
Runtime Resource Management with Workload Prediction

Mina Niknafs
Linköping University,

Sweden
mina.niknafs@liu.se

Ivan Ukhov
Gears of Leo AB,

Sweden
ivan.ukhov@leovegas.com

Petru Eles
Linköping University,

Sweden
petru.eles@liu.se

Zebo Peng
Linköping University,

Sweden
zebo.peng@liu.se

ABSTRACT

Modern embedded platforms need sophisticated resource managers

in order to utilize the heterogeneous computational resources effi-

ciently. Moreover, such platforms are exposed to fluctuating work-

loads unpredictable at design time. In such a context, predicting

the incoming workload might improve the efficiency of resource

management. But is this true? And, if yes, how significant is this

improvement? How accurate does the prediction need to be in or-

der to improve decisions instead of doing harm? By proposing a

prediction-based resource manager aimed at minimizing energy

consumption while meeting task deadlines and by running exten-

sive experiments, we try to answer the above questions.

ACM Reference Format:

Mina Niknafs, Ivan Ukhov, Petru Eles, and Zebo Peng. 2019. Runtime

ResourceManagement withWorkload Prediction . In The 56th Annual Design

Automation Conference 2019 (DAC ’19), June 2–6, 2019, Las Vegas, NV, USA.

ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3316781.3317902

1 INTRODUCTION

In modern heterogeneous architectures, multiple computational re-

sources are brought together in order to provide high performance

for different applications. Integrating multiple heterogeneous cores

in a single architecture is an important technique for obtaining per-

formance benefits; however, this can only be attained if a platform

based on this architecture is equipped with an appropriate resource

manager (RM) for making decisions such as task mapping, task

scheduling, and voltage and frequency scaling.

Issues are made more complicated since, most of the times, plat-

forms of this type are exposed to fluctuating workloads that are

unknown at design time. In this context, considering a prediction of

the future workload, in addition to the current state of the platform,

should potentially improve the efficiency of the resource manage-

ment decisions. While this is intuitively appealing, there are many

very interesting questions that have to be answered. What would

an RM that takes workload prediction into account look like? Does

workload prediction actually improve the efficiency of resource

management? And, if yes, how significant is this improvement?

And how accurate would the prediction need to be in order to help

improve decisions instead of, possibly, doing harm?

In this paper, our goal is to answer the above questions in the context

of a resource management system that makes mapping and scheduling

decisions for incoming tasks such that deadlines are satisfied with

minimum energy consumption. The predicted parameters are the

nature and the timing of incoming requests (tasks). In this paper,

we do not address the issue of prediction itself; instead we rely

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317902

on our previous work [12, 13], in which we show that, in real-life

traces, there are patterns in the type of resource requests and in

their interarrival times, and that these patterns can be used for

modeling and prediction of the future workload. The proposed

methods for prediction were tested on the Google cluster data set

[14]. On average, the next arrival time was predictable with an error

of less than 17%, and the incoming request type was predictable

with an accuracy of 80%–95%. It should be noted that we selected

prediction methods that have a small inference overhead in order

to be applicable at runtime.

Related work and contribution: There is a vast amount of

literature on resource management for embedded systems. An ex-

tensive survey can be found in [16]. Quasi-static techniques have

been proposed in order to handle variable workloads [15]. This

means that a set of resource allocation solutions corresponding to

executed workload instances (phases) are prepared off-line. These

solutions are applied at runtime, depending on the actual workload.

However, such an approach cannot be applied in the context of a

variable workload whose dynamic features are largely unknown at

design time. The approach in [11] performs design-time profiling

and optimization in order to derive a set of Pareto-optimal configu-

rations for each application. At run-time, depending on the actual

working conditions, the resources that are assigned to each active

application are determined based on the configurations that were

previously derived off-line. A similar approach is used in [6], where

near-optimal static mappings are generated at design time for each

application. The run-time system uses these near-optimal static

mappings and, based on a model of the underlying architecture,

determines the actual mapping and scheduling such that the prop-

erties of the static mappings are preserved. Approaches based on

feedback control [5, 9] and machine learning (e.g., reinforcement

learning) [4] have been proposed for particular applications in order

to design adaptable resource managers. In [7], in order to maximize

overall throughput, the finishing time of an application is estimated

based on historical runtime information. A predictive user-level

scheduler based on past performance history is proposed in [8].

