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Abstract 
The advent of the Internet-of-Things has introduced a new paradigm that supports

a decentralized and hierarchical communication architecture, where a great deal of

analytics processing  occurs at the edge and at the end-devices instead of in the

Cloud. To map the embedded-systems requirements, we present a holistic research

approach to the development of low-power architectures inspired by the human

brain, where process development and integration, circuit design, system

architecture, and learning algorithms are simultaneously optimized. This paper is

organized as follows: We begin with a survey of recent research on the human

brain and a historical perspective of cognitive neuroscience. Then, artificial

intelligence is introduced, and the challenges of Deep Learning systems (in terms

of power requirements) are addressed. The key reasons to distribute intelligence

over the whole network are discussed. To emphasize the need for low-power

solutions, a quantitative benchmark of existing specialized edge platforms that can

execute machine-learning algorithms on conventional embedded hardware is

presented. The primary focus of this paper will be on the implementation of

optimized neuromorphic hardware as a highly promising solution for future ultra-

low-power cognitive systems. We show that emerging technologies (such as

advanced CMOS, 3D technologies, emerging resistive memories, and Silicon

photonics), coupled with novel brain-inspired paradigms, such as spike-coding

and spike-time-dependent-plasticity, have extraordinary potential to provide

intelligent features in hardware, approaching the way knowledge is created and

processed in the human brain. Finally, we conclude with our vision of the enabled

future disruptive applications and a discussion of the main challenges which should

be tackled to exploit the full potential of brain-inspired technologies.

1.0  The Brain and Cognitive Science  Perspective
More has been learned about the brain in the past decades than in all prior human

history. In the quest for understanding the brain, neuroimaging has played a pivotal

role, enabling in-situ, non-invasive brain mapping [1]. Medically, this has facilitated

early diagnosis and treatment of patients with specific neurological or psychiatric

diseases. Magnetic resonance imaging (MRI) has become the reference technique

to investigate the human brain in-vivo, making anatomical/functional imaging and

cerebral connectivity mapping possible (see Fig. 1.2.1).   The MRI scanner

operating at 11.7Tesla, currently installed at CEA-Neurospin, is being used to study

the brain on a 100μm scale (addressing volumes corresponding to a few thousand

neurons). Recent discoveries suggest that the brain organization has been shaped

by a trade-off between a parsimonious principle of minimizing costs and

maximizing adaptive values and robustness [2]. The large-scale neuronal networks

of the brain are arranged globally as hierarchical modular networks, with dense

modules at the local level (cellular circuits, laminar compartments) that are

encapsulated in increasingly larger modules (cortical columns, areas and whole

lobes), but with very sparse overall connectivity. Such a topology fundamentally

enhances the brain’s dynamic stability and information-processing abilities. An

important research target will be to understand how the three-dimensional

organization of brain cells, neurons and glial cells, connected in networks within

the layers of the brain cortex, are responsible for the emergence of genetically-

determined elementary operations. These operations combined together and

interacting with the environment, give rise to higher-order functions, such as

language, calculations, and consciousness.

This period of rapid discoveries has also seen the rise of cognitive science, a unified

science based on interdisciplinary efforts among researchers in various fields

(neurosciences, physics, biology, psychology, linguistics, artificial intelligence,

robotics, and philosophy) whose aim is to investigate the functional architecture

of cognition through computational models. Since its inception in the mid-1950s,

cognitive science has moved through a series of different paradigms, which have

strongly influenced the evolution of artificial cognitive systems. The first shift away

from classical behaviorism (which asserts the dominant role of environmental

factors on mental processes) came with cognitivism, under which thinking

corresponds to a logical manipulation of symbols representing external

phenomena. The rules that specify how symbols are transformed were taken to

govern cognitive performance. Since the early 1980s, the important discoveries in

the field of brain neurophysiology have led to the emergence of connectionism.

