
Model-based Design of Resource-Efficient Automotive
Control Software

Invited Paper

Wanli Chang
TUM CREATE, Singapore

Singapore Institute of Technology
wanli.chang@tum-create.edu.sg

Debayan Roy, Licong Zhang, Samarjit Chakraborty
Institute for Real-Time Computer Systems

TU Munich, Germany
samarjit@tum.de

ABSTRACT
Automotive platforms today run hundreds of millions of lines of
software code implementing a large number of different control
applications spanning across safety-critical functionality to driver
assistance and comfort-related functions. While such control soft-
ware today is largely designed following model-based approaches,
the underlying models do not take into account the details of the
implementation platforms, on which the software would eventually
run. Following the state-of-the-art in control theory, the focus in
such design is restricted to ensuring the stability of the designed
controllers and meeting control performance objectives, such as
settling time or peak overshoot. However, automotive platforms are
highly cost-sensitive and the issue of designing “resource-efficient”
controllers has largely been ignored so far and is addressed using
very ad hoc techniques. In this paper, we will illustrate how, follow-
ing traditional embedded systems design oriented thinking, compu-
tation, communication and memory issues can be incorporated in
the controller design stage, thereby resulting in control software not
only satisfying the usual control performance metrics but also mak-
ing efficient utilization of the resources on distributed automotive
architectures.

1. INTRODUCTION
Modern automotive Electrical/Electronic (E/E) systems are be-

coming increasingly larger and more complex. A premium car to-
day can contain up to 100 Electronic Control Units (ECUs) and
hundreds of millions of lines of software code running on them.
These software codes implement functions spanning across vehi-
cle dynamics control, body components control to advanced driver
assistance systems. While such control software today is largely
designed following model-based approaches, the underlying mod-
els do not take into account the details of the implementation plat-
forms. To guarantee the safety and performance of the control soft-
ware, usually conservative assumptions are made when the con-
trollers are designed. This would often lead to inefficient utilization
of the embedded platform resources, for example, the communica-
tion, computation and memory resources.

The limitation of the resources is always one of the main con-
straints on an embedded platform. This issue is even more impor-

This work is supported by the Singapore National Research Foundation under its
Campus for Research Excellence And Technological Enterprise (CREATE) program.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCAD ’16, November 07-10, 2016, Austin, TX, USA

© 2016 ACM. ISBN 978-1-4503-4466-1/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2966986.2980075

tant for the automotive domain. First of all, the automotive industry
is highly cost-sensitive and providing more resources is often cou-
pled with increasing cost. Furthermore, the design and implemen-
tation process of such a system usually follows an iterative scheme
and the issue of dealing with legacy components and configurations
needs to be taken into consideration. Hence, sufficient resources
are not only required for the current design iteration, but also need
to be provisioned for possible future components. Therefore, the
topic of resource-efficient design is both helpful and necessary for
automotive embedded systems.

Resource-efficient design, with notions of efficiency being those
related to computation, communication and memory, has been one
of the main research areas in the embedded system and real-time
system community for some time. However, when it comes to con-
trol algorithms, none of these notions have been used. Instead, the
focus has been more on the stability and performance of the con-
trol software. As more control applications are getting incorpo-
rated into the automotive E/E system, there is an increasing need
for a systematic approach of resource-efficient implementation of
controllers. Since the control algorithms are designed in a model-
based fashion, the goal here is to connect model-based design of
controllers with techniques for resource-efficient implementations.

The resources on an embedded platform can be divided into dif-
ferent categories. Examples of important resources include the
communication resource, the computation resource and the mem-
ory resource. The communication resource can generally be rep-
resented as the bandwidth of a communication bus or a network
link, which denotes the number of bits that can be transmitted per
second. Therefore, there is only a limited amount of data that can
be transmitted within a specific time frame. More precise char-
acterization of the communication resource, however, is protocol-
specific. In a Time Division Multiple Access (TDMA) bus, for
example, the communication resource can be translated into the
number of utilized slots. The computation resource usually means
the available execution time of a processor. Considering multiple
applications sharing one single-core processor, each application is
allocated a certain period of execution time. This execution time al-
location can be static (e.g., time-triggered scheduling) or dynamic
(e.g., priority-based scheduling). The memory resource mainly
refers to the size of memory available on, e.g., an ECU. There are
typically two levels of memory — on-chip cache and main mem-
ory. The main memory has a large size and can thus store all the
application programs and data, yet experiences high read/write la-
tencies (hundreds of processor cycles). The on-chip cache is faster
(several processor cycles), yet usually limited in size due to its high
cost.

In this paper, we illustrate how resource-efficient design follow-
ing the traditional embedded system design oriented thinking can
be incorporated into the control software design, thereby result-
ing in control software not only satisfying the usual control perfor-

mance metrics but also making efficient utilization of the resources.
Here, we first provide a brief review of the basics of the embedded
control software, including the feedback control systems and the
embedded architecture. Then, we illustrate the resource-efficient
design paradigm using three state-of-the-art approaches in commu-
nication resource (Section 3), computation resource (Section 4) and
memory resource (Section 5), respectively. Finally, in Section 6,
we discuss some possibilities and directions for future work.