Prediction techniques have been used in the context of thermal

prediction as well [2]. Density predictions of global workloads at an

aggregate level have been used for resource management in clouds

[3, 17]. Here, the granularity level of prediction is the CPU usage

or the density of arriving request streams, and the actual resource

management actions are shutting down or starting up workstations.

As opposed to this, prediction aided resource management with a

fine granularity, at the task level, has not been addressed. The contri-

bution of this paper is the investigation of such resource management

policies in the context of heterogeneous embedded platforms.

2 SYSTEM MODEL AND MANAGEMENT

We consider a heterogeneous platform consisting of N computation

resources ri , i = 1, . . . ,N . The platform executes a fluctuating

workload as the response to a stream of requests. In order to focus

on the main point of interest which is prediction, we consider a

relatively simple workload model. Each request reqj triggers a

specific activity denoted as a task τj . Each task τj for j = 1, . . . ,L is

characterized by:

• arrival time sj , the time of the arrival of request reqj ;
• deadline dj , relative to the arrival time;

• average energy consumption ej,i , when τj is executed on

resource ri , for all ri
1;

• worst case execution time (WCET) c j,i when τj is executed

on resource ri , for all ri
1;

• energy and time overhead emj,k,i and cmj,k,i due to migra-

tion of task τj from resource rk to resource ri , for each ri
and rk .

Following each request reqj , at time sj , the RM has to decide

the resource to which to map the corresponding task τj and the

moment in time at which to schedule the start of its execution. We

assume that the tasks are firm real-time, which means that they

have to meet their deadlines in order for their output to be of any

use. If they miss their deadlines their result would be useless. Tasks

are preemptable, except when executed on particular resources (e.g.

GPUs), in which case they cannot be preempted and continued

afterwards, but need to run to the end in order to produce results.

At each task arrival the RM considers the current context of

active tasks under execution and the new task τj to be activated as

response to the request reqj . It tries to find a mapping and schedule

for task τj such that it satisfies its deadline. To this end, it might

preempt running tasks, remap, and reschedule them - taking the

involved migration overheads into consideration (with exception of

e.g. GPUs - see above). If there is no solution such that all tasks meet

their deadlines, τj will not be admitted. If prediction is employed,

in addition to the current context and the arriving task τj , the RM
also considers the task τp corresponding to the predicted request

reqp and its predicted arrival time sp , when deciding on mapping

and scheduling of τj . The RM takes its decisions such that energy

consumption is minimized.

In the rest of the paper we propose such a resource manager

and analyze the impact of prediction quality on its performance.

Given that an essential feature of the systems we consider is a

fluctuating workload, unpredictable at design time, it is unavoidable

that, in certain contexts, the workload demand cannot be satisfied

and tasks will not be admitted. Nevertheless, there might exist

applications that are safety critical and request strong guarantees

regarding hard deadlines. In order to deliver such guarantees, those

applications and their resource demand have to be known at design

time. Thus, for the set of these safety-critical hard real-time tasks,

the resource allocation decisions are taken at design time, such that

the requested constraints are satisfied. Well established static or

quasistatic techniques can be employed to this endwhich seamlessly

integrate with the resource management policy discussed in this

paper [16]. These decisions are stored for online use by the resource

manager. At their arrival, the resource manager allocates with the

highest priority the required resources to the critical applications

and continues to apply the adaptive resource allocation technique,

proposed in this paper, over the remaining set of resources.

3 MOTIVATIONAL EXAMPLE

Let us consider the example in Fig. 1. We have a heterogeneous

architecture with two CPUs and one GPUwhere the RM is supposed

tomanage the available resources such that the energy consumption

1Tasks need to be executable at least on one resource. If a task is not executable on a
certain resource, WCET and energy consumption for that resource are indicated as
specific dummy values.

is minimized, and that all deadlines are met. Assume that τ1 and τ2
are submitted to the RM with the parameters given in Table 1.