Connectionist systems rely on parallel processing of non-symbolic distributed

activation patterns using statistical properties, rather than logical rules. Their

models reflect the concept of “emergence” in the brain’s organization (cooperative

interactions of individual components determining the “emergent” functionalities

of the whole entity, given that these functionalities do not exist individually). The

most common connectionist models are neural networks.  By the repeated

presentation of a training set and application of the learning rule, networks can

learn to produce the correct responses to a set of inputs. In the past decade,

connectionist models have strongly evolved and a new class of architectures (such

as feedforward, fully-recurrent, simply recurrent) and learning frameworks (such

as supervised, unsupervised, reinforcement), with almost no resemblance to

biological systems, have been developed in order to implement them in artificial

cognitive systems. It is worth mentioning that in recent years, a new approach

called embodied or enactive cognitive science has emerged [3]. Whereas traditional

cognitive science rests on a fixed inside–outside distinction, assuming that the

mind is separate from the outside world, the embodied cognition approach views

the mind as a biological system rooted in body experience, and interacting with

the environment and other individuals. Embodiment refers to both the embedding

of cognitive processes in brain circuitry and to the origin of these processes in an

organism’s sensory–motor experience. Action and perception are no longer

interpreted in terms of the classic physical–mental dichotomy, but rather as being

closely interlinked. The possible implications of this last paradigm in the design of

future cognitive agents that interact with the physical world have yet to be fully

explored.

2.0  Hyperconnectivity and Deep-Learning Power Challenges
In the past few decades, the world has experienced great transformations. Enabled

by the convergence of miniaturization, wireless connectivity, increased data-storage

capacity, and data analytics, the Internet-of-Things (IoT) has been the epicenter of

profound social-, business-, and political-changes. With billions of easy-access

and low-cost connected devices, the world has entered the era of hyperconnectivity

[4], enabling people and machines to interact in a symbiotic way (anytime,

anywhere) with both the physical and cyber worlds. Artificial intelligence (AI) has

been at the center of this revolution. In recent years, we have seen a boost in the

performance and applications of machine learning (ML), driven by several factors:

(i) the enormous storehouses of data (images, video, audio, and text files strewn

across the Internet) which have been essential to the dramatic improvement of

learning/training approaches and algorithms; (ii) the increased computational

power of modern computers (the advent of parallel computing for  neural network

processing having compensated the slowing down of Moore’s Law below the 10nm

node). Among the many fields of ML, Deep Learning (DL) is the most popular.

Today, for tasks such as image or speech recognition, ML applications are equaling

or even surpassing expert human performance. Other tasks considered as

extremely difficult in the past, such as natural language comprehension or complex

games, have been successfully tackled. The particular case of the AlphaGo program

from Google is remarkable in that it demonstrates how to increase performance

by refining the algorithm architecture and combining several techniques of ML (DL

techniques with reinforcement learning). In the future, new applications will require

more and more analysis, understanding of the environment and intelligence. Self-

driving cars will have to be able to recognize and analyze their environment through

multiple sensors. Personal digital assistants will require voice and context analysis.

For ML algorithms to become pervasive, increased computational resources will

be needed. However, for the time being, data are transmitted in hierarchical

infrastructures, and applications must deal with many different levels of analysis:

Cloud computing, the edge (networked mobile devices), and the end-devices

(wireless sensor nodes). Most of the data processing for DL training, and even for

the inference phase, happen in the Cloud (data are sent to a data center and then

processed there, before pushing operational decisions back to the edge platform).

But, AI algorithms are not useful in settings where connectivity is sparse. Moreover,

training a DL network in the Cloud (with conventional processors or GPU) on

extremely large datasets involves intensive computing tasks and can take several

weeks [5]. As well, the power limitations of servers used for DL are expected to

slow down the pace of performance improvements. This poses a great challenge

to computing platform designers.

3.0  Towards Distributed Intelligent Systems
Bringing intelligence to the edge or to end-devices means doing useful processing

of the data as close to the collection point as possible, and allowing systems to
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make some operational decisions locally, possibly semi-autonomously.

