
Cryptoraptor: High Throughput Reconfigurable
Cryptographic Processor

Gokhan Sayilar
The University of Texas at Austin

Email: gokhan@utexas.edu

Derek Chiou
Microsoft and The University of Texas at Austin

Email: derek@ece.utexas.edu

Abstract—This paper describes a high performance, low
power, and highly flexible cryptographic processor, Cryptoraptor,
which is designed to support both today’s and tomorrow’s
symmetric-key cryptography algorithms and standards. To the
best of our knowledge, the proposed cryptographic processor
supports the widest range of cryptographic algorithms compared
to other solutions in the literature and is the only crypto-specific
processor targeting future standards as well. Our 1GHz design
achieves a peak throughput of 128Gbps for AES-128 which is
competitive with ASIC designs and has 25X and 160X higher
throughputs per area than CPU and GPU solutions, respectively.

I. INTRODUCTION
As the demand for secure communication bandwidth is

growing at an unprecedented pace, efficient and high through-
put cryptographic processing is becoming increasingly critical
for good overall system performance. Implementations range
from application-specific integrated circuits (ASICs), which
are very high throughput but inflexible, to general purpose
processor (GPP) based software, which is highly flexible, but
is low throughput and requires high area and power.

In this paper, we propose a high performance, power
efficient, and highly flexible cryptographic processor, Cryp-
toraptor, which supports a wide range of existing ciphers and
cryptographic hash functions, and has high potential to support
future algorithms. The proposed architecture with its reconfig-
urable substrate provides flexibility on a non-reconfigurable
platform. Besides its flexibility, our design is competitive with
fully-optimized Advanced Encryption Standard (AES) cores
presented in the literature [45, 4, 50, 31, 14, 69, 57, 67, 33].
We also provide detailed timing, power, and area analysis on
both cryptographic functional primitives and the processor.
We believe that such analysis may help both cryptographic
algorithm developers and hardware designers to evaluate trade-
offs during the design and implementation.

II. THE PROCESSOR DESIGN METHODOLOGY
Our goal is to define a complete, flexible, and high through-

put cryptographic processor that supports a wide range of
ciphers and cryptographic hash functions. We focused on the
architecture for overall throughput performance and flexibility
and have not yet optimized the design for area or power.

We studied 148 symmetric key encryption algorithms
consisting of 96 block ciphers, 26 stream ciphers, and 26
cryptographic hash functions found in widely used security
protocols such as IPsec, TLS/SSL, WTLS, SSH, S/MIME, and
OpenPGP, and cryptographic libraries such as OpenSSL and
GNU Crypto. The results of our algorithm analysis guided the
overall processor architecture which was designed to address
the needs of a wide range of algorithms and balance the
flexibility and performance of the system.

Since achieving high performance while having a high
degree of flexibility requires special considerations, we con-

sidered both FPGA and ASIC implementations. However, our
preferred target is an ASIC implementation since the design
itself provides the flexibility.

III. CRYPTORAPTOR: CRYPTOGRAPHIC PROCESSOR
At a high level, Cryptoraptor architecture consists of an

Execution Tile as the functional part, State Engine (SE) as the
front-end, and a 256-entry register file.

The front-end of Cryptoraptor is controlled by a hardware
state machine that is configured as part of the initial setup and
remains constant as long as the algorithm does not change.
The SE consists of a state counter and a small control memory
block. By eliminating fetch and decode stages of conventional
processors, the majority of the area and power is consumed by
the functional parts of Cryptoraptor, yielding higher area and
power efficiency.

The Execution Tile, which encapsulates all functional parts
of the architecture, consists of multiple identical stages, each
containing a number of Processing Elements (PEs) connected
to the next stage by Connection Row (CR). As shown in Figure
1, it consists of a number of PEs and CRs, and loopback
connections from each stage to a register file. Our analysis
suggests that 87.2% of cryptographic algorithms require four
or less parallel PEs for maximum performance, while only
19 out of 148 algorithms benefit from eight-way and sixteen-
way PEs. An eight-way or sixteen-way crypto-processor will
potentially result in underutilization of resources for the most
of the algorithms and increase the complexity and cost of the
communication across PEs. Therefore, Cryptoraptor consists
of four parallel and independently configurable PEs in each
stage, called PE row.

Fig. 1. Overview of the proposed architecture
Even though all algorithms can be implemented with one

repeatedly used stage, it is generally the case that multiple
stages can improve performance by exploiting the parallelism
inherent in most algorithms. The largest number of stages
observed in the analyzed algorithms is 40. In the light of
our algorithm analysis, we decided that 20 stages of PEs and

978-1-4799-6278-5/14/$31.00 ©2014 IEEE 154

Fig. 2. (a) Table Lookup Unit - (b) Logical Operation Unit - (c) Arithmetic Unit

CRs is the optimal configuration in the Execution Tile with
a 256-entry register file. Therefore, the processor can provide
up to 80 logical stages by fully utilizing the control memory
that provides four distinct stage images. A smaller number of
pipeline stages can be realized using register file loopbacks
and partial configuration of PEs in each stage.

Besides controlling connections between PEs, a CR is also
responsible for controlling up to eight outputs from all stages
to be stored to the register file. By providing eight parallel
register file write port, we doubled the requirements of existing
symmetric-key encryption algorithms. The flexibility of storing
intermediate results from any stage enables us to utilize any
portion of Cryptoraptor and to have a different number of
pipeline stages for each algorithm. Thus, any PE individually
and/or PE row can be turned on/off as needed by the algorithm.
The control structure enables users to configure only required
PEs and corresponding PE connectors or even a small portion
of a single PE and PE connector.

A. Connection Row (CR)
The CR is a crossbar connecting outputs of each PE from

stage i to inputs of each PE in stage i+ 1. Although the
crossbar has a significant impact on cycle time (Section V), it
increases the flexibility of Cryptoraptor. This unit could have
been structured with a predefined set of connections between
FUs. However, doing so would limit the processor’s ability to
support future algorithms. Similar to the control signal memory
of PE, a memory block is placed next to each CR to provide
configuration bits to the CR as needed.

B. Processing Element (PE)
Our algorithm analysis shows that functional primitives

used in cryptographic algorithms can be clustered into five
operation classes: logical, shift/rotate, table lookup, arithmetic,
and permutation/expansion, are used 95.9%, 66.9%, 56.8%,
51.4%, and 41.9% of the algorithms respectively. Thus, a
PE consists of five bypassable and independently configurable
functional units (FUs) that can work concurrently: an Arith-
metic Unit (AU), a Logical Operation Unit (LOU), a Table
Lookup Unit (TLU), a Shifter-Rotator Unit (SRU), and a
Permutation-Expansion Unit (PEU). Since one fourth of the
algorithms use only byte-wise rotation, a selectable one, two
or three byte rotate operations are added to the outputs of
AU, LOU, and TLU, which provides both original and rotated
outputs. Doing so reduces the total number of cycles with
negligible overhead on the processor cycle time.