2. BACKGROUND

2.1 Feedback control systems
System dynamics: The continuous-time dynamic behavior of a
feedback linear single-input single-output (SISO) control system
can be modeled by the following differential equations,

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), (1)

where x(t) ∈ Rn, y(t) and u(t) represent system states, system out-
put and control input, respectively and A, B, C are respectively the
system matrix, input matrix and output matrix of the corresponding
dimensions. In an embedded implementation, the continuous-time
model can be discretized according to a sampling period h,

x[k + 1] = Ad x[k] + Bdu[k], y[k] = Cd x[k], (2)

where x[k], y[k] and u[k] denote the discrete-time system states, the
system output and the control input, at the kth instance (k ∈ Z∗),
respectively. Ad, Bd, Cd can be computed as,

Ad = eAh, Bd =

∫ h

0
(eAtdt)B, Cd = C. (3)

Distributed implementation: A feedback control loop is imple-
mented with software codes running on the ECUs, which can be
partitioned into three different types of tasks: (i) sensor task mea-
sures the system states (using sensors) of the physical plant under
control if measurable. (ii) controller task computes the control in-
put based on the measured system states. (iii) actuator task applies
the control input (using actuators) to the physical plant. Depend-
ing on the actual design requirements (e.g., the placement of the
sensors and actuators), these tasks can either be mapped onto the
same ECU or on different ECUs. In the case of a distributed con-
trol application, the data between the tasks are transmitted over the
bus. The time between two consecutive instances of sensor task
is defined as the sampling period (denoted as h) of the control ap-
plication. Usually the control applications are implemented with
a constant sampling period. However, in some cases, non-uniform
sampling can also be applied. The time between the start of the
sensor task and the end of the actuator task is defined as the sensor-
to-actuator delay or closed-loop delay (denoted as d).

Control performance: There are different metrics to measure the
performance of a control system. Here we consider two common
ones. (i) The steady-state performance of a control application can
be commonly measured by a cost function, which in the discrete
case can be represented as

J =

n∑
k=0

[λu[k]2 + (1 − λ)σ[k]2]h, (4)

where λ is a weight taking the value between 0 and 1, u[k] is the
control input and σ[k] = |r − y[k]| is the tracking error. We further
consider (ii) the settling time ξ as another control performance met-
ric, where ξ denotes the time necessary for the system to reach and
remain within 1% of the reference value,

J = ξ. (5)

sensor

actuator

(a) (b)

sensor 1 actuator 1

sensor 2 actuator 2

shared communication bus

Figure 1: (a) Single ECU case example. τs, τc and τa repre-
sent respectively the sensor, controller and actuator task of a
feedback control loop. (b) Distributed case example. τs,i, τc,i

and τa,i are of the ith control loop and τ3 and τ4 represent other
non-control tasks that can also be mapped on E2.

Depending on the specific requirements of the control application,
different performance metrics can be used.

Controller design: The control input u[k] of a control application
based on state-feedback control can be designed as

u[k] = Kx[k −
⌊

d
h

⌋
] + Fr, (6)

where K is the feedback gain to stabilize the system and F is the
static feedforward gain to track the reference r for y[k] to reach.
The feedback and feedforward gains can be designed with con-
troller design techniques like pole-placement [1] and there are suf-
ficient research works on the controller design taking the sensor-to-
actuator delay into account [2].

Pole-placement using PSO For a control application, in order to
design the controller that optimizes the control performance for a
given sampling period and sensor-to-actuator delay, an optimiza-
tion problem for the pole-placement can be formulated. In this
problem, the decision variables are poles of the closed-loop sys-
tem and the objective is to optimize the value of the selected con-
trol performance metric. Constraints like the stability of the system
and control input saturation need to be satisfied. It is challenging
to solve such a constrained non-convex optimization problem with
significant non-linearity. Here a highly efficient and scalable Parti-
cle Swarm Optimization (PSO) technique can be used [3].

2.2 Embedded systems architecture
An automotive E/E architecture typically consists of a number

of ECUs connected by different bus protocols. The ECUs are cat-
egorized in different domains (e.g., chassis, powertrain, body and
infotainment) according to the nature of the functions mapped on
them. In each domain, a cluster of ECUs are connected by one
or more bus systems and the domains are connected to a central
gateway, which can provide inter-domain communication. An em-
bedded controller mapped on such an architecture is usually im-
plemented with one or multiple tasks (e.g., sensor, controller and
actuator task), where each task is a piece of software code running
on the processor. The tasks can either be mapped on a single ECU
or distributed on multiple ECUs. Figure 1 shows an example of
both cases. In the case of a single ECU, these tasks are executed
on the same processor, while in a distributed architecture, the sen-
sor, controller and actuator tasks can also be mapped on different
processor and the data between the tasks are transferred on the bus
as messages. It is also common, that tasks of different controllers
are mapped in common ECUs, where resources like the communi-
cation, computation and memory are shared between these control
applications. Therefore, how to allocate the resources for the soft-

ware implementation of the controllers forms the problem of archi-
tecture design. This can be translated into design parameters like
the task partitioning and mapping, the scheduling on the processors
and the bus, the use of cache, etc. More specific definitions of these
parameters depend on characteristics of the embedded architecture,
for example, the scheduling schemes used on the processors and the
bus protocols used for the communication.

3. COMMUNICATION-EFFICIENT DESIGN
In this section, we illustrate the resource-efficient model-based

design of automotive control software using a state-of-the-art co-
optimization approach [4] that synthesizes simultaneously controllers,
task and communication schedules for a FlexRay-based ECU net-
work, and in the process optimizes both the overall system control
performance and the communication resource usage. Here, we will
first explain the specific problem setting and then the approach and
the results.