Distributing the intelligence over the network is important for a number of

reasons: Safety will require local decision making, in real time, without having

to rely on a connection that could be interrupted for various reasons. Running

real-time DL locally is essential for many applications, from landing drones to

navigating driverless cars. The delay caused by the round-trip to the Cloud could

lead to disastrous or even fatal results. Privacy will require that key data not leave

the user’s device, while transmission of high-level information, generated by

local neural-network algorithms, will be authorized. Raw videos generated by

millions of cameras will have to be locally analyzed to limit bandwidth issues and

communication costs. For all these reasons, new concepts and technologies that

can bring artificial intelligence closer to the edge and end-devices are in high

demand. The primary design goal in distributed applications covering several

levels of hierarchy (similar to what happens in the brain), is to find a global

optimum between performance and energy consumption. This imperative

requires a holistic research approach, where the technology stack (from device

to applications) is redesigned. As shown in Fig. 1.2.2, to address embedded

applications, major industrial players and start-ups have developed specialized

edge platforms that can execute ML algorithms (inference) on embedded

hardware (CPU and GPU), such as Movidius Myriad X, MobilEye Eye Q5, Jetson

TX2. Impressive power improvements (down to a few Watts) have been achieved

by exploiting Moore’s Law (pushing the FinFet technology down to the 7nm

node) and by hardware-software co-optimization. Since many mobile

applications are “always-on” (e.g., voice commands), low power is critical for

mobile IoT [6]. In this context, several research groups have focused on

hardware designs of Convolutional Neural Network (CNN) accelerators.

Precision-Scalable Processors (implemented in 40nm LP CMOS) for deep neural

networks have shown power consumption in the range of 70mW [7]. The need

for off-chip storage devices, such as DRAMs, significantly increases power

consumption. Recently, mobile-oriented applications (keyword spotting and face

detection) have been demonstrated with a low-power programmable DL

accelerator [8] (incorporating on-chip weight storage) which consumed less than

300μW.

It is worth mentioning that the challenges of bringing intelligence into low-power

IoT-connected end-devices (with applications ranging from habitat monitoring

to medical surveillance) are much more demanding than those associated with

traditional networked mobile devices at the edge [9]. Most connected end-

devices are wireless sensor nodes containing microcontrollers, wireless

transceivers, sensors, and actuators. The power requirement for these systems

is extremely critical (<100μW for normal workloads), as these devices often

operate using energy harvesting sources or a single battery for several years.

The unreliable, noisy and complex environments where these systems are

deployed create difficulties in modeling and predicting this environment (as in

the case of energy harvesters and wireless communications). Fixed or non-

intelligent communication protocols may dissipate the energy harvested at the

nodes. To address this issue, adaptive mechanisms have been proposed which

reduce energy requirements at the architectural or circuit level (dynamic and

frequency scaling approximate computing). However, finding the best system

configuration relies on knowledge of the system state [10]. Learning about the

changing environment and configuring the system accordingly, using various

techniques, is the key to achieving energy savings [11]. Moreover, fast and

accurate decision making in IoT end-devices can be achieved using learning

techniques. Many applications can be foreseen for ML, such as power and

reconfiguration management, non-volatility control, and security-

countermeasure activation. An example is provided in [12], where neural cliques

behaving as an associative memory allow for very fast and accurate decision

makings. Furthermore, reinforcement-learning techniques (where the learner

must discover which actions yield the most rewards by trying them) can also be

applied for end-device control with good accuracy at a very low cost [13]. When

communication with the Cloud or edge devices is not possible, live in-node data

processing and classification are required, and should be optimized so that they

consume minimal energy, and preserve the quality of the information. Genetic

machine learning algorithms have been explored for this purpose [14, 15], but

integration of learning algorithms into low-power devices still remains an issue.

Evaluations of computational requirements for embedding deep learning in low-

power IoT devices (like, for example, a smart glass performing real-time

recognition on the video stream that it captures) have shown a large processing

efficiency gap between the capabilities of current computing platforms and the

requirements imposed by such distributed applications [5]. Finally, to improve

implementation efficiency of ML, various approaches have been explored.

Nevertheless, given the energy costs related to the memory system, and the

constraints on both parallelism and technology scaling, it might seem like there

is not much room for additional energy improvements [16]. Finding new

affordable, energy efficient ways to implement inference and learning through

new specialized low power and distributed compute engines is thus key for future

intelligent systems.

4.0  Advanced Technologies for Brain-Inspired Computing
Inspired by the human brain, whose computing performance and efficiency still

remain unmatched (see Fig. 1.2.2), a radically different approach is being

investigated:  It consists in implementing bio-inspired architectures in optimized

neuromorphic hardware to provide direct one-to-one mapping between the

hardware and the learning algorithm running on it. This approach, which

originated with the pioneering work of Carver Mead [17], has yet to be fully

demonstrated and industrialized. Implementation limitations are linked to several

elements [18], such as the difficulties to emulate the behavior of neural network

elementary components (neurons, synapses) with standard CMOS technologies,

and to achieve a 3D brain-like high-density connectivity with 2D-layer

technologies. In the following paragraphs, essential brain-inspired operating

principles (such as spike coding and STDP) will be introduced, followed by a

detailed discussion on how emerging technologies could lead to new

neuromorphic hardware, and thereby change the rules of the game.