A small memory block is associated with each PE to store
control signals and enable reconfiguration of that PE. Those
signals mostly remain constant throughout the execution of
the algorithm. Our evaluation assumes that such structures can
store up to four sets of signals that can be sequenced by the
SE of Cryptoraptor to provide more capacity, by remapping

a stage cycle-by-cycle, or to provide the ability to switch to
another algorithm in a single cycle.

a. Table Lookup Unit (TLU): The table sizes, entry widths,
addressing schemes, number of different tables, and the num-
ber of parallel tables vary greatly between cryptosystems.
Therefore, the table lookup structure of a generic reconfig-
urable cryptographic processor should ideally be capable of
supporting table size requirements of all existing algorithms
for both the size of one table (4KB) and total size of tables
in algorithm (16KB), as well as maximum number of parallel
lookup operations (16 operations). Since more than 70% of the
algorithms using table lookup uses 256x4B tables, we use that
structure. However, to support a wider range of cryptographic
algorithms, we provide three 256x4B and one 1024x4B tables
(named as SBOX and TBOX, respectively) addressed as shown
in Figure 2. The TLU provides three ways to perform a table
lookup: (i) one table lookup with up to a 10-bit address that
returns a 4B output, (ii) 4 table lookups with each byte of
a 4B input used as one address that returns four 4B outputs,
and (iii) one table lookup with each byte of a 4B input as
an address that outputs each byte of one 4B output. Larger
lookup tables can be supported by splitting them into multiple
SBOXes/TBOXes, and using multi-stage lookup operations.

In more than 69% of symmetric-key encryption algorithms,
table lookup operations are preceded and/or followed by an
XOR operation. Thus, bypassable XOR operations are placed
before and after the memory lookup blocks. The TLU defines
the critical path of Cryptoraptor (Section V).

b. Arithmetic Unit (AU): Our studies show that 75.3% of
modular arithmetic operations use (232) as the base value,
while more than 90% of modular arithmetic operations can be
realized by masking the result of a standard integer arithmetic
with an AND operation. The current AU is capable of doing
addition and subtraction on 8, 16, and 32-bit granularities.
Doing so supports 94.6% of studied cryptographic algorithms
efficiently while 8 out of 148 algorithms require either a com-
bination of existing FUs or new support for bases other than
(28), (216), and (232). Due to its insignificant improvement on
flexibility but high impact on overall cycle time (Section V),
we choose not to include a multiplier in our current datapath
and multiplication can be realized using a combination existing
FUs. However, a two-staged multipler can be integrated for
higher algorithm coverage without affecting the critical path.

Since more than half of algorithms use XOR and arithmetic
operations back-to-back, XORs are placed before and after
arithmetic operations (Figure 2).

c. Logical Operation Unit (LOU): Since the TLU defines
the critical path, the LOU can contain a lot of functionality
without affecting the critical path. Our analysis shows that
82.4% of cryptographic algorithms process two consecutive
logical operations while 58.8% of all algorithms process
three, and 57.7% of the cryptographic hash functions process

155

four or more. To support sequences of logical operations the
LOU is separated from the AU to process more operations
concurrently and, therefore, achieves higher throughput. As
shown in Figure 2, the LOU consists of a three-level reduction
tree with six independently configurable and bypassable logic
blocks (CLBs). Each CLB is capable of performing four logic
primitives (AND, OR, NOT, and XOR) on its operands as well
as applying bitwise inversion to any operand (i.e. ¬A&B). The
LOU can support most functions found in common crypto-
graphic hash functions and complex logic reduction functions
with up to six inputs.

F (X,Y, Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ z) (1)

For example, Equation 1 is a 6-input function that is used in
MD4, SHA-1, and SHA-2. Such a simple function requires 5
iterations to produce the result using a simple arithmetic logic
unit. However, it can easily be implemented in a single cycle
with the three-level reduction tree structure in the LOU.

d. Permutation/Expansion Unit (PEU): Bit manipulation
is the key operation to provide non-linearity in some cryp-
tographic algorithms such as DES. The PEU can merge,
manipulate, and expand two 32-bit inputs to generate one up
to 64-bit output (two 32-bit outputs). Each bit of the output
can be set to any input bit. The crossbar structure of PEU
increases the flexibility of Cryptoraptor for both existing and
future algorithms.

e. Shifter/Rotator Unit (SRU): The 32-bit unit supports a
variable shift/rotate operation in both directions. Since the ro-
tation on 8 or 16-bit data is not common among cryptographic
algorithms, and can be implemented using PEU, smaller
granularity rotations are not supported by this unit. Since
more than 40% shift/rotate operations are preceded and/or
followed by a logical operation, the flexibility of performing
logical operations (AND, OR, NOT, and XOR) before and after
shift/rotate operations is provided.

IV. ALGORITHM MAPPING & MAPPER TOOL
The reconfigurability and performance of Cryptoraptor are

evaluated by using a custom toolchain to map 16 cryptographic
algorithms: (i) 10 block ciphers; AES, Blowfish, Camellia,
Cast128, DES, GOST, Kasumi, SEED, RC5, and Twofish, (ii)

2 stream ciphers RC4 and Phelix, and (iii) 4 cryptographic
hash functions MD4, MD5, SHA-1, and SHA-2. This algo-
rithm selection is based on mostly used security protocols
(IPsec, TLS/SSL, WTLS, SSH, S/MIME and OpenPGP) and
cryptographic libraries (OpenSSL and GNU Crypto). Some
algorithms that are not in existing protocols and libraries
are also mapped to stress the flexibility of Cryptoraptor. The
Table I summarizes our rationale behind including these 16
algorithms in the mapping process.

To enable easier implementation, more efficient and op-
timized algorithm mapping, and higher throughput, a sim-
ple cryptography assembly language is introduced (Table II),
which allows users to define and use variables, arrays, ta-
bles, constants, and permutation tables. Instructions can also
operate on 32-bit immediate values. Since the multiplication
and modular arithmetic with arbitrary modulo bases are not
currently supported, they are not included in the language. We
also implemented a custom toolchain which is fully aware of
the underlying processor architecture and optimizes the input
mapping for throughput.

TABLE II. INSTRUCTION LIST

Operation Class Instructions

AU ADD, ADD8, ADD16, ADDi, ADD8i, ADD16i,
SUB, SUB8, SUB16, SUBi, SUB8i, SUB16i

LOU AND, OR, XOR, NOT, ANDi, ORi, XORi
TLU SBOX, SBOX M, SBOX P, STR

SRU SHR, SHL, SHRi, SHLi, ROTR, ROTL, ROTRi,
ROTLi, BROTR, BROTL

PEU PERM, PERM32 64, PERM64 32, PERM64 64

Helper REPEAT, MOVE, SWAP

The toolchain unrolls round loop(s), generates a dataflow
graph, and optimizes the operation sequence for underlying
hardware. It issues the operations to available FUs as soon as
their operands are ready. Besides its own optimization process,
the assembly language and toolchain also allow users to hand-
tune their implementation. The automated toolchain enables
achieving throughput and resource utilization that are greater
than or equal to well-studied hand-based mapping.