3.1 Problem setting
We consider a distributed architecture, where a set of ECUs are

connected via FlexRay bus, running several control applications,
Ci ∈ C. We assume that each control application Ci is partitioned
into three software tasks, i.e., sensor task (τs,i), control task (τc,i),
and actuator task τa,i, mapped on different ECUs. Then the sen-
sor values measured by τs,i are sent on the bus via the message
ms,i and the control input calculated by τc,i is sent via the message
mc,i. Furthermore, we consider that time-triggered non-preemptive
scheduling scheme is exhibited by the Real-Time Operating Sys-
tems (RTOS) on the ECUs. Each task of an application is consid-
ered to be periodic and its schedule is defined by the tuple consist-
ing of the offset, the period and the Worst-Case Execution Time
(WCET) of the task.

Here, we consider transmission of messages only on the static
segment of FlexRay which exhibits time-triggered communication.
A FlexRay schedule corresponding to the message mx,i can be rep-
resented by the tuple of the slot id, the base cycle and the repe-
tition rate. The slot id identifies the slot within a bus cycle, in
which the message is sent. The base cycle denotes the commu-
nication cycle when the message is first sent. The repetition rate
rx,i is the number of communication cycles that elapse between
two consecutive transmissions of the same frame and takes the
value rx,i ∈ {2n|n ∈ {0, 1, ..., 6}}. We consider the FlexRay Version
3.0.1 [5], where slot multiplexing among different ECUs is allowed.
It means that a particular slot can be assigned to different ECUs in
different cycles.

For FlexRay time-triggered communication, the bus usage U can
be defined as the percentage of the slots in the static segment that
is allocated to the control applications. In this case, the smaller the
value of U, the better is the resource efficiency as more slots can be
left vacant for use by other non-control applications.

Depending on the specific requirements of the control applica-
tion, one of the two performance metrics discussed in Section 2.1
can be used. In both the metrics, smaller value of J implies better
control performance. In a system consisting of multiple control ap-
plications with different characteristics and performance metrics, it
is required to normalize the control performance in order to com-
pare and combine them. Each closed-loop Ci with control perfor-
mance Ji must satisfy some performance threshold Jr

i defined by
the user. Thus, the control performance can be normalized as a
fraction of the required value Jr

i and, therefore, the overall con-
trol quality J0 of a set of control loops C can be formulated as a
weighted sum of the normalized values.

Generate
Pareto Point Candicate

IF all values of
U exploredYES

YES

Optimize
Control Performance

IF feasible, not
dominated

Find
Feasible Schedules

IF feasible

Valid Pareto Point
Add to Pareto Front

NO

NO
YES

Not Valid Pareto Point

NO

Return Pareto Front

Layer 2

Layer 1

Prospective
Controller Design

Co-Optimization

User Selection

Constraints,
Plant Models,
Objectives

Control and Platform
Parameters

Pareto Front

Control Performance
Look-up Table

Stage 1

Stage 2

Figure 2: Design flow of the co-optimization approach

Co-optimization problem: The co-optimization problem can be
formulated to find a set of parameters for each Ci ∈ C, which can
be denoted as pari = {τs,i, τc,i, τa,i,ms,i, mc,i, hi,Ki, Fi}, while opti-
mizing the bus usage U and the overall control quality J0.

3.2 The co-optimization approach
The approach to solve the co-optimization problem is divided

into two stages, i.e., the prospective controller design and the co-
optimization, as shown in Figure 2. Eventually, several optimal de-
sign configurations are synthesized, which can be represented by a
Pareto front depicting the design trade-off between the overall con-
trol performance and the bus usage. From the set of Pareto points,
the designer can select the one that is the most suitable for the over-
all design requirements and the corresponding design configuration
is implemented. The two stages of the approach are explained in
the following.

Prospective controller design: Besides the control plant model,
the control performance Ji of the control application Ci depends
mainly on three factors: (i) the sampling period hi, (ii) the sensor-
to-actuator delay di and (iii) the controller gains Ki and Fi. In this
stage, for each valid combination of the sampling period and delay,
a set of optimal controller gains need to be designed. However, we
consider schedules for the tasks and the messages leading to the
case where the delay equals to the sampling period, i.e., di = hi.
This is because it would reduce the dimensions of the design space
from (i) - (iii) to only (i) and (iii), thus reducing the complexity
and enhancing the scalability. With di = hi, the closed-loop sys-
tem experiences one sampling period delay and the pole-placement
method explained in Section 2.1 is employed. Moreover, we make
use of the fact that the sampling period can only take discrete values
and further prune the design space. Since each control application
Ci is implemented by the tasks τs,i, τc,i, τa,i and messages ms,i, mc,i,
there is a dependency between the sampling period hi and the rep-
etition rates of the messages rs,i, rc,i, which can be represented as

hi = rs,iTbus = rc,iTbus, (7)

where Tbus is the bus clock cycle. Due to the fact that rs,i, rc,i can
only take discrete values in {2k |k ∈ {0, 1, ..., 6}}, the choice of hi is
also constrained to the corresponding discrete values. Considering
this, in this stage, we determine for each control application the
controller gains at each possible value of the sampling period that
optimize the control performance. After this stage, a look-up table
for each control application Ci can be formulated, where for each
possible sampling period hk

i , an optimal control performance Jk∗
i

corresponding to the controller gains Kk∗
i and Fk∗

i can be assigned.

5 10 15 20 25 30 35 40

Bus Resource Utilization

[as a % of static slots utilized]

40

45

50

55

60

65

A
v
e
ra

g
e
 C

o
n
tr

o
l
P

e
rf

o
rm

a
n
c
e

[a
s
 a

 %
 o

f
re

q
u
ir
e
d
 p

e
rf

o
rm

a
n
c
e
]

Figure 3: Pareto front.
In the co-optimization stage, these tables will be used to formulate
the objective of overall control performance.