4.1  Spike Coding and Spike-Timing-Dependent-Plasticity 

(STDP)
The first brain-inspired operating principle to consider is the way neuron states

are encoded in a system. In the past, neuron values were encoded using analog

or digital values. However, a recent trend in neuromorphic computing is to

encode neuron values as pulses or spikes [17, 24, 25]. This parsimonious signal

coding was inspired by the way neurons of the central nervous system interact,

leading to higher energy-efficiencies. It differs from the traditional signal rate-

coding (used in today’s main industrial neural network applications), which

employs the average frequency of spikes in a given time window. The values

manipulated in those networks (inputs and outputs of neurons) are numbers

representing the “cumulative” effect of spikes over time. However, if input/output

signals are represented as pulses (spikes), the multiplication operation between

input signals and synaptic weights is reduced to a gating operation at the synapse

level. This typically produces a weighted current at the arrival of the pre-synaptic

spike that is integrated by the post-synaptic neuron. The higher the frequency of

the input spikes, the larger the value integrated by the neuron. Furthermore, if

many synapses receive input spikes in parallel, the weighted sum operation is

implemented directly at the input node of the post-synaptic neuron following

Kirchhoff’s current law. Thereby, power consumption can be reduced by

implementing this spike or event-based signal representation (called Address-

Event Representation, AER) using asynchronous schemes. Given these features

and because this representation is also optimal for transmitting signals across

long distances or chip boundaries, most of the recent state-of-the-art

neuromorphic computing approaches are using AER. Moreover, spiking neurons

offer the additional advantage of being easily interfaced with low-power spiking

sensors (e.g., image-, audio- , tactile- or chemical sensors [56-60]). The second

brain-inspired principle essential to neuromorphic systems is the learning

paradigm (i.e. the way the synaptic connections among neurons are created,

modified and preserved). The computation schemes to define the synaptic

weights can be divided into two types: (1) supervised learning, where the

inference process is based on training examples (this is the case for most neural-

inspired machine learning algorithms, which show impressive performance for

solving very specific tasks but at the cost of huge power dissipation,); and (2)

un-supervised learning, which does not use any feedback from an external

teacher, but attempts to classify inputs based on the underlying statistics of the

data. 

Spike-timing-dependent-plasticity (STDP) is a bio-inspired algorithm that enables

unsupervised learning. The assumption underlying STDP is that synapses tend

to reinforce causal links. That is, when the presynaptic neuron spikes just before

the postsynaptic neuron spikes, the synapse between the two becomes stronger.

Therefore, if the presynaptic neuron spikes again, the synapse will allow the

postsynaptic neuron to spike faster or with a higher occurrence probability.

We will now present the extraordinary potential of emerging technologies which

could be coupled to the aforementioned novel brain-inspired paradigms to

provide intelligent features in hardware.

1
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4.1.1 Fully-Depleted Silicon On Insulator (FDSOI)
For the past decade, FDSOI technology has proven to be a viable solution to

