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Abstract
This paper presents an efficient algorithm for post-synthesis logic sim-
ulation of digital circuits with oscillatory combinational loops. Oscil-
latory combinational loops can significantly degrade the performance
of cycle accurate logic simulators. We provide an algorithm that first,
dynamically detects oscillatory loops. Then, we introduce a novel ap-
proach to compute a multiple of their oscillation period which is used
to optimize the efficiency of the simulation by reducing the number
of time points that need to be evaluated. Finally, we provide the ex-
perimental results of our optimized algorithm measured on a cycle
accurate simulator used in conjunction with a hardware emulator.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—simulation

General Terms
Algorithms, Verification
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1. INTRODUCTION AND RELATED WORKS
Logic simulators are a key requirement in circuit design and verifi-

cation flows nowadays. Logic design engineers are required to simu-
late their digital circuits to verify their expected functionality. Simula-
tors can be used to verify the intended functionality at different levels,
from behavioral to gate levels. Cycle accurate gate-level logic simu-
lators are particularly critical in design and verification flows because
the low-level specification and the fine granularity of the gates pro-
vide an accurate representation of the hardware functional behavior.
Gate-level simulators are used to verify synthesized circuit netlists in
different contexts. They can be used either as standalone verification
tools or as embedded tools in FPGAs or hardware emulators [1] that
combine faster functional verification with full visibility, which is the
original motivation of this paper.

Cycle accurate simulators use different delay models for digital cir-
cuit elements. Examples of delay models include zero-delay, ideal-
delay and inertial-delay [2].

Simulators use different approaches to simulate combinational cir-
cuits [7]. In an oblivious simulator, all gates are simulated at each
time unit. Demand-driven simulators are more efficient than oblivi-
ous simulators since the gates are evaluated only when their outputs
are needed. In event-driven simulators only gates whose inputs have
changed are evaluated. This requires complex dynamic schedulers
compared with the simple static schedulers of demand-driven simu-
lators.

The simulation process usually involves two main phases. In the
first phase, the circuit netlist is compiled to be restructured and opti-
mized. In the second phase, the compiled netlist is evaluated using the
input stimuli specified in the testbench. The first phase is referred to
as the compiler in this paper and the second phase as the simulator.

Combinational loops, which are logic gates (extended by includ-
ing open-gate latches) with feedback signals can appear in a logic
circuit for a variety of reasons. They can be found in asynchronous
circuits, a sequential circuit might implement a RS-latch using cross-
coupled NOR-gates, they can be created through latches, or gener-
ated by high-level synthesis tools to reduce the number of synthesized
gates [8]. Combinational loops can be either potentially oscillatory
or non-oscillatory (monotonic). Gupta, et al. [4] provided a method
to convert monotonic loops into functionally equivalent acyclic logic.
Shiple et al. [9] provided a procedure to determine statically whether
a circuit produced a stable output sequence for every input sequence,
under all possible circuit delays. If so, their procedure produced an
equivalent acyclic circuit. Their work was built upon Malik’s [6] anal-
ysis of cyclic combinational circuits. Hommais, et al. [5] described
a cycle accurate simulator to handle non-oscillatory combinational
loops which existed between Finite State Machines.

2. MOTIVATION
Simulation algorithms in the papers mentioned above report errors

when an oscillatory loop is detected. However, post-synthesis cycle
accurate simulators are required to evaluate oscillatory loops precisely
in several scenarios. A designer might intentionally include combina-
tional loops in a design to reduce the number of gates, only using
the loop outputs when the loop is not oscillating [8]. Simulators that
provide visibility to hardware emulators are also required to evalu-
ate oscillatory loops accurately. When a digital circuit is emulated,
the emulator records the inputs to the circuit at every clock cycle and
the state values at intervals. Then, the visibility simulator calculates
the state values at every clock cycle using the emulator recorded val-
ues. High capacity emulators are used to verify system-on-chip archi-
tectures. System-on-chip bus-based architectures can include arbitra-
tion schemes which are based on token-ring protocols implemented as
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combinational loops. The combinational loop oscillates when there is
not any request for the token in the ring. The cycle accurate simula-
tor in this scenario is required to evaluate oscillatory loops precisely.
The simulator is also required to report warnings when oscillation is
detected to highlight oscillations that are due to the design errors.