Table 1: Task parameters

WCET (ms) Energy consumption (J)

sj dj CPU1 CPU2 GPU CPU1 CPU2 GPU

τ1 0 8 8 12 5 7.3 8.4 2

τ2 1 5 7 8.5 3 6.2 7.5 1.5

Suppose the RM makes decisions solely based on the current

state of the system and dedicates the GPU to τ1 at time 0. Then, at

time 1 when τ2 arrives, the only chance for it to meet its deadline

is to execute on the GPU which is running τ1. Since τ1 is running,
it has to be aborted and restarted from the beginning (due to the

nature of GPU) either on the GPU, after τ2, or on the CPU1 at time

1. None of these solutions guarantees the deadlines. Therefore, the

RM rejects τ2; see (a) in Fig. 1. In this case, the acceptance rate is

1/2. If the RM had foreseen the arrival of τ2 at time 1, it would

have mapped τ1 to CPU1 and reserved the GPU for τ2. This would
have prevented the rejection of τ2; see (b) in Fig. 1. In this case, the

acceptance rate would be 2/2.

Let us assume that the prediction for τ2 to arrive at time 1 is

inaccurate, and that it arrives, in fact, at time 3. Due to the (inaccu-

rate) prediction, τ1 is mapped to CPU1, and the GPU is available

to run τ2. Both tasks meet their deadlines with a total energy con-

sumption of 8.8 J. The RM without prediction, however, maps τ1 on
the GPU, and at time 3 it maps τ2 on the same GPU to be executed

starting at time 5. Both tasks meet their deadlines with much less

energy consumption, namely 3.5 J. The prediction accuracy has a

significant effect on the efficiency of resource management, and

inaccurate prediction might even become harmful.

�� ��

����

�����

����

����

	
���

������������������������

������������������������

�� �� �� �� � � ��

��

��

��

�����

�����

Figure 1: Two resource management scenarios: (a) solely

based on the current state and (b) based on the current state

and prediction.

4 RESOURCE MANAGEMENTWITH
PREDICTION

In this section, we describe our approach to resource management

with prediction. First, in Sec. 4.1, the notations and conventions

that are used in the following sections are introduced. Then, the

problem of exact optimization of task mapping and scheduling is

addressed in Sec. 4.2. Finally, a heuristic solution to the problem

will be introduced in Sec. 4.3.

4.1 Prerequisites

• For any activation of the RM, at a certain time t , we denote with

S the set of all tasks that have been admitted before the time

t and are not yet finished plus the task arrived as result of the

current request and (if with prediction) the task corresponding

to the predicted request.

• When the resource manager is activated at a certain time t , let
us consider τj as one of the tasks currently running on resource

ri . We remind that c j,i and ej,i are the WCET and the average

energy consumption of the task on ri . We denote by cpj,i and
epj,i the (worst case) run time not yet consumed and the average

energy not yet consumed for τj on ri at current time t (if the
task is not yet started cpj,i = c j,i and epj,i = ej,i). If the RM

decides to migrate τj to another resource rk , then the execution

time not yet executed and the energy not yet consumed are

cpj,k = c j,k × (cpj,i/c j,i), and epj,k = ej,k × (cpj,i/c j,i).
• The time window considered by the RM at each activation at

time t is the interval between the current time t and the moment

in time defined by the latest deadline of all tasks in the set S .

We denote the length of this time window by K = max
τj ∈S

(tleftj),

where tleftj = sj + dj − t ; here sj + dj is the absolute deadline

of task. Inside this time window K the RM will decide on the

mapping and scheduling of all tasks in S . On each resource the

scheduling is performed according to the optimal earliest deadline

first (EDF) policy. If no prediction is used there is no preemption

between two activations of the RM. Thus, the RM will order

the tasks on each resource according to their deadline. Here, by

task we mean complete tasks (if they have not been started yet)

or the pieces of tasks remained to be executed for tasks under

execution at time t . If prediction is used and the predicted task has

a deadline earlier than another task in the set S , then the schedule
produced by RM is considering the preemption caused by the

predicted task. Such preemption is not applied to a GPU. Let us

mention that the mapping and scheduling of the predicted task

are only used as a constraint in order to find an efficient mapping

and schedule for the current task, that takes the future arrival

into consideration. The actual predicted task will be effectively

mapped and scheduled when and if it actually arrives.