Co-optimization: The communication-efficient model-based con-
trol software design for the setting considered can be formulated
as a constrained optimization problem with two objectives, i.e.,
the overall system control performance and the bus usage. In this
case, the two design objectives are noticed to be often conflicting,
and therefore a much more informative and designer-friendly co-
optimization approach is to first generate a Pareto front and let the
designer explore the trade-off between the two objectives according
to his customized preference.

A customized optimization approach as shown in Figure 2 is em-
ployed to obtain the desired Pareto front. The objective on bus us-
age U is discrete and can only take a limited number of values.
Therefore, for each possible value of U in ascending order, given
the equality constraint on U, we solve the optimization problem
with J0 as the single objective and obtain a solution. The additional
constraint is that J0 of this solution has to be better than J0 of the
last solution (Pareto criterion), in order to ensure that all solutions
are non-dominated. Therefore, the co-optimization problem with
two objectives is turned into a series of single-objective optimiza-
tion problems, where each may generate a Pareto point.

Widely applied approaches like Mixed Integer Linear Program-
ming (MILP) or meta-heuristic methods cannot be applied directly
to solve each of the single-objective optimization problems due to
reasons like non-linear constraints, small solution space, etc. How-
ever, considering that both the objectives only depend on the sam-
pling periods, a nested two-layered technique, as shown in Figure 2,
is employed to solve each of the problems. On Layer 1, the outer
layer, for a given value of U, a set of sampling periods {hi} cor-
responding to the set of applications {Ci} are determined, which
satisfy the value of U and optimize J0 such that every application
control performance requirement is fulfilled. On Layer 2, the in-
ner layer, task and message schedules are synthesized according to
the given values of sampling periods such that all the system con-
straints are satisfied. This process is iterative in the way that if the
synthesis fails in Layer 2, the algorithm goes back to Layer 1 for
the next best solution until Pareto criterion is satisfied. This opti-
mization technique ensures optimality and also efficiency.

3.3 Case study and results
As a case study, we have considered 5 control applications run-

ning on 3 ECUs connected by FlexRay bus. The Pareto front of
the system is obtained as shown in Figure 3. The bus usage val-
ues range from 5.25% to 40% of the bus bandwidth in the static
segment. The overall control performance varies from 42.92% to
62.54% of the required value. It is obvious that there is a large free-

Table 1: An example OSEK/VDX OS time table

Time Release
0ms Applications with periods of 2ms/5ms/10ms
2ms Applications with the period of 2ms
4ms Applications with the period of 2ms
5ms Applications with the period of 5ms
6ms Applications with the period of 2ms
8ms Applications with the period of 2ms

10ms Repeat actions at 0ms

dom among these viable design points. For larger system size we
can expect more trade-off opportunities.

4. COMPUTATION-EFFICIENT DESIGN
OSEK/VDX-compliant Operating Systems (OS), with preemp-

tive fixed-priority scheduling, are widely used in the automotive
domain [6, 7]. With such an OS, once each application gets re-
leased, it is allowed to access the processor periodically. There are
various predefined periods of release times and each application is
assigned one. Different applications may have different periods.
Every time an application is released, its program gets the chance
to be executed, depending on its priority.

Here, a time table containing all the periodic release times within
the alleged hyperperiod (i.e., the minimum common multiple of all
periods) of the applications needs to be configured. An example
with a set of three periods 2ms, 5ms and 10ms is illustrated in Ta-
ble 1. The hyperperiod is equal to 10ms and the time table repeats
itself every 10ms by resetting the timer.

Generally for a feedback control application, a shorter sampling
period allows the controller to respond to its plant more frequently,
and is thus potentially able to achieve better control performance.
The obvious downside is a higher processor load, since the control
program is executed more frequently. Let us assume that the set of
available periods restricted by an OSEK/VDX OS be φ. Consid-
ering a single-core processor p in an ECU, denoting Ewc

i to be the
WCET of a control application Ci, if a uniform sampling period of
h is used, the processor load for Ci is

Li =
Ewc

i

h
. (8)

The upper bound on the processor load is 1 and we have∑
{i|Ci runs on p}

Li ≤ 1. (9)

Clearly, increasing the sampling period of a control application de-
creases its processor load, and thus potentially enables more appli-
cations to be integrated on the ECU, thereby resulting in a more
cost-efficient system.

Since an OSEK/VDX OS only offers a limited set of predefined
sampling periods to the control applications at hand and often the
optimal sampling period for a given control application is not di-
rectly realizable, the conventional way is to use the largest sam-
pling period offered by the OS that is smaller than the optimal one.
This clearly wastes computation resources.

A computation-efficient controller, in contrast, switches between
multiple available sampling periods offered by the OSEK/VDX OS,
thereby achieving an average sampling period closer to the optimal
one and reducing processor load. Possible switchings with sam-
pling periods of 2ms, 5ms and 10ms on OSEK/VDX OS are illus-
trated in Figure 4. For one application, switching between two sam-
pling periods can only occur at the common multiple of them. For

2ms
Sampling

5ms
Sampling

10ms
Sampling

0 2 4 6 8 10 12 14 16 18 20

0 5 10 15 20

0 10 20

ms

ms

ms

Allowed switching among 2ms, 5ms and 10ms

Figure 4: Allowed switching instants among multiple sampling
periods
instance, switching between 2ms and 5ms is possible at the time in-
stants of 10ms, 20ms, and so on. Therefore, possible sequences of
sampling periods are {2ms, 2ms, 2ms, 2ms, 2ms, 5ms, 5ms, repeat},
{5ms, 5ms, 10ms, repeat}, and so on. The challenge is to design
a performance-oriented controller that exploits this non-uniform
sampling to satisfy the requirements on control performance.