Our experience leads us to believe that mapping algorithms
is straightforward as long as all of the necessary functional

TABLE I. IMPLEMENTED ALGORITHMS

Security Protocols Cryptographic Libraries Speciality

AES [52] Almost all Almost all Most widely used algorithm, stresses maximum parallel lookup
table

Blowfish [64] IPsec OpenSSL Base structure for some block ciphers, example Arithmetic-XOR
pattern

Camellia [6] IPsec, TLS Crypto++, Cryptospecs, OpenSSL Example algorithm that requires special attention to achieve high
performance, example byte-wise rotator

CAST-128 [2] IPsec, PGP Crypto++, Cryptospecs, OpenSSL, GnuPG Base structure for some block ciphers, example changing round
structures, and Arithmetic-XOR pattern

DES [1] IPsec, SSL, TLS Almost all Example bit permutation and unorthodox operation width
GOST [55] - Crypto++, Cryptospecs Doesn’t fit well, example Shift-Logic pattern

Kasumi [47] as A5/3 in UMTS, GSM, GPRS Cryptospecs Data dependent and fairly complex structure due to its unbalanced
rounds and unorthodox table sizes (7 and 9-bit addressing)

RC5 [60] S/MIME Crypto++, Cryptospecs, OpenSSL Good on software, doesn’t fit well in Cryptoraptor

SEED [42] CMS, IPsec, SSL, S/MIME, TLS Crypto++, Cryptospecs, OpenSSL Recursive round structure, example algorithm that requires special
attention to achieve high performance

Twofish [65] OpenPGP GnuPG Complex structure and example operation patterns

RC4 [74] TLS, WEP, WPA Crypto++, GnuPG, Cryptospecs, OpenSSL Most widely used stream cipher, table updates, register file usage
Phelix [75] - - Very complex structure, use of patterns

MD4 [59] PGP, S/MIME Crypto++, Cryptospecs, OpenSSL Base structure for several hash functions, stresses LOU structure,
changing round structures

MD5 [58] IPsec, NTLM, SSL, S/MIME, TLS Almost all Base structure for several hash functions, stresses LOU structure,
changing round structures

SHA-1 [15] IPsec, PGP, SSH, SSL, S/MIME,
TLS Almost all Most widely used hash function, changing round structures

SHA-2 [20] Bitcoin, IPsec, PGP, SSH, SSL,
S/MIME, TLS Almost all Complex round structure, replacing SHA-1

156

blocks are available. Multiplication, used in 11.5% of the
analyzed algorithms, is a notable exception. Our algorithm
analysis suggests that 86.5% of studied algorithms can be
mapped efficiently onto current Cryptoraptor architecture (Sec-
tion V). Since even multiplication can be performed using
existing FUs and we provided more functionality than studied
algorithms require, we strongly believe that Cryptoraptor can
support all existing algorithms.

V. PROCESSOR ANALYSIS
A. Implementation

We have developed a highly modular, fully configurable
architecture using Verilog HDL. We synthesize our RTL code
into a gate level structure using Synopsys Design Compiler
(DC) and FreePDK45TM v1.4 45nm standard-cell CMOS
technology [68]. However, due to the lack of a memory
compiler, register arrays are used for the memory blocks
while analyzing the maximum frequency of Cryptoraptor. Even
though the use of register arrays potentially increases the
cycle time, it achieves a frequency of 1GHz, where each
pipeline stage consists of four PEs, and a CR. We have not
yet optimized our design for timing, area, and power. The
CACTI 6.5 Memory Model [51] is used to get area metrics
for the memory blocks. The area numbers are generated from
the functional area numbers produced by DC, the memory area
numbers produced by CACTI, plus 10% for error.

Even though implementing Cryptoraptor on FPGAs is
somewhat redundant, since the reconfigurability is provided
within Cryptoraptor itself, we also synthesize our RTL code
to a Xilinx Virtex-6 FPGA using ISE Design Suite 14.6
without applying any FPGA-related optimizations. We use
Block RAMs (BRAMs) in the FPGA for memory blocks.
Even though an FPGA could be reconfigured as the algorithm
changes, we do not assume that is possible. Despite the fact
that the excessive use of multiplexers in the design has a neg-
ative impact on our FPGA cycle time, we achieve 203.8MHz
with the same configuration used in ASIC version.

B. Timing, Area, and Power Analysis
We synthesize FUs and structures in the design separately

to find out which FU or structure creates a bottleneck in
Cryptoraptor. Such analysis also allows us to further improve
the design other FUs which are not on the critical path. We
used ”-uniquify”, ”-ungroup”, and ”-flatten” DC optimizations,
which removed module boundaries and synthesized the design
as a whole block.

TABLE III. THE TIMING, AREA, AND POWER ANALYSIS OF
FUNTIONAL UNITS

Cycle
time
(ns)

Area
(mm2)

Internal
Power
(mW)

Switching
Power
(mW)

Leakage
Power
(mW)

Dynamic
Power
(mW)

AU 0.51 0.0107 3.97 3.07 0.0479 7.08
LOU 0.48 0.0080 2.49 2.30 0.0269 4.81
TLU 0.58 0.0110 51.54 1.35 0.0399 53.55
SRU 0.55 0.0093 1.90 1.84 0.0303 3.78
PEU 0.23 0.0156 14.35 4.07 0.0748 18.50
Byte rotator(BR) 0.07 0.0011 0.58 0.52 0.0021 1.10
AU (with BR) 0.56 0.0117 4.06 3.22 0.0513 7.33
LOU (with BR) 0.53 0.0087 2.62 2.41 0.0282 5.06
TLU (with BR) 0.63 0.0115 51.75 1.48 0.0427 53.89
AU (w/o bundle) 0.42 0.0035 1.23 0.87 0.0147 2.12
SRU (w/o bundle) 0.30 0.0063 1.86 1.82 0.0220 3.71
Multiplication 0.91 0.0075 4.09 3.06 0.0374 7.18

Due to its memory operations and complex structure, TLU
is the longest path in the PE design (Table III). Since we cannot
make the TLU design faster, the functionality of other units are
improved, yielding higher compute capabilities. Thus, we bun-
dle arithmetic operations with XOR and shift/rotate operations

with logical operation blocks. The Table III also summarizes
the overhead byte rotator and the operation bundles introduced
in the design. Integrating byte rotators to AU, LOU, and TLU
has a negligible effect (0.04-0.05ns when merged) on cycle
time, area, and power.

A single-staged multiplier requires 0.91ns to multiply two
32-bit integer, which would significantly increase the cycle
time of PE, yielding lower clock frequency for Cryptoraptor.
Our analysis shows that supporting multiplication operation
would only increase the algorithm coverage of Cryptoraptor
by 8.1 percent. Thus, a single-stage multiplier results in 25%
decrease in clock frequency and does not improve algorithm
coverage significantly. Unlike its effects on cycle time, the
multiplication unit does not have a serious impact on the area.

Like its effects on cycle time, TLU requires the highest
dynamic power by far with 53.5mW due to its memory blocks.
However, there is also a huge gap between the power usage
of PEU and other FUs (Table III). This finding clearly shows
the trade-off between flexibility and power usage.

The Table IV shows cycle time, area requirements, and
power consumption of each sub-structure as well as Cyrptorap-
tor as a whole. As discussed before, full crossbar structure
between PE rows has a significant impact on the cycle time of
Cryptoraptor. The functional part of a row forms only 65% of
the overall cycle time. Even though one Full Row, which is a
merged version of one PE and CR, requires 0.95ns, the register
file connections and capacitance effects of all connections
increases the total cycle time to 1.0ns.

The CR between PE rows does not have a significant im-
pact on power usage. The majority of total power is consumed
by the FUs. The DC and optimization flags result in different
power predictions and make it more complicated than a simple
calculation combining sub-modules. For example; one PE row,
CR, and pipeline registers require 277.17mW, 2.60mW, and
292.57mW dynamic power respectively when they are syn-
thesized separately. However, DC reports 360.37mW dynamic
power usage for one Full Row (which consists of one pair of a
PE row and CR with pipeline registers), where only 119.39mW
is attributed to pipeline registers.

