikar and R. K. Gupta. Dynamic slack reclamation with
procrastination scheduling in real-time embedded systems. In DAC, pages
111–116, 2005.

[10] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage
scaling for real-time embedded systems. In Proceedings of the Design
Automation Conference, pages 275–280, 2004.

[11] W.-C. Kwon and T. Kim. Optimal voltage allocation techniques for
dynamically variable voltage processors. In Proceedings of the 40th
Design Automation Conference, pages 125–130, 2003.

[12] Y.-H. Lee, K. P. Reddy, and C. M. Krishna. Scheduling techniques for
reducing leakage power in hard real-time systems. In 15th Euromicro
Conference on Real-Time Systems (ECRTS), pages 105–112, 2003.

[13] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal of the ACM,
20(1):46–61, 1973.

[14] C. D. Locke, D. R. Vogel, and T. J. Mesler. Building a predictable
avionics platform in ada: A case study. In IEEE Real-Time Systems
Symposium, pages 181–189, 1991.

[15] P. Mejı́a-Alvarez, E. Levner, and D. Mossé. Adaptive scheduling server
for power-aware real-time tasks. ACM Transactions on Embedded
Computing Systems, 3(2):284–306, 2004.

[16] L. Niu and G. Quan. Reducing both dynamic and leakage energy
consumption for hard real-time systems. In Proceedings of the 2004
international conference on Compilers, architecture, and synthesis for
embedded systems, pages 140–148, 2004.

[17] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power
embedded operating systems. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles, pages 21–24, 2001.

[18] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated
Circuits. Prentice Hall, 2nd edition, 2002.

[19] Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time
embedded systems on variable speed processors. In Proceedings of the
2000 IEEE/ACM International Conference on Computer-Aided Design,
pages 365–368. IEEE Press, 2000.

[20] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU
energy. In Proceedings of the 36th Annual Symposium on Foundations of
Computer Science, pages 374–382. IEEE, 1995.

[21] D. Zhu. Reliability-aware dynamic energy management in dependable
embedded real-time systems. In IEEE Real-time and Embedded
Technology and Applications Symposium, pages 397–407, 2006.

294