satisfy Moore’s Law requirements for the next CMOS generations [19]. It has

been successfully deployed in many applicative fields (including entry-level

application processors for smartphones, system-on-chip devices for

autonomous driving and the IoT, and mm-wave applications). Thanks to its

suitability for low-power design, FDSOI technology is a great candidate for

neuromorphic hardware. In the field of DL architectures, high-performance

reconfigurable digital processors based on 28nm FDSOI have shown power

consumption in the range of 50mW. This power efficiency has been achieved by

introducing optimized data-movement strategy and exploiting FDSOI back-

biasing strategies [20, 21]. Recently, a large-scale multi-core neuromorphic

processor (named Dynap-SEL), also based on 28nm FDSOI, was demonstrated

(see Fig. 1.2.3) [22, 23, 24, 25]. It occupies an area of 7.28mm2 and comprises

four TCAM-based cores and one plastic core. Each TCAM-based core has 256

neurons and 16k TCAM-based programmable synapses, while the plastic core

has 64 neurons with 4k plastic synapses, and 4k programmable synapses. In

addition it integrates 8.5k × 18-bit SRAMs as Lookup Tables (LUTs), 3-level

hierarchical routers, two temperature compensated bias generator circuits for

generating 190 on-chip biases, and one input pre-decoder block. Thanks to the

scalable architecture and to the on-chip programmable routers, the routing of

all neurons on a 16×16 chip array can be easily configured to implement a wide

range of connection schemes, without requiring external mapping, memory, or

computing support. In order to minimize power consumption, a mixed-signal

design approach was chosen and analog circuits were used. In this way, the

physics of the device was exploited to implement the desired neural network

computational primitives. Because these primitives are mainly composed of

exponential and logarithmic functions, using sub-threshold analog circuits is the

best choice. Indeed, the mixed-signal accelerator demonstrated in [22, 23]

consumes 50pJ per spike, approaching the energy efficiency of biological

neurons, which is estimated to be a few pJ per spike. Sub-threshold analog

circuits reproduce the synapse and neural dynamics expected from theory. They

can be used to provide biologically realistic dynamics or fast rectified linear unit

transfer functions. They are also fully compatible with spike-based learning

algorithms, and can be readily integrated into the next generation of large multi-

neuron multicore neuromorphic architectures.

4.1.2  3D Through Silicon Vias (TSVs) and Monolithic 3D   
The human brain’s intelligence and efficiency is strongly linked to its extremely

dense 3D interconnectivity (roughly 10,000 synapses per neuron, and billions

of neurons in the human brain cortex). The hierarchical structure in the cortex

follows specific patterns, through vertical arrangements or μcolumns (where

local data flow on subcortical specialized structures) and laminar

interconnections (which foster inter-area communications and to build the

hierarchy) [29]. Based on these considerations, it is clear that emerging 3D

technologies will be a key enabler of efficient neuromorphic hardware. Figure

1.2.4 shows the evolution (in terms of connection density) and hardware

applications of 3D technologies. Through Silicon Vias have enabled

heterogeneous system integration and are being increasingly used in devices

(such as DRAM memory cubes, passive interposers for FPGA or GPU integration,

BSI imagers, heterogeneous integration of MEMS and active interposers for

High-Performance Computing [26]). Further scaling of 3D interconnects, to

achieve pitches in the 1μm range, will be possible using hybrid bonding

technology [27]. This approach offers a large architectural perspective and a way

to overcome the classical limitations of today’s imagers. A two-layer 3D

partitioned CNN architecture is presented in [28]. Each layer comprises a

neuronal compute block and the associated memory. This novel circuit uses fine

pitch hybrid bonding and presents a substantial 25% improvement in power

consumption when compared to a regular 2D version. Today, 3D Sequential

Integration (3DSI), also called monolithic 3D integration, offers new 3D

partitioning options at fine granularities thanks to the ultra-small 3D contact pitch

(<100nm) [30]. 3DSI consists in stacking active device layers on top of each

other in a sequential manner. It differs from 3D packaging, where the tiers are

fabricated in parallel, then stacked by bonding. As the top layer’s active patterning

is defined by the lithographical process-of-reference, the alignment accuracy and

feature size of stacked tiers and inter-tier interconnections are dictated only by

stepper resolution. This ultra-dense connectivity between memory arrays and

computing logic provides much more parallelism capability for high-energy-

efficiency computing [31]. Recently, a 3D monolithic integrated nanosystem,

based on beyond-Si nanotechnologies, with vertically interleaved layers of

computing and data storage, fine-grained and dense connectivity, was

demonstrated [32]. Using 3DSI in neuromorphic computing will allow maximum

connectivity and reconfigurability between neurons and synapses, a step forward

towards cortical μcolumn-like interconnectivity.

4.1.3 Resistive Memories (ReRAM)
Several large-scale neuromorphic systems have been proposed in the last years,

taking advantage of the enormous potential of current Silicon technologies.