TABLE IV. THE TIMING, AREA, AND POWER ANALYSIS OF
SUB-MODULES

Cycle
time
(ns)

Area
(mm2)

Internal
Power
(mW)

Switching
Power
(mW)

Leakage
Power
(mW)

Dynamic
Power
(mW)

PE 0.63 0.0344 63.42 4.21 0.15 68.40
PE Row 0.63 0.1448 254.37 18.35 0.60 277.17
Connection Row 0.47 0.0627 1.58 0.86 0.17 2.60
Pipeline Register 0.09 0.0221 288.74 3.71 1.20x10−7 292.57
Full Row 0.95 0.2115 336.20 19.35 0.96 360.37
Execute Tile 1.00 4.5428 5229.32 303.75 19.96 5602.65
Cryptoraptor 1.00 6.3244 5802.80 303.75 23.36 6207.04

The functional and execution parts of Cyrptoraptor use
71.8 percent of overall die area. With a 256-entry register
file (1.78mm2), Cryptoraptor requires only 6.32mm2, which
is approximately 34X and 78X smaller than existing CPUs
and GPUs, respectively. The Table IV also shows that 90.6
percent of total power is consumed by functional and execution
part of Cryptoraptor. In an in-order Reduced Instruction Set
Computer (RISC), a large fraction of energy dissipation can
be attributed to the instruction supply; 37% for fetching, 18%
for decoding, and 14% for issuing an instruction [29]. Using a
compact finite state machine representation for control flow in
algorithms improve energy and area efficiency by simplifying
the front-end structure of a traditional processor.

157

C. Performance Analysis
Since the most of prior art is hard-coded, hand-tuned, and

not parametrized, fair performance comparisons are not easy.
The limited architectural insight and incomplete data provided
in research papers make comparisons even harder. Moreover,
there is no standard set of base settings to present the perfor-
mance of cryptographic algorithms. The choice of operation
mode to be feedback (CBC, CFB, and OFB) or non-feedback
(ECB and CTR) plays a crucial role on the throughput of a
design. Even though feedback mode throughput provides better
insight about the performance of a design, the throughput
of existing solutions is provided for both modes as well as
their clock frequencies, lithographies, and pipeline depths. The
presented results are not scaled to a particular technology or
device to avoid unrealistic advantages/disadvantages [45, 41].

Even though we aim to achieve high throughput for all
algorithms, we can only compare our performance on AES due
to the lack of published results for any other algorithm. Though
Cryptoraptor does not have the highest performance, it is
competitive with ASIC solutions, while providing much more
flexibility. However, we should emphasize that we compare our
flexible processor against to the designs that are hand-tuned
specifically for AES and do not support other algorithms.

TABLE VI. AES PERFORMANCE ON ASICS

Lith.
(nm)

Parallel
Stream Cycles Freq.

(MHz)
CBC
(Gbps)

CTR
(Gbps)

Saravanan [63] 180nm 1 80 333.0 0.53 10.66
Amphion [5] 180nm 1 1 200.0 25.60 25.60
EnSilica [18] 65nm 1 11 500.0 5.82 64.00
Mathew [46] 45nm 4 20 2615.0 16.74 66.94
Hodjat [31] 180nm 1 41 606.0 1.89 77.57
Swankoski [69] 160nm 1 50 680.3 1.74 87.07
Ip Cores, Inc [35] 90nm 1 10 824.0 10.55 105.47
Morioka [50] 130nm 1 10 909.0 11.64 116.35
Ali [4] 180nm 1 21 1015.0 6.19 129.92
Liu [45] 65nm 1 152 1210.0 1.02 153.70
Cryptoraptor 45nm 1 20 1000.0 6.40 128.00

Table VI shows that an ASIC implementation of Cryp-
toraptor achieves competitive throughput results compared
to AES-specific ASIC cores. With its outer-round pipelined
structure and highly tuned datapath, Morioka’s AES-only
implementation [50] on an old 130nm technology achieves
high throughput on both CBC and CTR modes, 11.64Gbps and
116.35Gbps respectively, while our reconfigurable processor
achieves peak AES throughputs of 6.40Gbps and 128Gbps.
Since the number of pipeline stages has a negative impact on
CBC throughput, our throughput is roughly half of Morioka’s.

With its higher frequency, 152 pipeline stages, and its many
core structure, Liu’s AES processor [45] achieves the highest
AES-128-CTR throughput of 153.70Gbps. Due to its very deep
pipeline, however, it is not able to provide high performance
on feedback modes. Liu’s AES processor (6.63mm2) only
supports AES while Cryptoraptor (6.32mm2) is capable of

supporting a wide range of algorithms. Cryptoraptor achieves
similar throughput per area as Liu’s many core solution,
20.25Gbps/mm2 and 23.18Gbps/mm2 respectively.

Amphion’s AES core [5] running at 200MHz achieves the
highest AES-CBC throughput by processing 10 rounds in a
single cycle. Even though its internal structure is not publicly
available, it is obvious that the core cannot achieve a high
CTR throughput due its low clock frequency. The 10 stage
pipelined 824MHz AES core on 90nm technology introduced
by Ip Cores provides a balanced performance on both CBC and
CTR mode. Both designs clearly show the importance of the
balance between the pipeline depth and the clock frequency.
TABLE VII. AES PERFORMANCE ON FPGA-BASED SOLUTIONS

FPGA Lith.
(nm)

Cycles Freq.
(MHz)

CBC
(Gbps)

CTR
(Gbps)

Jarvinen [38] Virtex 2 130nm 41 139.10 0.43 17.80
Swankoski [70] Virtex 2 130nm 10 147.00 1.88 18.82
Hodjat [32] Virtex 2 130nm 41 168.30 0.53 21.54
Zhang [79] Virtex 1 130nm 70 168.40 0.31 21.56
Good [25] Spartan 3 90nm 70 196.10 0.36 25.10
Iyer [37] Virtex 2 130nm 50 206.84 0.53 26.48
Good [26] Virtex 2 130nm 240 222.90 0.12 28.53
Rizk, [61] Virtex 4 90nm 20 223.00 1.43 28.54
Yoo [78] Virtex 2 130nm 30 232.60 0.99 29.77
Tim Good [26] Virtex 3 90nm 120 240.90 0.26 30.84
Fan [19] Virtex 2 90nm 50 250.00 0.64 32.00
EnSilica [18] Virtex 6 40nm 11 275.00 3.20 35.20
Ali [4] Stratix II GX 180nm 21 282.50 1.72 36.16
Wang [73] Virtex 6 40nm 66 344.12 0.67 44.05
Mercoratech [49] Virtex 6 40nm 10 357.00 4.57 45.70
Deshpande [62] Spartan 6 45nm 80 430.00 0.69 55.04
Hossain [33] Stratix II GX 90nm 23 450.05 2.50 57.61
Swankoski [69] Virtex 4 90nm 50 519.18 1.33 66.46
Soliman [67] Virtex 5 65nm 40 557.00 1.78 71.30
Qu [57] Virtex 5 65nm 10 576.07 7.37 73.74
Chen [14] Virtex 4 90nm 10 645.70 8.26 82.65
Cryptoraptor Virtex 6 40nm 20 203.80 1.30 26.09
Cryptoraptor 45nm 45nm 20 1000.0 6.40 128.00

There exists a rich literature on high performance AES
hardware architectures targeting FPGAs, as summarized in
Table VII. The AES core proposed by Chen [14] adapts outer-
round pipelining scheme, and is stated to achieve a very
high frequency of 645.70MHz on a Xilinx Virtex-4 FPGA,
producing the highest AES-CTR throughput of 82.65Gbps.
We try to replicate the work using the source code provided
by authors and synthesize to exact same FPGA family with
highest speed grade with all optimizations on, using ISE
Design Suite 14.6. However, the highest clock frequency that
we are able to produce is 284.43MHz, yielding 36.41Gbps as
opposed to 82.65Gbps. Similarly, 10-staged AES core reported
by Qu [57] claims an astonishingly high clock frequency on
Virtex-5 while Soliman’s solution [67] is not able to achieve
such a high clock frequency on the same FPGA even with its
deeper inner-round pipelined structure.