If prediction is used and a feasible mapping and scheduling are

derived, the arriving task is admitted. However, if no solution is

found so that all tasks meet their deadline, that does not mean that

the arriving task is rejected. In this case, a mapping and scheduling

solution without considering the predicted request is attempted

and if it is successful the new task is admitted.

4.2 MILP formulation for exact optimization

We use Mixed Integer Linear Programming (MILP) as our exact

optimization method. In order to make the equations more readable,

in the following, we have used simplified formulations indicating

that some of the constraints, as explained below, have to be satisfied

only under certain conditions. When encoding these equations as

linear constraints for the solver, the big-M method has been utilized

[1]. The notation t in the equations denotes the current time t at
which the RM is activated. The formulation is as follows:

minimize
∑

j |τj ∈S

∑N

i=1
x j,i × (epj,i + emj,k,i)

subject to: ∀τj ∈ S :
∑N

i=1
x j,i = 1 (1)

∀τj ∈ S :
∑N

i=1
x j,i × cpmj,i ≤ tleftj (2)

The mapping variables are denoted by x ji where x ji = 1 if

task τj is mapped to resource i; otherwise x ji = 0. We denote by

cpmj,i the total execution time of τj including the migration cost of

the case that the task is relocated during the current time window;

cpmj,i = cpj,i if the task is not relocated and cpmj,i = cpj,i+cmj,k,i

if τj is migrated from rk to ri . If τj is migrated from rk to ri during
the current time window, emj,k,i is the energy overhead for the

migration; otherwise it is zero. The constraints in (1) enforce that

each task is mapped to one and only one resource. The constraints

in (2) ensure that, if τj is mapped to ri , its execution time on this

resources is not longer than tleftj ; otherwise, its deadline cannot be

met. The scheduling constraints (3) ensure that all tasks mapped

to resource ri meet their deadline. This constraint applies to all

resources ri , except the resource to which the predicted task τp is

mapped. SL is the list of tasks in S sorted by their deadline. The

summation is over the index k in the sorted list. We remind (see

Sec. 4.1) that, according to EDF, the RM sorts the tasks mapped to

each resource according to their deadline. The constraints impose

that each task finishes before its deadline.

∀τj ∈ SL:
∑j

k=1
xk,i × cpmk,i ≤ tleftj (3)

Let us now consider the predicted task τp and the resource ri to
which it is mapped (xp,i = 1). If the deadline of τp is later than that

of all other tasks in S , there will be no preemption. The task will be

scheduled at the timemax(sp ,qi), where sp is the arrival time of τp
and qi is the moment in time when all tasks mapped to ri (except
τp) finish their execution. One of the constraints in (4) and (5) must

ensure the schedulability of τp :

qi − t + xp,i × cpp,i ≤ tleftp ; if sp ≤ qi (4)

sp,i − t + xp,i × cpp,i ≤ tleftp ; otherwise. (5)

If the deadline of the predicted task τp is earlier than that of

some tasks in the set S then one of the tasks will be preempted. We

divide the ordered list of tasks SL into two sublists: SL1 consists of

those tasks whose deadline is earlier than the one of τp or equal.

SL2 is the list of tasks with deadlines later than τp . The tasks in
SL1 will not be preempted by τp and constraints (6) ensure their

schedulability.

∀τj ∈ SL1:
∑j

k=1
xk,i × cpmk,i ≤ tleftj (6)

We denote by qi the finishing time of the last task in sublist SL1

that is mapped to resource ri . If task τp arrives before this time

qi then neither tasks in SL1 nor in SL2 will be preempted. The

constraints (7) ensure the schedulability of tasks in sublist SL2 for

this case.

∀τj ∈ SL2: qi − t +
∑j

k=1
xk,i × cpmk,i ≤ tleftj (7)

The last case to be considered is if the predicted task τp arrives

after the moment qi . In this case, the RM has to plan for a preemp-

tion. Potentially any of the tasks in SL2 that are mapped to the

same resource with τp could be preempted. Which one depends

on the arrival time of τp . The preempted task τj is divided by the

preemption point into two chunks, before and after the preemption

point, respectively. We denote the start time of the execution of

a chunk of task τj mapped to resource ri by sc j,i,k (k=1 for the

first chunk and 2 for the second) and the end time by ec j,i,k . These
start and end times are optimization variables. In constraints (8) we

ensure that the start time of the predicted task is greater than its

arrival time. Constraints (9) enforce that the end time of a chunk

is after the start time of that chunk. The start of the second chunk

should be after the end of the first, which is enforced by constraints

(10). Constraints (11) enforce that the total execution time of the

two chunks is equal with the execution time of the task. The con-

straints (12) or (13) must be satisfied to ensure that chunks do not

overlap for each ri . Constraint (14) guarantees that no deadlines

are violated.