We assume that the cyclic sequence of sampling periods for a
control application defines a schedule S ,

S = {T1,T2,T3, . . . ,TN}, (10)

where ∀ j ∈ {1, 2, . . . ,N}, T j ∈ φ. Dictated by the schedule S ,
this boils down to N systems (combination of plant and controller)
switching cyclically in a deterministic fashion. The dynamics of
these N systems within one cycle of S is given by

x[k + 1] = Ad(T1)x[k] + Bd(T1)u[k − 1],
x[k + 2] = Ad(T2)x[k + 1] + Bd(T2)u[k],

...

x[k + N] = Ad(TN)x[k + N − 1] + Bd(TN)u[k + N − 1].

(11)

In order to avoid varying sensor-to-actuator delays, the actuation
occurs at the end of a sampling period and the sensor-to-actuator
delay is equal to one sampling period. Therefore, x[k + 1] depends
on its previous state x[k] and the control input u[k − 1], which is
computed according to x[k − 1]. We now introduce a new state
z[k] =

[
x[k]T u[k − 1]

]T
. Then, ∀ j ∈ {1, 2, . . . ,N},

z[k + j] =

[
Ad(T j) Bd(T j)

0 0

]
z[k + j − 1]

+
[

0 1
]T

u[k + j − 1],

(12)

where 0 is a zero vector of appropriate dimension. The system
output is

y[k + j − 1] = Caugz[k + j − 1], (13)

where

Caug =
[

C 0
]
. (14)

The control input is designed as

u[k + j − 1] = K jz[k + j − 1] + F jr. (15)

Denoting Aaug and Baug as

Aaug(T j) =

[
Ad(T j) Bd(T j)

0 0

]
Baug(T j) =

[
0 1

]T
,

(16)

Table 2: Settling time and processor load of three schedules.
Bold numbers indicate satisfied settling time requirement.

Schedule Settling Time Processor Load
S 1 = {5ms} 256.40ms 14%
S 2 = {2ms} 113.27ms 35%

S 0 132.14ms 24.5%

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

1

2
·10−3

Time [s]

Sy
st

em
O

ut
pu

ty
[k

][
m

]

Schedule S 1 = {5ms}
Schedule S 2 = {2ms}
Schedule S 0

Figure 5: System output of three different schedules

The closed-loop dynamics is

z[k + j] = Aaug(T j)z[k + j − 1] + Baug(T j)u[k]
= (Aaug(T j) + Baug(T j)K j)z[k + j − 1]
+ Baug(T j)F jr.

(17)

We denote the closed-loop system matrix as

Acl, j = Aaug(T j) + Baug(T j)K j. (18)

The poles to be placed are the eigenvalues of Acl, j. Note that (13),
(15), (16), (17), and (18) are applied for every j in {1, 2, . . . ,N}. We
now formulate an optimization problem for the pole-placement as

min
D
ξ, subject to

|u[k]| ≤ Umax, ξ ≤ ξr,
(19)

where the poles are decision variables and the settling time ξ is to
be minimized as the objective. There are three constraints. First,
the input saturation has to be respected, where Umax is the physical
limit of the actuator. Second, the settling time requirement ξr has
to be satisfied. Third, D is a domain of poles that ensure the system
stability. As discussed in Section 2, such a constrained non-convex
optimization problem with significant non-linearity can be solved
by heuristics like PSO.

We now show some evaluation results of such a computation-
efficient controller using an Electro-Mechanical Braking (EMB)
system. The settling time requirement ξr is 150ms. The set of
available sampling periods offered by the OSEK/VDX OS in this
case is

φ = {1ms, 2ms, 5ms, 10ms, 20ms, 50ms,

100ms, 200ms, 500ms}.
(20)

As shown in Table 2 and Figure 5, the schedule S 1 = {5ms} cannot
meet the settling time requirement. The largest sampling period
smaller than 5ms in φ is 2ms. The schedule S 2 = {2ms} is able
to fulfill all the requirements. According to (8), assuming that the
WCET is 0.7ms, the processor load of S 2 is 35%. Clearly, this
number can be unnecessarily large, preventing more applications
from being packed into the same ECU. We then evaluate the sched-
ule S 0 = {2ms, 2ms, 2ms, 2ms, 2ms, 5ms, 5ms} switching between
2ms and 5ms. S 0 has a slightly longer settling time than S 2, yet

START C1(1) C1(2) C1(3)

C2(1)C2(2)C2(3)

C3(1) C3(2) C3(3)

cold cache cache reuse cache reuse

cold cache
cache reusecache reuse

cold cache
cache reuse cache reuse

Figure 6: Memory analysis of an example with three control
applications. Each application is consecutively executed three
times. After the first execution Ci(1), some instructions in the
cache can be reused and thus the WCETs of the following two
executions are shortened.

still fulfills the settling time requirement of 150ms. Extending (8),
the processor load is 24.5%, achieving a 30% reduction compared
to S 2, and now allowing more applications to be packed. While this
is one among several possible techniques to achieve computation-
ally efficient controllers, it illustrates the need to design controllers
by taking into account the characteristics and constraints of the im-
plementation platform, which also holds for other resource types
like memory and communication.