On the other hand, even commercial high performance
AES cores introduced by EnSilica [18] and Mercoratech [49]

TABLE V. AES PERFORMANCE ON GPPS

Architecture Lith. (nm)
Config.

(core/warp x
thread)

Freq.
(MHz)

Through-put
(Gbps)

Area
(mm2)

Through-put
per area

(Gbps/mm2)

Power per
area

(W/mm2)
Nishikawa [53] Core i7-2600K 32nm 1 x 1 3400 1.90 216 0.009 0.4398
Nishikawa [53] Core i7-2600K 32nm 4 x 8 3400 7.50 216 0.035 0.4398
Nishikawa [53] Core i7-2600K 32nm 1 x 1 3400 25.10 216 0.116 0.4398
Nishikawa [53] Core i7-2600K 32nm 4 x 4 3400 44.20 216 0.205 0.4398
Akdemir [3] Core i7-980X 32nm 1 x 1 3300 6.30 239 0.026 0.5439
Akdemir [3] Core i7-980X 32nm 6 x 12 3300 72.30 239 0.303 0.5439
VIA Tech. [72] VIA C7 90nm 1 x 1 2000 25.00 30 0.833 0.6666
Zola [54] GTX 260 55nm 27 x 256 1242 30.00 576 0.052 0.3159
Iwai [36] GTX 285 55nm 60 x 512 1500 35.20 490 0.072 0.4163
Nishikawa [53] GTX 285 55nm 60 x 512 1242 35.20 490 0.072 0.4163
Nishikawa [53] Tesla C2050 40nm 28 x 512 1150 48.60 539 0.090 0.4415
Bos [9] GTX 295 55nm 120 x 512 1240 59.60 470 0.127 0.6148
Cryptoraptor ASIC 45nm 1 x 1 1000 128.00 6.32 20.253 0.9777

158

TABLE VIII. PERFORMANCE AND UTILIZATION ON PROPOSED PROCESSOR

Algorithm Specification Manual mapping Automated mapping Manual mapping Automated mapping
Parallel
Stream Round Block

size Cycles CBC
(Gbps)

CTR
(Gbps)

Cycles CBC
(Gbps)

CTR
(Gbps)

LOU TLU AU SRU PEU PE LOU TLU AU SRU PEU PE

AES 1 16 64 20 6.40 128.00 20 6.40 128.00 50% 0% 50% 0% 0% 100% 50% 0% 50% 0% 0% 100%
Blowfish 4 16 64 48 5.33 85.33 48 5.33 85.33 0% 67% 33% 0% 0% 100% 33% 67% 33% 0% 0% 100%
Camellia 2 18 128 80 3.20 64.00 73 3.51 64.00 80% 0% 20% 3% 0% 60% 71% 0% 25% 3% 0% 71%
CAST128 4 16 64 80 3.20 64.00 80 3.20 64.00 6% 54% 20% 20% 0% 100% 6% 54% 20% 20% 0% 100%
DES 2 16 64 48 2.67 42.67 48 2.67 42.67 0% 0% 17% 0% 50% 50% 0% 0% 33% 0% 50% 83%
GOST 4 32 64 96 2.67 51.20 98 2.61 51.20 34% 33% 33% 33% 0% 100% 34% 33% 33% 33% 0% 100%
Kasumi 1 6 64 64 1.00 16.00 64 1.00 16.00 25% 0% 20% 9% 5% 50% 25% 9% 20% 0% 5% 48%
RC5 4 12 64 48 5.33 85.33 48 5.33 85.33 0% 50% 0% 50% 0% 100% 0% 50% 0% 50% 0% 100%
SEED 1 16 128 160 0.80 16.00 152 0.84 16.00 13% 8% 30% 0% 0% 50% 14% 8% 32% 0% 0% 50%
Twofish 2 16 128 80 3.20 64.00 80 3.20 64.00 20% 40% 30% 20% 0% 90% 21% 40% 40% 20% 0% 81%
RC4 4 4 32 32 4.00 - 32 4.00 - 0% 38% 50% 0% 0% 100% 0% 38% 50% 0% 0% 100%
Phelix 2 1 32 10 6.40 - 10 6.40 - 0% 70% 0% 80% 20% 100% 0% 70% 0% 80% 20% 100%
MD4 2 48 128 145 1.77 - 144 1.78 - 17% 50% 0% 17% 0% 66% 22% 50% 0% 17% 0% 73%
MD5 2 64 512 257 3.98 - 254 4.03 - 12% 50% 0% 12% 0% 62% 19% 63% 0% 13% 0% 85%
SHA-1 2 80 512 240 4.27 - 225 4.55 - 17% 83% 0% 33% 0% 100% 18% 75% 0% 28% 0% 99%
SHA-2 1 64 512 320 1.60 - 320 1.60 - 20% 40% 0% 30% 0% 55% 25% 35% 0% 30% 0% 50%

Average utilization: 18% 36% 19% 18% 5% 80% 21% 37% 21% 18% 5% 84%

achieve significantly lower clock frequencies on a faster FPGA
family with the same number of pipeline stages. Table VII
clearly shows the impact of the number of pipeline stages on
AES-CTR throughput. Despite their higher frequency, while
most of the AES cores targeted FPGA has poor performance
in feedback modes, they achieve very high throughput on non-
feedback modes due to their deep pipelines ranging from 40 to
240 stages. The performance results of FPGA solutions suggest
that an outer-round pipelined architecture yields better overall
performance for AES by balancing the pipeline depth and the
clock frequency of a design. Because the Cryptoraptor design
is tuned for an ASIC implementation, it contains an aggressive
connection network and excessive use of multiplexers. Even
though it only runs at 203.8MHz it still achieves reasonable
throughput of 1.30Gpbs AES-CBC and 26.80Gbps AES-CTR.

Current generation CPU and GPU solutions also gener-
ate throughput results of up to 72.30Gbps and 59.60Gbps
respectively (Table V). However, current generation GPPs are
large, up to 539mm2. Even though we have not put much
effort to minimize the area, we achieve orders of magnitude
higher throughput per area than commercial GPPs. A similar
analysis on ASICs and FPGAs is not available due to missing
or inconsistent area constraints. Also, it is hard to compare
numbers from different FPGA generations, as the underlying
technology performance and area differ significantly.

As mentioned earlier, there is no literature on hardware
implementations of other algorithms that we mapped. For
that reason, we are unable to provide such a comparison.
However, the performance of other algorithms on Cryptoraptor
is summarized in Table VIII. Our automated toolchain is able
to achieve mostly higher, or equal throughput compared to
hand-tuned mapping by extracting more parallelism.

D. Resource Utilization
To provide a high degree of flexibility, redundant units

and connections are introduced in Cryptoraptor. Therefore,
not all algorithms can utilize all resources available in Cryp-
toraptor. The Table VIII summarizes resource utilization of
the algorithms that are mapped onto Cryptoraptor. The utiliza-
tion analysis includes only FUs and PEs that are processing
some operations; thus, operand forwarding is not included in
resource utilization.