Examples include the Heidelberg’s HICANN [35], IBM’s TrueNorth [36, 37], and

ETH’s ROLLS [38] chips. These approaches use standard CMOS technologies

to implement both neurons and synapses. The synaptic weights are stored in

analog or digital devices such as capacitors or SRAM. Nevertheless, SRAM-

based synapses are affected by the problems of area consumption and data

volatility. When the network is turned off, the synaptic weights stored in the

SRAM are lost, stressing the need for storage in nonvolatile memories (NVMs)

during or after the learning process; but NVMs come with additional power and

area consumption. Recently, new memory technologies, called ReRAM (such as

phase-change memory (PCM), spin-transfer magnetic memory (STT-MRAM),

metal-oxide resistive-switching memory (OxRAM), conductive-bridge memory

(CBRAM) and Vertical Resistive Memories (VRAM)) have appeared. These

memories offer several key features, such as: low voltages (ranging from 1V to

3V), fast programming and reading time (few 10s of ns, even <1ns), long data

retention, single-bit alterability, execution in place, good cycling performance

(higher than Flash), density and ease of integration in the Back-End-Of-Line of

advanced CMOS. ReRAM are currently developed for applications such as

microcontrollers [33], servers and high performance computers. Bringing

memory close to the processing unit will revolutionize traditional memory

hierarchy [34] and facilitate the implementation of in-memory computing

architectures. Due to their low power consumption, multi-value properties, and

non-volatility, ReRAM memories are also promising for implementing energy-

efficient bio-inspired synapses in complex neural network systems [39-41] (see

Fig. 1.2.5). In [42], a CNN spike-based architecture for pattern recognition, using

HfO2-OxRAM devices as synapses for convolution kernels has been presented.

It was inspired from the mammalian visual cortex organization and consists of

two cascaded convolutional layers and a classification module. The CNN was

simulated using an in-house special purpose C++ event-based simulator (Xnet)

[43]. Kernels were defined using a backpropagation supervised learning

algorithm. The OxRAM based CNN demonstrated high accuracy (recognition rate

> 98%) for complex visual pattern recognition applications. This result is in

agreement with the state-of-the-art recognition success rate obtained with formal

CNN models, implemented with floating–point precision synapses. Thanks to

the use of ReRAM synapses to implement the kernel, the convolution operations

are performed directly in memory, reducing the latency per image recognition

with respect to software implementations on GPU. The use of ReRAM synapses

also opens a path towards online real time unsupervised learning (through

continuous weight updating performed on local synaptic weights) and biological

brain life-long learning abilities (i.e. once learned, it is almost impossible to train

the same algorithm or network on a different task without completely re-learning

all parameters). Plasticity will play an important role in achieving these goals.

Two main approaches to emulate synaptic conductance modulation have been

successfully demonstrated. In the analog approach, multiple low-resistance

states for emulating long-term potentiation (cumulative increase of conductance,

LTP) and multiple high resistance states for long-term depression (cumulative

and gradual decrease of conductance, LTD) are used. In the binary approach,

only two distinct resistive states (LRS and HRS) are used per device, with

probabilistic STDP bio-inspired learning rules. This approach is also motivated

by biological studies which suggest that STDP learning might be a partially

stochastic process in nature. In the case of the binary approach, in order to

improve performance, a single synapse could be composed of n multiple binary

cells in parallel. Several ideas have been proposed to implement STDP with

memory devices. A simplified version of STDP is presented in [43], where the

analog time dependence of biological STDP is neglected, and only two conditions

(increasing or decreasing synaptic weight) are considered. This model requires

technologies with multilevel capability. Phase-change memories show a strong

asymmetry between the SET and RESET process: whereas the SET process is

extremely gradual and resembles learning in neural networks, the RESET process

is abrupt. In [43, 44] a 2-PCM synapse that recreates artificial symmetry between

SET and RESET by employing two devices per synapse has been proposed. This

strategy has been shown to achieve unsupervised learning in a fully-connected

neural network for automobile tracking. An average detection rate of 92%, and
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a system power consumption for learning of 112μW have been demonstrated

by means of system-level simulations. In [45], an original methodology that uses

conductive-bridge RAM devices as easy-to-program and low-power binary

synapses with stochastic learning rules, is proposed. This learning scheme has

been demonstrated on a fully-connected neural network able to process

asynchronous analog data streams for recognition and extraction of repetitive

patterns in a fully-unsupervised way. These demonstrated applications exhibit

very good performance (auditory pattern sensitivity >2) and ultra-low synaptic

power dissipation (0.55μW) in the learning mode. Low-power neuromorphic

computing systems can also be coupled with Brain-Computer Interfaces (BCI)

to enable the design of autonomous implantable devices for rehabilitation

purposes, capable of making decisions based on real-time on-line processing of

in-vivo recorded biological signals. In [46], a ReRAM-based two-layer fully-

connected neural network able to identify, learn, recognize, and distinguish

between different spike shapes of measured biological signals without any

supervision, has been proposed. 