scp,i,1 ≥ sp ∗ xp,i (8)

∀τj ∈ SL2: (∀k ∈ {1, 2}: sc j,i,k − ec j,i,k ≤ 0) (9)

∀τj ∈ SL2: ec j,i,1 − sc j,i,2 ≤ 0 (10)

∀τj ∈ SL2:
∑2

k=1
(eci, j,k − sci, j,k) = cpj,i × x j,i (11)

∀τj1 ∈ SL2: (∀τj2 ∈ SL2, j1 � j2: (∀k1 ∈ {1, 2}: (∀k2 ∈ {1, 2}:

ec j1,i,k1 − sc j2,i,k2 ≤ 0))) (12)

∀τj1 ∈ SL2: (∀τj2 ∈ SL2, j1 � j2: (∀k1 ∈ {1, 2}: (∀k2 ∈ {1, 2}:

ec j2,i,k2 − sc j1,i,k1 ≤ 0))) (13)

∀τj ∈ SL2: ec j,i,2 − t ≤ tleftj × x j,i (14)

Due to its complexity, the MILP-based optimization described

in this section is not applicable in practice. Nevertheless, we use

it in our experiments in order to evaluate the efficiency of the fast

heuristic proposed in the next section.

4.3 Fast heuristic

For our fast heuristic, we consider the processing resources as

knapsacks with certain capacities, and the tasks are the items with

certain weights. The capacity of each resource ri is expressed in

available processing time. At each activation of the RM, this capacity

is equal with length of time window K introduced in Sec. 4.1. The

weight of task τj on ri is equal to cpmj,i . Our proposed resource

management algorithm is based on the knapsack heuristic presented

in [10]. It has the worst case complexity of O(NLloдL), where N is

the number of resources and L is the number of tasks. The actual

complexity depends on the number of tasks in set S (see Sec. 4.1),

which at any activation of the resource manager is much smaller

than L. The proposed heuristic is described in Algorithm 1.

Lines 1–6 initialize the algorithm. Note that yj = map(τj) is a
vector, that specifies, for each task τj the index i of the resource that
the task is mapped to. If no feasible mapping is found for certain

tasks, their yj will be zero, and these tasks will not be allowed to

become active by the RM. Let fj,i be a measure of desirability of

assigning task τj to resource ri . A smaller fj,i means a lower level

of energy consumption, so smaller values are preferred. On line 6,

M×((cpmj,i) > tleftj) is added to fj,i in order to make it undesirable

if τj is not executable on ri ; M is a sufficiently large positive number.

In this algorithm, the tasks that are not yet mapped to any resource

are considered iteratively (line 7), and the task τj∗ that has the

maximum difference between the smallest and the second smallest

desirability is determined (lines 9–23). Once task τj∗ is identified,
one has to decide where it should be mapped (considering the

schedulability constraints). The RM tries to map the task to resource

ri∗ for which fj∗,i∗ is minimum (lines 25–28). If the scheduling

constraint for resource i∗ is violated (considering the tasks mapped

to it so far), it tries to map τj∗ to the resource i∗ for which fj∗,i∗

is the next smallest (lines 29–34). The iteration is continued until

the RM manages to map τj∗ to a resource (fulfilling the scheduling

constraints), or until all resources have been considered, and no

feasible mapping has been found (lines 31–32).

The IsSchedulable function checks the schedulability of τj∗ on
resource ri∗ given the set of tasks that are mapped on ri∗ so far.

The scheduling in function IsSchedulable is performed according

to the principles outlined in Sec. 4.1 and Sec. 4.2. It is based on

the EDF ordering of tasks on each resource and on checking that

termination occurs before the deadline. Preemption caused by the

predicted task is considered except for nonpreemptable resources,

like GPUs. If all tasks are schedulable, IsSchedulable returns true.