The Table VIII also shows the resource utilization compari-
son between the toolchain and hand-tuned mapping. Our naive
automated toolchain produces slightly different FU patterns
than ones in manual mapping; however, is better at finding
parallelism between rounds. Thus, it achieves slightly different
FU utilization for each algorithm while improving overall PE

utilization by 4% on the average.
Even though the average PE utilization is pretty high,

utilization of individual FUs is low on both manual and
automated mappings. The added redundancy for flexibility and
unpredictability of future algorithms increase area significantly.
However by power gating unused FUs, which we have not yet
done, we believe that power can be significantly reduced.

E. Algorithm Coverage
Though not all algorithms are implemented due to the time

required to do so, we strongly believe that 86.5% of the studied
algorithms can be easily supported with the current structure
of Cryptoraptor. The remaining 13.5% require additional hard-
ware or logic to be supported efficiently (Table IX).

TABLE IX. ALGORITHMS COVERAGE OF CRYPTORAPTOR

Block
Ciphers

Stream
Ciphers

Hash
Functions All

Not supported (Mult only) 10.42% 3.85% 3.85% 8.11%
Not supported (Mod only) 2.08% 0.00% 3.85% 2.03%
Not supported (Mod&Mult) 3.13% 0.00% 7.69% 3.38%
Supported 84.38% 96.15% 84.62% 86.49%

The lack of modular arithmetic support for arbitrary choice
of modulus and the lack of dedicated multiplication units pre-
vent us to cover all algorithms. However, we should emphasize
that both multiplication and modular arithmetic on bases other
than (28), (216), and (232) can be realized using a combination
of existing FUs for higher algorithm coverage in exchange for
performance.

VI. RELATED WORK
Many GPPs include crypto instructions. For example,

Intel added six SSE instructions and hardware support in
their CPUs to speed up AES [3]. IBM [10] and Oracle
[24] introduced crypto engines in their latest processors to
accelerate a predefined set of cryptosystems: AES, RC4, DES,
Kasumi, Camellia, MD5, SHA-1, and SHA-2. Both the IBM
and Oracle designs consist of algorithm-specific instructions
and dedicated hardware units for each algorithm, restricting
their capabilities to the supported algorithms. Several research
projects [7, 12, 16, 27, 39, 43, 66, 76] propose instruction set
architecture extensions (ISEs) or hardware extensions to GPPs;
however, they are also restricted. Even though the Parallel
Table Lookup [21] and Parallel Read instructions [44] work
are intended to be algorithm-independent extensions, they are
not useful for the algorithms that do not have table lookup
operations and are not sufficient to implement all steps of
algorithms that do have table lookup operations. The ISE
proposed by Grabher [27] accelerates a wider range of crypto-
graphic algorithms. Nevertheless, it is also limited to a subset

159

of cryptosystems, specifically ones that operate on data in a bit-
oriented manner rather than in a word-oriented manner. Even
though ISE proposals improve the software performance of
cryptographic algorithms, the added functionality is generally
limited to only speeding a limited subset of cryptosystems.

In addition to existing ISE solutions, there are many
algorithm-specific designs for high throughput and area and
power efficiency, specifically for AES [4, 8, 14, 19, 25, 26,
32, 31, 33, 37, 38, 45, 46, 50, 57, 61, 62, 63, 70, 73, 79].
Optimized hardware implementations have also been described
for Camellia [77], DES [48], Twofish [40], Blowfish [19], RC4
[23], SHA1, and SHA2 [13]. Although the objectives of such
solutions is not the same as ours, they inspired us to design
a more optimized processor and to redesign algorithms to be
better suited for Cryptoraptor.

To bridge the gap between GPPs and ASIC solutions,
FPGA-based solutions and application-specific cryptographic
processors have been proposed, each with its own ISA, dat-
apath, and targeted cryptography standards. There are only a
handful of configurable cryptographic processors with generic
modules suitable for a set of cryptographic algorithms [11,
71, 28, 22, 30]. However, they provide a limited flexibility
and/or throughput. COBRA [17] is a notable exception. It is
a reconfigurable array structure, akin to a specialized FPGA,
for block ciphers whose design is based on the analysis of
41 block ciphers. It is, however, restricted to block ciphers
that operate on plaintext with block sizes of 64 and 128
bits. The main difference between COBRA and other con-
figurable cryptographic processors is that its datapath needs
to be recompiled/reconfigured for each algorithm, resulting in
different clock frequencies and areas. Whereas, Cryptoraptor
is more like a microprocessor that can be programmed for
different cryptographic algorithms. Our clock frequency does
not change regardless of the implemented algorithm.

IBM has introduced the IBM PCIe Cryptographic Copro-
cessor [34] that provides a high-security, high-throughput cryp-
tographic subsystem with specialized hardware to perform only
AES, DES, 3DES, RSA, SHA-1, and SHA-2. Even though its
advantages include better area, power and cost efficiencies, and
higher throughput than GPP solutions, it can support only a
small and predefined set of cryptographic algorithms.

The existing configurable cryptographic processors provide
limited flexibility and/or low performance since their structures
rely on either dedicated hardware module for each algorithm
aimed to support or FUs and structures that are tailored to a
small and predefined set of cryptosystems; mostly focus on
AES, DES, MD5, SHA-1, and SHA-2. The most common
structural limitations in FUs are (i) limited block size support,
(ii) insufficient lookup table structure, (iii) insufficient bit-wise
permutations, and (iv) fixed modulus in modular arithmetic
units. Even though proposed architectures are designed for
high throughput and multi-algorithm support, none of them
has been evaluated for cryptographic algorithms other than a
couple of targeted ones.

There are also projects [29, 41, 56] designing a domain
independent configurable processor intended to lower design
effort and eliminate hardware modifications when requirements
change. The main purpose of such systems is to enable
efficient high performance computing. Despite the fact that the
flexibility and ease of design are listed as the key benefits of
these systems, the applicability of the proposed techniques has
not been evaluated on more than one application or domain.
Generic reconfigurable processors either fail to achieve very
high crypto throughput due to the lack of crypto-specific in-

structions or require recompiling and re-synthesizing hardware
to adapt their internal structures to cryptographic algorithms.

Beside limited flexibility and low performance, most of the
proposed alternative solutions rely on traditional instruction
fetch and decode structures to make control decisions, which
increases the complexity of hardware, requires more area,
and consumes the majority of total energy used in the whole
processor [29]. With our processor architecture, we improve
energy efficiency by simplifying the front-end structure of a
traditional processor. We use a compact finite state machine
for control flow to reduce the energy and area requirements.

VII. LIMITATIONS & FUTURE WORK
We provided a comprehensive timing, area, and power

analysis on architectural structures of the reconfigurable cryp-
tographic processor, Cryptoraptor. However, there are still
possible improvements for the FUs as well as overall processor
design to achieve a higher degree of flexibility and the highest
possible throughput for all.

One major limitation is the limited addressing structure of
the TLU. The current structure and limits are solely based
on our analysis of existing algorithms. Since it is almost
impossible to predict the requirements of future standards, the
current TLU and limitations may or may not be an impediment
to efficient implementations of future algorithms.

Since the multiplication is one of the main limitations
of Cryptoraptor, which restricts the algorithm coverage for
both existing and future cryptographic algorithms, a pipelined
multiplication unit is a good candidate for introduction and
would yield an 8.1% increase in the algorithm coverage, but
would add 0.33ns to the cycle time if introduced naively.
The lack of support for varying modulo in modular arithmetic
operations is another important factor that limits the flexibility
of Cryptoraptor. Even though modular arithmetic operations
can be implemented using existing FUs, the design can be
extended to support varying and unorthodox modulo bases,
which may increase the algorithm coverage by 2% while
having both multiplication unit and modular arithmetic support
may increase algorithm coverage by 13.5%.