As digital designs grow in size and complexity, it is a crucial ob-
jective to improve the performance of simulators. Oscillatory com-
binational loops can significantly degrade the performance of cycle
accurate simulators, regardless of their type (oblivious, event-driven,
or demand-driven). The following sections provide an algorithm that
first detects oscillatory loops dynamically during simulation, once the
inputs to the circuit have become stable. Then, the algorithm com-
putes a multiple of the oscillation period. The oscillation period is
defined as the number of time units between two identical states of the
circuit (including outputs and delay elements). As long as the inputs
to the circuit remain stable, the algorithm optimizes the simulation by
skipping the evaluation of a multiple of oscillation periods.

The next section introduces our optimized algorithm for handling
oscillatory combinational loops. Section 4 provides our experimen-
tal results. Our testing platform uses a cycle accurate demand-driven
software simulator in conjunction with a hardware emulator. Section
5 provides conclusions.

3. THE ALGORITHM
An overview of the algorithm is as follows. The algorithm first

determines whether the circuit is stable or oscillating, once its inputs
reach stability. If the circuit oscillates then a multiple of the oscillation
period is computed. Finally, the simulation is accelerated by skipping
the evaluation of a number of time points corresponding to a multiple
of the oscillation period previously computed.

The following subsections further explain how to determine dynam-
ically whether a circuit is stable or oscillating. When a circuit contains
oscillating loops, we will present a procedure and its proof to compute
a multiple of its oscillation period. We will then show the pseudo-code
of the algorithm that we propose to accelerate simulation of the circuit.

3.1 Determining stability or oscillation of circuit
In the general case, when the number of delay elements in a circuit

is α, the maximum delay of any element is δ and the inputs to the cir-
cuit are stable, an upper bound for the circuit to reach either stability or
oscillation is λ = δ(2α − 2) (Brzozowski et al. [2]). In asynchronous
circuits, δ is the delay of the gate with the maximum delay and α is the
number of gates with delays. In synchronous circuits, α is the number
of state elements and δ is the delay of the state with the slowest clock.

In our cycle accurate simulator, once the circuit inputs become sta-
ble, L time-units are simulated. The stability upper bound L is calcu-
lated by the compiler as L = K + D(2n − 1) where n is the number
of delay elements in the combinational loops of the circuit, D is the
maximum delay of n elements, and K is the longest acyclic path delay
of the circuit. Simulating K time-units after the circuit inputs become
stable guarantees that the combinational loops inputs (excluding the
feedback signals) become stable. Simulating D(2n − 1) time-units
after the loops inputs become stable covers the space of all possible
values for the delay elements in the loops. Therefore, L is an upper
bound for the circuit to reach either stability or oscillation. In practice,
the upper bound L is significantly smaller than λ because combina-
tional loops are a small portion of circuits (i.e., n � α).

A boolean variable stability is defined to record whether the circuit
is stable. The boolean is set to false when at least one delay element
in the circuit is unstable. Otherwise, it is set to true. A delay ele-
ment is unstable when its input and output values are different. The
computation overhead associated with stability is very small since it
requires one comparison and one potential value assignment per delay

element evaluation. If stability is false after simulating L time-units,
an oscillatory loop has been detected.

3.2 Determining a multiple of oscillation period
In general, the oscillation period of a combinational loop depends

on its logic, input stimuli, delay values, and the delay model. A loop
can be non-oscillatory or oscillate with different oscillation periods
based on its inputs. Figure 1 shows an example of a circuit with two
oscillation periods. in1 and in2 are the inputs of the circuit. E1 and

Figure 1: A circuit with two oscillation periods.