If, finally, a mapping has been produced such that all tasks meet

their deadline the arriving task is admitted.

Algorithm 1Mapping Heuristic

Require: S ,N , epj,i , cpj,i , K , emj,k,i , cmj,k,i

Ensure: yj =map(τj)

1: U = {1 . . . |S |} � index of active tasks

2: R = {r1 . . . rN } � index of resources

3: for each ri in R do

4: K i = K

5: for each τj in S do

6: fj,i = epj,i + emj,k,i +M × ((cpmj,i) > tleftj)

7: whileU � ∅ do

8: d∗ = −∞

9: for each j ∈ U do

10: Fj = {ri ∈ R |cpmj,i ≤ K i }

11: if Fj � ∅ then

12: i∗ = arдmin{ fj,i |i ∈ Fj }

13: if Fj \ {i
∗} = ∅ then

14: d = +∞

15: else

16: i
′
= arдmin{ fj,i |i ∈ Fj \ {i

∗}}

17: d = fj,i′ − fj,i∗

18: if d > d∗ then

19: d∗ = d

20: j∗ = j

21: i∗ = i
22: else � there is no solution

23: exit

24: while yj∗ = 0 do

25: if IsSchedulable(j∗, i∗) then

26: yj∗ = i
∗

27: K i∗ = K i∗ − cpmj∗,i∗

28: U = U \ {j∗}

29: else � τj∗ cannot be scheduled on resource i∗

30: Fj∗ = Fj∗ \ {i
∗}

31: if Fj∗ = ∅ then � no more resources

32: exit

33: else

34: i∗ = arдmin{ fj∗,i |i ∈ Fj∗ } � pick next best ri

5 EXPERIMENTAL RESULTS

The generation of experimental workload traces and the system

configuration are presented in Sec. 5.1. The first set of experiments,

Sec. 5.2 and Sec. 5.3, is performed with the goal to compare resource

management with and without prediction. In these experiments,

the prediction is considered accurate. The experiments in Sec. 5.4

explore the impact of prediction accuracy on the efficiency of re-

source management. Finally, in Sec. 5.5, the effect of prediction

overhead on the efficiency of the RM is investigated. For all ex-

periments, the performance of our heuristic is compared with that

of a hypothetical resource manager that runs the optimal MILP

formulation without overhead.

5.1 Trace generation and system configuration

In our experiments, we assume that we have a heterogeneous ar-

chitecture with five CPUs and one GPU.

Each arriving request includes the following three fields: arrival

time, request (task) type, and deadline. In order to create such traces,

we create 100 different tasks. For each task, random numbers from

Gaussian(40, 92) are generated as its WCET on CPUs. Similarly

random numbers for Gaussian(15, 32) are generated as the energy

consumptions on the CPUs. For the GPU, the average execution

time on CPUs and the average the energy consumption, respectively

are divided by a random number in range 2–10.

After creating the task sets, 500 traces with a length of 500

requests each are created as follows. In order to create the first

field of each trace (arrival time), we started from time 0, and for

the next arrival, we add the arrival of the pervious task with a

sampled number from Gaussian(1.2, 0.42). Then, in order to assign

a task to each arrival, a task is selected randomly for each sequence

of task arrivals. Finally, in order to set a deadline (relative to the

arrival time) for each pair of a task and an arrival time we do as

follows. First, we select randomly one of its WCETs on the different

resources, and we call it RWCET . Then, if we assume the arrival

time is sj , the relative deadline is set as follows: dj = RWCET ×C
whereC is a coefficient. For having very tight deadlines, we choose

randomly smaller coefficients in the range 1.5–2; in order to have

less tight deadlines, larger coefficients in the range 2–6 are chosen

randomly. To recapitulate, we create two categories of workload

traces, and the only difference between them is their deadline field.

The first category of 500 traces is the one with very tight deadlines

(referred to as the VT group), and the second category of 500 traces

is the one with less tight deadlines (referred to as the LT group).

For the migration overhead of a task, in terms of time and en-

ergy, we assumed that it is related to the complexity of the task

as captured by its WCET and energy consumption. We considered

this overhead to be between 0.1 and 0.2 of the average WCET and

energy consumption (over all resources) respectively.