Our current toolchain has limited capabilities and does not
provide aggressive optimizations. A more powerful automatic
mapping structure for cryptographic algorithms using a crypto-
specific language or ideally high level language like C/C++
can be developed for robust and high performance mapping of
the algorithms. Such a toolchain might also solve the issues
related to multiplication and modular arithmetic automatically
by mapping these operations to existing hardware on the fly.

Public key cryptography and the security of the processor
are currently beyond the scope of this work and extending our
hardware support for public key encryption is left as future
work.

VIII. CONCLUSIONS
In conclusion, we provided a comprehensive literature

review on cryptographic algorithms and detailed analysis on
the specifications and requirements of various cryptosystems.
Such a detailed analysis might also help both cryptographic
algorithm developers and hardware developers while designing
new algorithms, standards, and hardware implementations.

We have also developed a highly reconfigurable crypto-
graphic processor that can support a wide range of crypto-
graphic algorithms efficiently and has high potential for sup-
porting future algorithms. The performance of our architecture
is competitive with high-end ASIC and FPGA cores while
achieving 25X and 160X higher throughput per area than the
best CPU and GPU solutions, respectively. To the best of our

160

knowledge, Cryptoraptor supports more cryptographic algo-
rithms than any other, and the only crypto-specific processor
that can support future algorithms.

We also provided detailed analysis of Cryptoraptor in terms
of performance, area, power, and the algorithm coverage. We
believe providing such detailed study and evaluation may en-
able both cryptographic algorithm developers and researchers
to explore performance, power, and area tradeoffs while de-
signing new algorithms.

IX. ACKNOWLEDGEMENT
This work was supported by the Semiconductor Research

Corporation under contract 2013-HJ-2456 and 2013-TJ-2416.
REFERENCES

[1] Data Encryption Standard (DES). FIPS PUB 46, pages 46–2, 1977.
[2] C. Adams. RFC2144: The CAST-128 Encryption Algorithm. Network Working

Group, 1997.
[3] K. Akdemir, M. Dixon, W. Feghali, P. Fay, V. Gopal, J. Guilford, E. Ozturc,

G. Worlich, and R. Zohar. Breakthrough AES performance with Intel AES new
instructions. White paper, June, 2010.

[4] L. Ali, I. Aris, F. S. Hossain, and N. Roy. Design of an ultra high speed AES
processor for next generation IT security. Comput. Electr. Eng., 37(6), 2011.
1160-1170.

[5] Amphion Semiconductor. CS5210-40 high performance AES encryption cores.
Amphion Semiconductor.

[6] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and
T. Tokita. Specification of Camellia-A 128-bit block cipher. 2000.

[7] G. Bertoni, L. Breveglieri, F. Roberto, and F. Regazzoni. Speeding up AES by
extending a 32 bit processor instruction set. In ASAP’06, 2006. 275-282.

[8] A. Biryukov and J. Grossschadl. Cryptanalysis of the full AES using GPU-like
special-purpose hardware. Fundam. Inf., 114(3-4), 2012. 221-237.

[9] J. W. Bos, D. A. Osvik, and D. Stefan. Fast implementations of AES on various
platforms. SPEED-CC’09, page 501, 2009.

[10] J. D. Brown. The IBM Power Edge of NetworkTM Processor. IBM Corporation.
[11] R. Buchty, N. Heintze, and D. Oliva. Cryptonite - a programmable crypto

processor architecture for high-bandwidth applications. In ARCS’04, 2004. 184-
198.

[12] J. Burke, J. McDonald, and T. Austin. Architectural support for fast symmetric-
key cryptography. In ASPLOS’00, 2000. 178-189.

[13] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis. Cost-efficient SHA
hardware accelerators. IEEE Transactions on VLSI Systems, 16, 2008. 999-1008.

[14] D. Chen, G. Shou, Y. Hu, and Z. Guo. Efficient architecture and implementations
of AES. In ICACTE’10, volume 6, 2010. 295-298.

[15] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174,
September, 2001.

[16] A. Elbirt. Fast and efficient implementation of AES via instruction set extensions.
In AINAW’07, 2007. 396-403.

[17] A. Elbirt and C. Paar. An instruction-level distributed processor for symmetric-
key cryptography. Parallel and Distributed Systems, IEEE Transactions on,
16(5):468–480, 2005.

[18] EnSilica. eSi-8110 product brief. EnSilica.
[19] C.-P. Fan and J.-K. Hwang. Implementations of high throughput sequential and

fully pipelined AES processors on FPGA. In ISPACS’07, 2007. 353-356.
[20] FIPS NIST. 180-2: Secure Hash Standard (SHS). Technical report, Technical

report, (NIST), 2001.
[21] A. Fiskiran and R. Lee. On-chip lookup tables for fast symmetric-key encryption.

In ASAP’05, 2005. 356-363.
[22] D. Fronte, A. Perez, and E. Payrat. Celator: A multi-algorithm cryptographic

co-processor. In ReConFig’08, pages 438–443, 2008.
[23] M. Galanis, P. Kitsos, G. Kostopoulos, N. Sklavos, O. Koufopavlou, and

C. Goutis. Comparison of the hardware architectures and FPGA implementations
of stream ciphers. In ICECS’04, 2004. 571-574.

[24] R. Golla and P. Jordan. T4: a highly threaded server-on-a-chip with native support
for heterogeneous computing, August, 2011. Slides of a talk given at Hot Chips:
A Symposium on High Performance Chips.

[25] T. Good and M. Benaissa. AES on FPGA from the fastest to the smallest. In
CHES’05, volume 3659, 2005. 427-440.

[26] T. Good and M. Benaissa. Pipelined AES on FPGA with support for feedback
modes (in a multi-channel environment). Information Security, IET, 1(1), 2007.
1-10.

[27] P. Grabher, J. Grossschadl, and D. Page. Light-weight instruction set extensions
for bit-sliced cryptography. In CHES’08, 2008. 331-345.

[28] M. Grand, L. Bossuet, G. Gogniat, B. Le Gal, J.-P. Delahaye, and D. Dallet.
A reconfigurable multi-core cryptoprocessor for multi-channel communication
systems. In IPDPSW’11, pages 204–211, 2011.

[29] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August. Bundled execution of
recurring traces for energy-efficient general purpose processing. In MICRO-44,
2011.

[30] W. Haixin, B. Guoqiang, and C. Hongyi. Zodiac: System architecture implemen-
tation for a high-performance network security processor. In ASAP’08, pages
91–96, 2008.

[31] A. Hodjat and I. Verbauwhede. Speed-area trade-off for 10 to 100 Gbits/s
throughput AES processor. In ASILOMAR’03, volume 2, 2003. 2147-2150.

[32] A. Hodjat and I. Verbauwhede. A 21.54 Gbits/s fully pipelined AES processor
on FPGA. In FCCM’04, 2004. 308-309.

[33] F. Hossain, M. Ali, and M. Al Abedin Syed. A very low power and high
throughput AES processor. In ICCIT’11, 2011. 339-343.

[34] IBM Corporation. IBM 4765 PCIe Cryptographic Coprocessor. IBM.
[35] IP cores, Inc. AES-GCM MACsec (IEEE 802.1AE) and FC-SP Cores

GCM1/GCM2/GCM3, 2013.
[36] K. Iwai, N. Nishikawa, and T. Kurokawa. Acceleration of AES encryption on

CUDA GPU. International Journal of Networking and Computing, 2(1), 2012.