5. MEMORY-EFFICIENT DESIGN
Memory and especially on-chip memory on ECUs substantially

contributes to the ECU cost. In many automotive setups, the code
for different control applications is stored in a bigger inexpensive
flash memory. When a particular instruction is executed, it is fetched
from the flash to the on-chip memory, if it is not in the on-chip
memory yet. Further access to this instruction will be much faster,
before it is replaced by other instructions. The smaller the on-chip
memory is, the more cost-efficient is the ECU. However, the addi-
tional latency involved in fetching the code from the flash memory
deteriorates the control performance. The question is, can the con-
trol algorithms be designed to mitigate such delays and exploit this
memory hierarchy?

Given a collection of control applications (e.g., C1, C2, C3), it
is conventional to run the control loops of them in a round-robin
fashion (C1, C2, C3, C1, C2, C3, · · ·). This frequently refreshes the
ECU on-chip memory and the time it takes to fetch a code from
the flash increases its WCET. In order to address this issue, again a
non-uniform sampling scheme is helpful. Here, the control loop of
each application is consecutively run multiple times — in order to
increase the cache or on-chip memory reuse, before moving on to
the next application. For example, (C1, C1, C1, C2, C2, C2, C3, C3,
C3, · · ·), can be used.

As shown in Figure 6, Ci(j) denotes the jth execution of the con-
trol application Ci. Before the first execution Ci(1), the cache is
either empty (i.e., cold cache) or filled with instructions from other
applications, that are not used by Ci (equivalent to cold cache). The
WCET of Ci(1) can be computed by a number of existing standard
techniques [8, 9, 10]. Before the second execution Ci(2), the in-
structions in the cache are from the same application Ci and thus
can be reused. This results in more cache hits and hence shorter
WCET. Depending on which path the program takes, the amount
of WCET reduction varies.

After WCET results are computed, the next task is to derive the
control timing parameters (e.g., sampling periods and sensor-to-

h = Ewc
1 + Ewc

2 + Ewc
3

C1(1) C2(1) C3(1) C1(2) C2(2) C3(2)

Meas.1
Actu.1 Actu.2 Actu.3

Meas.2 Meas.3

Ewc
1 Ewc

2 Ewc
3

d1 = Ewc
1

Figure 7: In S1, there is no cache reuse. The WCET of all
executions for the same application Ewc

i remains constant. The
sampling period of every control application h is uniform under
this scheme. The sensor-to-actuator delay di is equal to Ewc

i .

actuator delays). In particular, we explore the relationship between
WCET results and control timing parameters of two example sam-
pling schemes. As illustrated in Figure 7, S1 is the conventional
memory-oblivious scheme and summarized as follows,

S 1 : C1(1)→ C2(1)→ C3(1)→ C1(2)→ C2(2)→
C3(2)→ C1(3)→ C2(3)→ C3(3)→ · · · .

(21)

There is no cache reuse in S1 as discussed above, considering that
different control applications typically have different instructions
to execute. In other words, when Ci(j) starts execution, all instruc-
tions of Ci need to be brought into the cache from the flash memory.
Therefore,

Ewc
i (1) = Ewc

i (2) = · · · = Ewc
i , (22)

where Ewc
i (j) is the WCET of the jth execution for Ci. The WCET

of the application Ci is denoted by Ewc
i , since all executions of the

same application have equal WCET. Clearly, all control applica-
tions run with a uniform sampling period of

h =
∑

i=1,2,3

Ewc
i . (23)

Moreover, for the sensor-to-actuator delay,

di = Ewc
i . (24)

As has been shown in Figure 6, S2 is an example memory-aware
sampling order and summarized as,

S 2 : C1(1)→ C1(2)→ C1(3)→ C2(1)→ C2(2)→
C2(3)→ C3(1)→ C3(2)→ C3(3)→ · · · .

(25)

As illustrated in Figure 8, we denote the effective WCET taking
into account the cache reuse with Ēwc

i (j). From the above discus-
sion,

∀i ∈ {1, 2, 3}, Ēwc
i (1) = Ewc

i , (26)

since there is no cache reuse for the first execution of every applica-
tion Ci(1). Ēwc

i (2) and Ēwc
i (3) are shorter than Ēwc

i (1) due to cache
reuse. The amounts of cache reuse are the same for Ci(2) and Ci(3)
in the worst case. Denoting the guaranteed WCET reduction irre-
spective of the execution path as Ēg

i , we have
∀i ∈ {1, 2, 3},

Ēwc
i (2) = Ēwc

i (3) = Ēwc
i (1) − Ēg

i . (27)

From these varying WCETs, the sampling periods of all three ap-
plications can be calculated. Taking C1 as an example, there are
three sampling periods h1(1), h1(2) and h1(3), which repeat them-
selves periodically,

h1(1) = Ēwc
1 (1), h1(2) = Ēwc

1 (2),
h1(3) = Ēwc

1 (3) + ∆,
(28)

∆ =
∑

i=2,3

∑
j=1,2,3

Ēwc
i (j)

C1(1) C1(2) C1(3) C2(1) C2(2) C2(3) C3(1) C3(2) C3(3) C1(4) C1(5) C1(6)

d1(j): Ēwc
1 (1) Ēwc

1 (2) Ēwc
1 (3)

h1(j): Ēwc
1 (1) Ēwc

1 (2) Ēwc
1 (3) + ∆ Ēwc

1 (1)

Figure 8: In S2, the WCETs of the same control application vary, due to cache reuse. The sampling period for a control application
is non-uniform.

where ∆ is computed as

∆ =
∑
i=2,3

∑
j=1,2,3

Ēwc
i (j). (29)

Similar derivation can be done for C2 and C3. The average sam-
pling period of an application havg is

havg =

∑
i=1,2,3

∑
j=1,2,3

Ēwc
i (j)

3
< h. (30)

According to (26) and (27),

havg <

∑
i=1,2,3

3 × Ewc
i

3
. (31)

From (23), we get

havg < h. (32)

Moreover, the corresponding sensor-to-actuator delay di(j) also varies
with cache reuse as
∀i ∈ {1, 2, 3},

di(1) = hi(1) = Ēwc
i (1)

di(2) = hi(2) = Ēwc
i (2)

di(3) = Ēwc
i (3).