Figure 1.2.5 shows the topological view of the network architecture: The

biological signal is encoded by 32 frequency band-pass filters. The 32 filtered

signals are then full-wave rectified and presented to the input layer of 32 neurons

where the analog continuous signals are converted into spikes which are then

propagated along the synapses to the five output neurons. To solve one of the

main challenges of biological signal treatment in BCI (the high background-noise

level), a synaptic compound using HfO2-based OxRAM cells, able to implement

two different flavors of spike-based synaptic plasticity, the long-term and the

short-term learning rules, has been presented [47]. Thanks to long-term

plasticity, the system is capable of learning based on an unsupervised paradigm,

while the short-term plasticity allows for improved accuracy despite the

significant background noise in the input data. Biology teaches us that noise can

improve the performance of biological sensory systems. Inspired by this

assessment, several studies have been devoted to leveraging intrinsic device

noise for neuromorphic computing. For example, the stochastic switching

behavior of ReRAM under weak programming conditions was used to implement

synapses with probabilistic STDP learning rules [45-48], and neuron circuits

with stochastic firing [49].

4.1.4  Silicon Photonics
Silicon (Si) photonic technologies are used today in datacenters for high-

bandwidth multi-user communication networks. The recent advent of hybrid

platforms that integrate photonic components on Si wafers in a cost-effective

way [50, 51] opens new application fields. Optical interposers to stack and

connect computing and memory chiplets together for very fast processing and

high energy efficiency have been recently demonstrated [52]. Si photonics has

also been explored for application in neuromorphic hardware. Photonic platforms

offer an alternative approach to microelectronics, potentially overcoming the

fundamental limit of highly-interconnected networks (the bandwidth connection-

density tradeoff). The high speeds, high bandwidth, and low cross-talk achievable

in photonics seem very well-suited for ultra-fast spike-based information

schemes with high interconnection densities. In [53], the use of electro-optic

modulators as photonic neurons has been proposed. A reconfigurable 49-node

Si photonic neural network able to perform emulation tasks has been presented.

The results predict a 1960× speed-up over a CPU benchmark. In [54], photonic

hardware is proposed for the implementation of a Reservoir Computer or Echo-

State Networks.  This is a new paradigm in artificial Recurrent Neural Network

(RNN) training, where an RNN, the reservoir, is generated randomly, and only a

readout is trained [55]. Aside from the many potential advantages of photonics

in general, it should be noted that photonic neuromorphic computing still

remains a very exploratory field and more studies are needed to validate the

promises.

5.0  Future Opportunities and Challenges
We are entering a new era where artificial-intelligence systems are becoming key

players, shaping the future world. With the end of Moore’s Law in sight,

transformative approaches are needed to address the enduring power efficiency

issues of traditional computing architectures. Brain-inspired hardware, coupled

to new computing paradigms and algorithms, will exploit the full potential of new

disruptive technologies and will allow for distributed intelligence over the whole

IoT network, all-the-way down to ultra-low power end-devices. This will also

open the way to unforeseen new applications. Nevertheless, to make this happen

in a way that brings growth to society and benefits to individuals, several

challenges still need to be tackled: 

a) Despite the tremendous success of connectionist models (such

as deep learning) in many important applications, our theoretical understanding

of these systems is still far from complete. The complexity of the resulting

systems makes it difficult to say which of their properties is most responsible

for improved performance. Generalization in learning, abstraction, and reasoning

abilities remains extremely limited, compared to human general intelligence.

Prediction remains one of the fundamental problems in neural computation.

Recently, neural networks were shown to fail while performing easy tasks where

a human would never have failed (e.g., recognizing “fooling images”, or images

changed in a way imperceptible to humans [61]). Indeed, this threat limits market

expansion, betrays user confidence, and gives rise to serious ethical questions.