5.2 MILP versus heuristic without prediction

Our first goal is to compare the performance of the exact opti-

mization and that of the heuristic, without prediction, in terms of

acceptance rate. On average, for the total number of 1000 traces run

(VT+LT), the rejection percentage without prediction for the MILP

and heuristic are 24.5% and 31%, respectively. We found that out of

1000 traces run, for 88% of them the acceptance percentage with

the MILP based model was higher than the one with the heuristic.

The fact that this not 100% might be counterintuitive at the first

sight. The explanation is that at any instant of its activation the RM

takes a locally optimal decision based on the received request and

the current state of the system. Nevertheless, it is not excluded that

a suboptimal decision taken by the heuristic might turn out more

efficient on the long run, in the context of future arriving requests.

5.3 The impact of prediction

Fig. 2a and Fig. 2b depict the average rejection percentage for the

MILP and heuristic with respect to the LT and VT group, respec-

tively. The results are shown for the case with accurate prediction

(predictor status “on”) and without prediction (predictor status

“off”). Prediction reduces the rejection percentage by 1% (LT) and

9.17% (VT) for the MILP based RM and by 2.6% (LT) and 10.2%

(VT) with the heuristic. We can observe that improvements due to

prediction are more significant in the case of tight deadlines, which

is expected since the problem becomes easier with loose deadlines.

We can also observe that the results with the heuristic are only 4%

below those with the MILP (VT) with prediction and 5.5% without

prediction.

(a) (b)

Figure 2: The average rejection percentage for the MILP and

heuristic with respect to (a) the LT group and (b) the VT

group.

Fig. 3a and Fig. 3b depict the average normalized energy con-

sumption for the MILP and heuristic for the VT and LT traces,

respectively. The energy levels closely follow those of the accep-

tance percentage; smaller rejection percentage results in higher

energy consumption since more workload is executed. For the case

of tight deadlines (VT) it is also visible that for the optimal MILP

solution the relation between reduced rejection percentage and

increased energy is more favorable than for a fast and affordable

heuristic.

(a) (b)

Figure 3: The average normalized energy consumption for

the MILP and heuristic with respect to (a) the LT group and

(b) the VT group.

5.4 The impact of prediction accuracy levels

In this experiment, the goal is to explore how different accuracy

levels affect the performance of the RM in terms of the rejection

percentage. Since the predictor provides both the identity and the

arrival time of incoming tasks, errors might be present in any of

these two quantities. Fig. 4 depicts the average rejection percentage

for different levels of accuracy with respect to the task type and the

arrival time, respectively, in the case of the VT traces. For example,

an accuracy of 0.75 in Fig. 4a means that the task (request) identity

is predicted incorrectly with a probability of 25% at each prediction

step but the arrival time is accurate.

In Fig. 4b, 0.75 accuracy value means that the normalized average

error (the normalized root mean square error) for the arrival time

prediction over the corresponding trace is 0.25.

As expected, by decreasing the prediction accuracy, the rejection

percentage increases for both the MILP and heuristic, and it gets

close to the rejection percentage in the scenario when the predictor

is disabled. The average level of 0.25 already does not offer any

sensible benefit compared to no prediction, and this in the context

in which prediction overhead is neglected. Of course in concrete

cases, the threshold at which using prediction is justified has to be

(a)

(b)

Figure 4: The average rejection percentage for different accu-

racy levels with respect to (a) the task type and (b) the arrival

time for the VT group.

considered by the designer taking the overhead into consideration

(see the next section).

5.5 The impact of prediction overhead

Various methods for interarrival time and workload modeling and

prediction can be employed. These methods imply different runtime

overheads. The prediction overhead at runtime is a very important

aspect when considering the efficiency of prediction based resource

management, in particular in the context of time-sensitive applica-

tions. The goal of this experiment is to show how the prediction

overhead affects the performance of the MILP and heuristic in terms

of the rejection percentage. We assume that predictions are 100%

accurate. We impose different prediction overhead according to

the following formula: time overhead = coefficient × average in-

terarrival time of the tasks. The result can be seen in Fig. 5 where

the horizontal axis corresponds to the aforementioned coefficient

multiplied by 100. If the overhead is larger than 2–4 percent of the

average interarrival times, the rejection rate with perfectly accu-

rate prediction becomes worse than the one in the case when the

predictor is off. Therefore, in order to be able to utilize predictions,

the runtime overhead for the selected prediction method should be

carefully investigated.