[37] N. Iyer, P. Anandmohan, D. Poornaiah, and V. D. Kulkarni. High throughput,
low cost, fully pipelined architecture for AES crypto chip. In Annual IEEE India
Conference, 2006. 1-6.

[38] K. U. Järvinen, M. T. Tommiska, and J. O. Skyttä. A fully pipelined memoryless
17.8 Gbps AES-128 encryptor. In FPGA’03, 2003. 207-215.

[39] C. Jenkins, M. Schulte, and J. Glossner. Instruction set extensions for the
advanced encryption standard on a multithreaded software defined radio platform.
IJHPSA’10, 2(3/4), 2010. 203-214.

[40] X. Lai. On the design and security of block ciphers. ETH SERIES in Information
Processing. Hartung Gorre Verlag, v.1 edition, 1992.

[41] I. Lebedev, S. Cheng, A. Doupnik, J. Martin, C. Fletcher, D. Burke, M. Lin, and
J. Wawrzynek. MARC: a many-core approach to reconfigurable computing. In
ReConFig’10, 2010. 7-12.

[42] J. Lee, J. Park, S. Lee, and J. Kim. The SEED encryption algorithm. SEED, 2005.
[43] R. Lee, Z. Shi, and X. Yang. Efficient permutation instructions for fast software

cryptography. Micro, IEEE, 21, 2001. 56-69.
[44] R. B. Lee and Y.-Y. Chen. Processor accelerator for AES. In SASP’10, 2010.

16-21.
[45] B. Liu and B. M. Baas. Parallel AES encryption engines for many-core processor

arrays. IEEE Transactions on Computers, 62(3), 2013. 536-547.
[46] S. Mathew, F. Sheikh, M. E. Kounavis, S. Gueron, A. Agarwal, S. Hsu, H. Kaul,

M. Anders, and R. Krishnamurthy. 53 gbps native gf(2 4) 2 composite-field
aes-encrypt/decrypt accelerator for content-protection in 45nm high-performance
microprocessors. Journal of Solid-State Circuits, 46(4), 2011. 767-776.

[47] M. Matsui. New block encryption algorithm MISTY. Fast Software Encryption,
1267, 1997. 54-68.

[48] M. McLoone and J. McCanny. High-performance FPGA implementation of DES
using a novel method for implementing the key schedule. IEEE Proceedings of
Circuits, Devices and Systems, 150, 2003. 373-378.

[49] Mercora Technologies. AES ultra fast IP core for Xilinx FPGAs . Mercora
Technologies.

[50] S. Morioka and A. Satoh. A 10 Gbps full-AES crypto design with a twisted-BDD
S-Box architecture. In ICCD’02, 2002. 98-103.

[51] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing NUCA
organizations and wiring alternatives for large caches with CACTI 6.0. In
MICRO’07, 2007. 3-14.

[52] National Institute of Standards and Technology (NIST). Advanced encryption
standard (AES). FIPS Publication, 197, 2001.

[53] N. Nishikawa, K. Iwai, and T. Kurokawa. High-performance symmetric block
ciphers on multicore CPU and GPUs. IJNC’12, 2(2), 2012. 251-268.

[54] W. Nunan Zola and L. De Bona. Parallel speculative encryption of multiple AES
contexts on GPUs. In Innovative Parallel Computing, 2012. 1-9.

[55] J. Pieprzyk and L. Tombak. Soviet encryption algorithm. Preprint, pages 94–10,
1993.

[56] T. Pionteck, T. Staake, T. Stiefmeier, L. Kabulepa, and M. Glesner. Design of
a reconfigurable AES encryption/decryption engine for mobile terminals. In
ISCAS’04, volume 2, pages 545–556, 2004.

[57] S. Qu, G. Shou, Y. Hu, Z. Guo, and Z. Qian. High throughput, pipelined
implementation of AES on FPGA. In IEEC’09, 2009. 542-545.

[58] R. Rivest. RFC 1321: The MD5 message-digest algorithm, April 1992. Status:
INFORMATIONAl.

[59] R. Rivest. The MD4 Message-Digest Algorithm, RFC 1320. 1992.
[60] R. L. Rivest. The RC5 encryption algorithm. In Fast Software Encryption, pages

86–96. Springer, 1995.
[61] M. R. M. Rizk and M. Morsy. Optimized area and optimized speed hardware

implementations of AES on FPGA. In IDT’07, 2007. 207-217.
[62] D. Sagar and G. Leelavathi. Design and implementation of extended version of

AES algorithm with DSP units. In IJEAT’13, volume 2-6, 2013. 360-364.
[63] P. Saravanan, N. R. Devi, G. Swathi, and D. P. Kalpana. A high-throughput ASIC

implementation of configurable advanced encryption standard (AES) processor.
IJCA Special Issue on Network Security and Cryptography, NSC(3), 2011. 1-6.

[64] B. Schneier. Description of a new variable-length key, 64-bit block cipher
(blowfish). In Fast Software Encryption, pages 191–204. Springer, 1994.

[65] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson. Twofish:
A 128-bit block cipher. NIST AES Proposal, 15, 1998.

[66] Z. Shi and R. Lee. Bit permutation instructions for accelerating software
cryptography. In ASAP’00, 2000. 138-148.

[67] M. I. Soliman and G. Y. Abozaid. FastCrypto: parallel AES pipeline extension
for general-purpose processors. Neural, Parallel Sci. Comput., 18(1). 47-58.

[68] J. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. Davis, P. Franzon,
M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal. FreePDK: an open-source
variation-aware design kit. In MSE’07, 2007. 173-174.

[69] E. Swankoski and V. Narayanan. Dynamic high-performance multi-mode archi-
tectures for AES encryption. In MAPLD’05, 2005. 1-9.

[70] E. J. Swankoski, R. Brooks, V. Narayanan, M. Kandemir, and M. Irwin. A parallel
architecture for secure FPGA symmetric encryption. In IPDPS’04, 2004. 132-.

[71] D. Theodoropoulos, A. Siskos, and D. Pnevmatikatos. Ccproc: A custom
vliw cryptography co-processor for symmetric-key ciphers. In Reconfigurable
Computing: Architectures, Tools and Applications, pages 318–323. Springer,
2009.

[72] VIA Technologies, Inc. VIA C7 processor, 2013.
[73] Y. Wang and Y. Ha. FPGA-based 40.9-Gbits/s masked AES with area optimiza-

tion for storage area network. IEEE Transactions on Circuits and Systems II:
Express Briefs, 60(1), 2013. 36-40.

[74] R. Wash. Lecture notes on stream ciphers and RC4. Reserve University, pages
1–19, 2001.

[75] D. Whiting, B. Schneier, S. Lucks, and F. Muller. Fast encryption and authenti-
cation in a single cryptographic primitive. ECRYPT, 27(200):5, 2005.

[76] L. Wu, C. Weaver, and T. Austin. CryptoManiac: a fast flexible architecture for
secure communication. In ISCA’01, 2001. 110-119.

[77] P. Yalla and J. Kaps. Compact FPGA implementation of Camellia. In FPL’09,
2009. 658-661.

[78] S.-M. Yoo, D. Kotturi, W. D. Pan, and J. Blizzard. An AES crypto chip using
a high-speed parallel pipelined architecture. Microprocessors and Microsystems,
29, 2005. 317-326.

[79] X. Zhang and K. Parhi. High-speed VLSI architectures for the AES algorithm.
IEEE Transactions on VLSI Systems, 12(9), 2004. 957-967.

161