(33)

As all control parameters have been derived, we can see that the
sampling period hi(j) of a control application is non-uniform for
the memory-aware scheme. The average sampling period of S2 is
shorter than the uniform sampling period of S1 as shown in (30),
due to WCET reduction resulting from cache reuse. The sensor-
to-actuator delay di(j) varies as shown in (33). Now, a controller
design technique similar to the one presented in Section 4 may be
used to exploit the shortened non-uniform sampling periods and
achieve better control performance.

6. CONCLUDING REMARKS AND FUTURE
DIRECTIONS

The model-based design of resource-efficient automotive control
software is, of course, a relatively new and open research field and
the state-of-the-art approaches are certainly not limited to the ones
shown in this paper. Moreover, it is possible to explore other re-
search directions in this context as discussed in the following.

Task partitioning and mapping, frame packing: Most of the cur-
rent resource-efficient control software design methods [4, 11] con-
sider the task partition and mapping as given by the specification.
However, in such a case the co-optimization is not comprehensive,
i.e., there may exist some other task partitions or mappings that
result in better system performance or resource utilization. There-
fore, when synthesizing systems, it is desirable to integrate task par-
tition and mapping with computation of schedules and controller

parameters in a holistic framework. Task partition and mapping are
well studied [12] and can be formulated as an optimization prob-
lem. However, when they are integrated into the resource-efficient
control software design, additional dimensions are introduced into
the mathematical model and the combined model can easily be-
come intractable for large system size.

In the same vein, we have assumed in the example of Section 3
that each message is packed into one frame. However, this assump-
tion results in wastage of communication bandwidth. This is be-
cause the slot length is decided based on the size of the longest
message, and therefore shorter messages do not use the complete
slot allocated to them and a fraction of such a slot remains unused.
It is possible to pack a number of messages into one frame that
uses only one slot. This frame packing problem is studied in [13]
and can be incorporated in the resource-efficient control software
design phase for better results.

Other scheduling schemes and bus systems: In Section 3, we
consider Time-Triggered Architectures (TTAs) because of its inher-
ent determinism. However, TTAs often lead to inefficient resource
utilization that may not be sustainable in cost-sensitive automotive
systems. Therefore, there is a need to consider Event-Triggered Ar-
chitectures (ETAs) for improving resource utilization without com-
promising a lot on control performance. However, it must be noted
that in case of ETAs, it is required to compute parameters like task
and message priorities, arbitration policy, etc. instead of task and
message schedules. Moreover, due to non-determinism in ETAs,
there is a huge variation in the closed-loop delay, and therefore,
we may need to incorporate in the control software design problem
some timing analysis [14, 15, 16] to obtain the worst-case closed-
loop delay. Furthermore, we need to design controller that can han-
dle non-determinism like flexible delays, timing violations, packet
drops, etc.

Similarly, we can also exploit the fact that a control law need not
be executed at high frequency if the controlled plant is in equilib-
rium [17]. Therefore, based on the system states we can allocate re-
source to the respective controller. We can also map the controller
in event-triggered domain when the corresponding plant is stable
and switch to time-triggered when disturbed [18]. However, for
such considerations we need to design separate controllers for dif-
ferent states, e.g., the stable and the disturbed states, and also need
to ensure that the switching between controllers is stable. More-
over, we may also decide on a strategy to allocate time-triggered
resources to disturbed control loops in case of multiple control ap-
plications sharing the same resource.

Heterogeneous networks and gateways: Modern embedded sys-
tems like automotive E/E architectures typically consist of different
functional domains. Depending on the requirement in each domain,
different bus systems are used, like FlexRay for chassis, high-speed
CAN or FlexRay for powertrain, low-speed CAN and LIN for body,
MOST and Ethernet for infotainment. The different bus clusters in

an automotive system are connected via gateways for inter-domain
communication. With the newly developed applications for driver-
assistance systems and autonomous driving, increasingly more ap-
plications require inter-domain interaction. However, considering
this is not straightforward since requirements of different applica-
tions of different criticality (e.g., hard real-time, soft real-time, con-
trol, non-real-time, etc.) have different characteristics and it is dif-
ficult to integrate them as constraints into a single framework. For
example, hard real-time applications have stringent timing require-
ments while control applications must satisfy stability and perfor-
mance constraints. Moreover, different bus protocols like CAN,
FlexRay, etc. require different timing models and analysis tech-
niques. Furthermore, for inter-domain communication the gate-
ways need to be characterized using correct timing models. There
are very few works [19] on embedded system design which con-
sider heterogeneous networks. [19] has proposed a hybrid analysis
technique which allows results from different analysis techniques
to be composed together. As an extension, resource-efficient con-
trol software design based on such hybrid analysis techniques can
be considered.