E2 are the outputs of two elements with delays of D1 and D2 time-
units, respectively. The gates in the circuit have zero delay (i.e., the
delay elements represent the delay of the gates). If D1 = D2 = 1
time-unit and the inputs have become stable after time t0, the behavior
of the circuit is as follows:

• Non-oscillatory (in1 = in2 = 0)
E1(t) = E2(t) = 0 for t ≥ t0

• Memory (in1 = 1, in2 = 0)
E1(t + 1) = E1(t)
E2(t + 1) = E2(t) for t ≥ t0

• Oscillation period 2 (in1 = 0, in2 = 1)
E1(t + 1) = 0
E2(t + 1) =∼ E2(t) for t ≥ t0
E1E2 = {00, 01, 00, 01, ...} starting from t0

• Oscillation period 3 (in1 = 1, in2 = 1)
E1(t + 1) =∼ E1(t).E2(t)
E2(t + 1) =∼ E1(t). ∼ E2(t) for t ≥ t0
E1E2 = {00, 01, 10, 00, 01, 10, ...} starting from t0

For every input stimuli of a circuit, the oscillation period can be
calculated either statically by the compiler or dynamically during sim-
ulation. Brzozowski et al. [2] and Burns [3] provided analytical solu-
tions to find the oscillation period of combinational loops based on a
directed graph representation of the circuit. The directed graph is pro-
cessed to determine what sequence of inputs can produce oscillation.
For every oscillation scenario, the oscillation period is calculated. An-
alytical approaches are practical and efficient for small circuits only.
When the size of a circuit reaches millions of gates, the analytical so-
lution cannot be applied due to the excessive amount of memory and
processing time required (i.e., the complexity of analytical approaches
increases exponentially with the number of delay elements and inputs
to the combinational loops while the complexity of the proposed al-
gorithm increases linearly with the number of delay elements in the
combinational loops).

The oscillation period can efficiently be determined dynamically
during simulation. In the ideal delay model case, a method for find-
ing the oscillation period is as follows: Every element with delay D
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is replaced with D concatenated elements with delay 1. Once the cir-
cuit inputs become stable, L (upper bound for stability) time-units are
simulated. Then, a snapshot of the single-delay element values of the
combinational loop is taken. The values of the single-delay elements
are compared with the snapshot values at every time-unit. When the
values are the same, the oscillation period is determined.

The inertial delay model is not in the scope of this paper. The re-
maining sections of this paper propose an efficient algorithm to deter-
mine the oscillation period when the delay elements are pipeline flops
(which are a usual representation of delay elements). This algorithm
does not require the circuit modifications described in the ideal delay
model method above.

A well-known strategy for a compiler is to insert pipeline flops be-
tween combinational gates, if necessary, after timing analysis. Pipeline
flops are also inserted to break combinational loops. Clock signals of
pipeline flops can be several orders of magnitude faster than the fastest
clock of the original design. Pipeline flops may have different delays
(represented by a non-negative integer number of time units). The
clock cycle duration of every state element (including pipeline flops)
is assumed to be greater than the delay of combinational gates feeding
the state input based on the guidelines provided by the timing analysis.
As a result, simulators can accurately simulate a post synthesis netlist
using zero-delay semantics.

A multiple of the oscillation period (p) can be computed, as indi-
cated in the following pseudo-code, by comparing unstable state val-
ues at every M time-units where M is the least common multiple
(LCM) of all unstable state delays.

Snapshot S = E(t)
p = 0;
do

simulate M time-units;
p = p + M;

while (S != E(t+p))

Let’s assume:

I. Circuit C = (E(t), E(t0), I(t), O(t), TE , TO) has n elements
with delay,

II. E(t) = {E1(t), E2(t), ..., En(t)} where Ei(t) is the value of
element i at time t,

III. I(t) and O(t) are the set of input and output values of the circuit
C, respectively,

IV. TE : I ×E → E, and TO : I ×E → O are combinational logic
transformation functions,

V. All inputs to the circuit C are stable after time t0 (i.e., I(t) =
I(t0) for t > t0),

VI. C is either in a stable or oscillating state (non-transient state),

VII. M is the least common multiple (LCM) of all delays, and

VIII. A zero-delay semantics model, thus the delay elements in E(t)
are a set of unstable pipeline flops.

Theorem: p is a multiple of the oscillation period if E(t) = E(t +
p) where p > 0, t ≥ t0, and (p%M = 0).