6 CONCLUSION AND FUTUREWORK

In this paper, we have investigated the following questions: does

predicting the incoming workload improve the efficiency of re-

source management? How significant is this improvement? We

have shown that, in many cases (for instance, in scenarios with

tight deadlines and with high prediction accuracy), the efficiency

improves significantly. In cases when prediction accuracy is low or

prediction overhead is high the efficiency declines. In cases when

constraints e.g. on deadlines are loose the improvements are less

significant.

Figure 5: The average rejection percentage for different pre-

diction overheads in the case of the VT group.

In addition, we have considered the following question: how ac-

curate does the prediction need to be in order to improve decision-

making instead of obstructing it? For our traces, we conclude that

the accuracy should be at least 50% in order to have a reasonable

improvement. Another aspect to note is that the benefit also de-

pends on the prediction overhead; if the overhead is too high, even

perfect accuracy reduces the efficiency of resource management.

We have also presented a fast efficient heuristic for prediction

aided resource management. Moreover, as we mentioned our previ-

ous work has shown that prediction with accuracy of 83% for the

next arrival time and 80%–95% for the request type is possible on

real-life streams with low overhead.

REFERENCES
[1] Der-San Chen et al. 2011. Applied integer programming: modeling and solution.

John Wiley & Sons.
[2] Ryan Cochran and Sherief Reda. 2010. Consistent runtime thermal prediction

and control through workload phase detection. In DAC. 62–67.
[3] Eli Cortez et al. 2017. Resource central: Understanding and predicting workloads

for improved resource management in large cloud platforms. In Proceedings of
the 26th Symposium on Operating Systems Principles. ACM, 153–167.

[4] Anup Das and et al. 2016. Adaptive and hierarchical runtime manager for
energy-aware thermal management of embedded systems. ACM Transactions on
Embedded Computing Systems (TECS) 15, 2 (2016), 24.

[5] Antonio Filieri et al. 2015. Automated multi-objective control for self-adaptive
software design. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ACM, 13–24.

[6] Andrés Goens et al. 2017. Tetris: A multi-application run-time system for pre-
dictable execution of static mappings. In Proceedings of the 20th International
Workshop on Software and Compilers for Embedded Systems. ACM, 11–20.

[7] Chris Gregg et al. 2011. Dynamic heterogeneous scheduling decisions using
historical runtime data. In Workshop on Applications for Multi-and Many-Core
Processors (A4MMC).

[8] Víctor J Jiménez et al. 2009. Predictive runtime code scheduling for heteroge-
neous architectures. In International Conference on High-Performance Embedded
Architectures and Compilers. Springer, 19–33.

[9] Alberto Leva et al. 2018. Event-based power/performance-aware thermal man-
agement for high-density microprocessors. IEEE Transactions on Control Systems
Technology 26, 2 (2018), 535–550.

[10] Silvano Martello. 1990. Knapsack problems: algorithms and computer implementa-
tions. John Wiley & Sons Ltd.

[11] Giuseppe Massari et al. 2014. Combining application adaptivity and system-
wide Resource Management on multi-core platforms. In Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XIV), 2014 International
Conference on. IEEE, 26–33.

[12] Mina Niknafs et al. 2017. Two-phase interarrival time prediction for runtime
resource management. In Digital System Design (DSD). IEEE, 524–528.

[13] Mina Niknafs et al. 2017. Workload prediction for runtime resource management.
In Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International
Symposium of System-on-Chip (SoC). IEEE, 1–5.

[14] Charles Reiss et al. 2011. Google cluster-usage traces: format + schema. Technical
Report. Google Inc., Mountain View, CA, USA.

[15] Amit Singh et al. 2016. Resource and throughput aware execution trace analysis
for efficient run-time mapping on MPSoCs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 35, 1 (2016), 72–85.

[16] Amit Kumar Singh et al. 2013. Mapping on multi/many-core systems: survey of
current and emerging trends. In DAC. 1–10.

[17] Chu-Fu Wang et al. 2014. A prediction based energy conserving resources
allocation scheme for cloud computing. In Granular Computing. IEEE, 320–324.