Computation-efficient design in multi-core systems: While Sec-
tion 4 considers only single-core processor architecture, it can be
extended to multi-core architectures. There are mainly two chal-
lenges to address in this case. First, due to load balancing require-
ments, it might be necessary to distribute different parts of com-
plex control applications to different cores. This introduces addi-
tional delays for sensor-to-actuator cause-effect chains that need to
be taken into account during controller design to ensure stability.
Second, memory partitioning and code placement need to be con-
sidered, since they have a major influence on the execution times
of control programs.

Optimal memory-efficient scheduling: In Section 5, we show an
example memory-efficient schedule, which could have consider-
able influence on control system performance. The next problem
to solve is finding the optimal schedule that maximizes the over-
all control performance. It consists of two stages. First, given
a schedule, we need to find the optimal poles that maximize the
overall control performance while the input saturation constraint is
respected. This is a challenging problem to solve, due to the non-
convexity, non-linearity and many-dimensional decision space. Sec-
ond, based on the results from the first stage, the optimal schedule
needs to be found. As the number of applications grows, the num-
ber of possible periodic schedules increases exponentially. Con-
sidering that the control performance evaluation of one schedule is
computationally heavy, brute force is practically infeasible. Heuris-
tic methods need to be developed that are able to achieve a flexible
balance between optimality and scalability.

Conclusion: Automotive systems are highly cost-sensitive and thus,
resource-efficient design of automotive control software is an im-
portant research direction. Towards this direction, in this paper, we
have discussed three concrete examples of state-of-the-art design
approaches, targeting respectively at communication-efficient de-
sign, memory-efficient design and computation-efficient design, to
illustrate the basic idea. In Section 3, a co-design approach is de-
scribed where both the control law and the controller implementa-
tion are determined in a holistic framework, thereby, co-optimizing
the control performance and the communication bandwidth usage.
Section 4 shows how a multirate controller can be used to reduce
the processor load of a control application, while still satisfying
the control performance requirement. Section 5 suggests a non-
uniform sampling schedule to exploit cache reuse, thereby improv-
ing the control performance for a given memory resource.

7. REFERENCES
[1] K. Astrom and B. Wittenmark. Computer-Controlled

Systems: Theory and Design, 3rd Edition. Prentice Hall,
1997.

[2] D. Goswami, R. Schneider and S. Chakraborty. Relaxing
signal delay constraints in distributed embedded controllers.
IEEE Transaction on Control Systems Technology,
22(6):2337-2345, 2014.

[3] D. Sedighizadeh and E. Masehian. Particle swarm
optimization methods, taxonomy and applications.
International Journal of Computer Theory and Engineering,
1(4):486-502, 2009.

[4] D. Roy, L. Zhang, W. Chang, D. Goswami and S.
Chakraborty. Multi-objective co-optimization of
FlexRay-based distributed control systems. In IEEE
Real-Time and Embedded Technology and Applications
Symposium, 2016.

[5] The FlexRay communications system protocol specification,
Version 3.0.1 [Online].

[6] OSEK/VDX Consortium, OSEK/VDX operating system
specification, Version 2.2.3, 2005.

[7] P. Feiler. Real-time application development with OSEK: A
review of the OSEK standards. Carnegie Mellon University,
2003.

[8] R. Wilhelm et al. The worst-case execution-time problem —
overview of methods and survey of tools. ACM Transactions
on Embedded Computing Systems, 7(3), pp. 36:1-53, 2008.

[9] S. Andalam, A. Girault, R. Sinha, P. Roop and J. Reineke.
Precise timing analysis for direct-mapped caches. In
ACM/IEEE Design Automation Conference, 2013.

[10] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister
and C. Ferdinand. Memory hierarchies, pipelines, and buses
for future architectures in time-critical embedded systems.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 28(7):966-978, 2009.

[11] D. Goswami, M. Lukasiewycz, R. Schneider, and S.
Chakraborty. Time-triggered implementations of
mixed-criticality automtoive software. In Design,
Automation, and Test in Europe Conference and Exhibition,
2012.

[12] V. M. Lo. Heuristic algorithms for task assignment in
distributed systems. IEEE Transactions on Computers,
37(11):1384-1397, 1988.

[13] M. Kang, K. Park and M. Jeong. Frame packing for
minimizing the bandwidth consumption of the FlexRay static
segment. IEEE Transactions on Industrial Electronics,
60(9):4001-4008, 2013.

[14] R. Davis, A. Burns, R. Bril and J. Lukkien. Controller Area
Network (CAN) schedulability analysis: refuted, revisited
and revised. Real-Time Systems, 35(3):239-272, 2007.

[15] R. Schneider, L. Zhang, D. Goswami, A. Masrur and S.
Chakraborty. Compositional analysis of switched ethernet
topologies. In Design, Automation and Test in Europe
Conference and Exhibition, 2013.

[16] F. Reimann, S. Graf, F. Streit, M. Glaß and J. Teich. Timing
analysis of Etherent AVB-based automotive E/E
architectures. In IEEE Conference on Emerging Technologies
and Factory Automation, 2013.

[17] P. Marti, J. M. Fuertes, G. Fohler and K. Ramamritham.
Improving quality-of-control using flexible timing
constraints: metric and scheduling. In IEEE Real-Time
Systems Symposium, 2002.

[18] D. Goswami, R. Schneider and S. Chakraborty.
Reengineering cyber-physical control applications for hybrid
communication protocols. In Design, Automation and Test in
Europe Conference and Exhibition, 2011.

[19] M. Glaß, M. Lukasiewycz, J. Teich, U. Bordoloi and
S. Chakraborty. Designing heterogeneous ECU networks via
compact architecture encoding and hybrid timing analysis. In
ACM/IEEE Design Automation Conference, 2009.