Proof: Let’s first prove the theorem for a circuit where M = 1 (i.e.,
all delays are equal to one). The lemma below proves that the values of
unstable states during one oscillation period are unique when M = 1.
Therefore, the number of time units between two identical set of state
values is a multiple of the oscillation period.

Lemma: E(t + 1) = E(t + p + 1) if E(t) = E(t + p), p > 0,
t ≥ t0, and M = 1.

We have:
E(t + 1) = TE(I(t + 1), E(t)) for M = 1, by definition of TE ,

hence
E(t + 1) = TE(I(t + 1), E(t + p)) by hypothesis
E(t + 1) = TE(I(t + p + 1), E(t + p)) since t ≥ t0, t + p > t0,

and inputs are stable
E(t + 1) = E(t + p + 1).
This completes the proof of the lemma. Similarly, we can also prove

that O(t + 1) = O(t + p + 1).
To complete the proof of the theorem for M = 1, let’s now consider

the sequence of values of delay elements and outputs, starting from
time t:

{EO(t), EO(t + 1), ..., EO(t + p − 1)},
{EO(t + p), EO(t + p + 1), ..., EO(t + p + p − 1)}
where EO(t) = (E(t), O(t)).
From the Lemma, we have:
EO(t+i) = EO(t+p+i) for i = 0 to p−1 when E(t) = E(t+p).
Therefore, p is a multiple of the oscillation period.
Note that the Lemma is not always correct if M �= 1. For instance,

consider a simple combinational loop with only one inverter element
E1 with a delay of two. The circuit oscillates with an oscillation period
of four as follows: E1 = {0, 0, 1, 1, 0, 0, 1, 1, ...} starting from t0.
We have E1(t0) = E1(t0 + 5) = 0 but E1(t0 + 1) = 0 �= E1(t0 +
5 + 1) = 1.

Let’s now finalize the proof of the theorem for M �= 1. A circuit
with arbitrary delay elements can always be transformed into a func-
tionally equivalent circuit with delays of one (i.e. M = 1). Figure 2
shows an example. Figure 2a shows element E1 (a pipeline flop) with

Figure 2: Transformation of an element with delay d to 1. (a) state
element with delay d. (b) state element with delay 1.

a delay of d. Its input is the output of logic X and its output is an input
to logic Y . The delay of E1 can be reduced to one without changing
the functionality of the circuit by adding a zero-delay multiplexer to
its input (Figure 2b). Input 0 of the multiplexer is the output of E1 and
input 1 is the output of X . The select of the multiplexer is generated
by synchronous logic. This logic has a reset input and a modulo-d
counter. The single output of this logic (select of the multiplexer) is
“1” only if the output of the counter is equal to d − 1:

Sel =

{
1 if (counter = d − 1)
0 otherwise

The modulo-d counter can be implemented using �log(d)� number
of state elements with a delay of one. Other combinational elements
have zero delays.

Let E′(t) be the set of values of all state elements in the counter
after the circuit transformation. Since the delay of all unstable states
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is one in the transformed circuit (M ′ = 1), we have already proved
that: p is a multiple of the oscillation period if E(t) = E(t + p)
and E′(t) = E′(t + p) where p > 0, and t ≥ t0. The second
condition of the if statement (E′(t) = E′(t+ p)) is always true when
p is a multiple of the LCM of all delays of the original circuit (M ).
Consequently, p is a multiple of the oscillation period if E(t) = E(t+
p) where p > 0, t ≥ t0, and (p%M = 0). This completes proof of
the theorem.

3.3 Pseudo code
Based on the results established above, we will now provide the

pseudo-code of the algorithm proposed to efficiently simulate circuits
containing oscillating loops.

If the circuit has been determined to oscillate after L time-units,
the algorithm takes a snapshot of all unstable state values (pipeline
flops). The values of the unstable states are compared to the snapshot
values at every M time-units, where M is the LCM of all unstable
state delays. As proven above, p is a multiple of the oscillation period
and thus, as long as the circuit inputs remain stable, the simulation can
be accelerated by skipping the evaluation of a multiple of p time-units.

Simulate L time-units
If circuit is oscillating

S = current value of unstable states
p = 0;
do

Simulate M time-units
(where M is LCM of delays)
p = p + M;

While (unstable states values != S)
Skip simulation of a multiple of p

As an example, let’s now consider the circuit in Figure 1. Let’s
assume the delay elements E1 and E2 are synchronized pipeline flops
with delays D1 = D2 = 2 time-units. The inputs have become stable
after time t0 with values in1 = in2 = 1. The circuit oscillates with
an oscillation period of six as follows:
E1E2 = {00, 00, 01, 01, 10, 10, 00, 00, ...} starting from t0
The snapshot S = (00) is taken at t0. The LCM of the delays is two.
Therefore, the algorithm compares the snapshot with E1E2 at every
two time-units. After three comparison, the algorithm returns six as
the oscillation period.

4. EXPERIMENTAL RESULTS
The algorithm was implemented in C++ language. It was integrated

into a cycle accurate simulator which was used to provide visibility for
hardware emulation. A circuit, described by VHDL, Verilog or Sys-
tem Verilog is mapped onto a FPGA by the compiler (synthesis tool).
The FPGA models logic gates with 4-input Lookup Tables (LUTs).
The compiler calculates the upper bound L for the delay which is re-
quired for the circuit to reach either stability or oscillation based on
the longest path delay of the circuit and static analysis of the combi-
national loops.

Table 1 presents the simulation results of evaluating five circuits
with oscillatory combinational loops. The number of simulation cy-
cles for every circuit is one million cycles of the fastest clock. “LUTs”
and “FFs” are the number of lookup tables and flip-flops in the circuits,
respectively. The row “TU/cycle” provides the number of time-units
per fastest clock cycle of the circuits. The row “L” shows the upper
bound in time-units calculated by the compiler for the circuits to reach
either stability or oscillation. The row “period” shows a multiple of the
oscillation period computed by the algorithm during simulation. The
simulation runtime is presented for two scenarios, without (“no-opt”)
and with (“opt”) our optimization algorithm. The last row (“speed

Table 1: Simulation time improvement for circuits with oscillatory
combinational loops

circuit 1 2 3 4 5
LUTs 64 130 593 66104 66482
FFs 75 134 824 13479 21981

TU/cycle 2k 1.5k 3k 5k 10k
L 12 26 7 15 24

period 2,3 12 3 2 2
no-opt 271s 516s 525s 4440s 41000s

opt 152s 369s 386s 960s 1200s
speed up 1.8 1.4 1.4 4.6 34

up”) presents the overall improvement in runtime. The improvements
shown apply to the total simulation time for the entire design.

The results are sensitive to the circuit clock frequency, the num-
ber of oscillating loops in the design, and the number of cycles when
oscillatory behavior occurs. The acceleration observed will increase
when the clock frequency decreases (since the number of oscillations
per cycle will increase). Note that certain situations can require set-
ting clock frequencies low, for instance in case of in-circuit emulator
configurations connected to external targets which might have specific
timing constraints. Therefore, the overall improvement in runtime can
vary from a small number to several orders of magnitude in extreme
scenarios.

5. CONCLUSIONS
We introduced an efficient algorithm for post-synthesis logic sim-

ulation of digital circuits with oscillatory combinational loops. The
algorithm is able to detect oscillatory loops dynamically, once the in-
puts to the circuit remain stable. We provided a novel approach to
find a multiple of the oscillation period during simulation which was
then used to accelerate the simulation by skipping the evaluation of a
multiple of the oscillation period, as long as the inputs to the circuit
remain stable.
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