For these reasons, we believe that more understandable models should be

developed, and more efforts should be put into the study of neural network

information and learning theories [62, 63]. The biological plausibility of artificial

systems should not be a burden for engineers’ creativity. Nonetheless, we believe

that more interactions between AI engineers, neuroscientists, and biologists will

be strongly beneficial from a fundamental point of view. 

b) The conceptual basis of the embodied or enactive cognition

paradigm could be highly inspiring when defining new artificial systems suitable

for the hyperconnected world. Future artificial cognitive systems will be

autonomous physical systems which will need to interact in real time with the

environment and individuals everywhere. Physical constraints will shape the

dynamics of these interactions: In such systems, as with biological organisms,

the link between the low-level sensory-motor processes, control systems, and

cognition will play a key role. Bio-inspired approaches will force us to think

differently. Simpler biological systems, rather than the human brain, will be

highly inspirational and instructive. For example, the use of insects as templates

for artificial intelligent systems [64] highlights the need to think in a systemic

way, as organisms do not decouple sensors and signal treatment. Future

autonomous systems will be required to perform intelligent tasks well beyond

the possibilities of current ML systems (designed with a traditional input-output

scheme and optimized to address classification tasks). The way they learn

autonomously will be essential to define their predictive and interactive

capabilities. Moreover, to account for the complexity of the world and the whole

spectrum of future demands, it is probable that a plurality of representational

and cognitive architectural approaches (based on cognitivist connectionist

embodied-mind theories) will be needed, leading to a world of heterogeneous

and interconnected mixed-systems solutions. Each approach will succeed in

addressing different classes of empirical behaviors or will be more suitable for

specific tasks. 

c) Finally, bio-hybrid interfaces between biological systems and VLSI

neuromorphic systems of varying complexity will play an important role in the

future. Primarily intended as a computational tool for investigating fundamental

questions related to neural dynamics, the sophistication of current neuromorphic

systems makes direct interfacing with large neuronal networks and circuits

possible, giving rise to interesting clinical applications for neuroengineering

systems, neuroprosthetics, and neurorehabilitation [65, 66]. Leti’s biomedical

research center (Clinatec), dedicated to preclinical and clinical trials [4], is

equipped with a cutting edge surgical operating room and medical facilities that

are specifically and exclusively used for the qualification of advanced therapies

and new prototypes based on micro-technologies. Here, physicians, biologists,

and engineers work together to provide efficient and rapid validation of diagnostic

and therapeutic tools using regulation-based evaluation processes. A high level

of miniaturization and real-time data analysis were necessary to develop a BCI

used in patients’ rehabilitation [67] (see Fig. 1.2.6). 

In the future, we will also witness the introduction of stimulation strategies based

on real closed-loop systems, with signals emerging from wearable sensors (for

example, sensing gloves). New materials to interface devices with living cells

and tissues, new design architectures for lowering power consumption, data

extraction and management at the system level, and secured communications

are the next domains that will experience intense development. Brain-inspired

implantable microdevices, acting as intelligent neuroprostheses, and bio-hybrid

systems represent the new era of cross-disciplinary brain-repair strategies,

where biological and engineered solutions will complement each-other, probably

mediated by artificial intelligence [68, 69].
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Figure 1.2.1: Atlas of brain connectivity, showing the long white matter fiber
bundles (connections are visualized using diffusion MRI). A specific color is
attributed to each fiber bundle [1].

Figure 1.2.2: Comparison of computing efficiency (GOPS/W) during the
inference phase versus computing performance (GOPS) of several intelligent
chips from literature and the web, showing the gap between the intelligent end-
device requirements and existing solutions. Note that we took the very coarse
approximation of a 1:1 correspondence between OPS, FLOPS, IPS, SOPS (SOPS
= firing rate × average active synapses).

Figure 1.2.3: Dynap-SEL neuromorphic chip, based on a 28nm FDSOI process
[22, 23].

Figure 1.2.5: Left: Illustration of a biological synapse and the concept of using
ReRAM as synapses. Right: Functional schematic of a spiking neural network
for real-time unsupervised spike sorting [46].

Figure 1.2.6: Illustration of the BCI project, showing functional substitution for
tetraplegic subjects via a driven 4-limb exoskeleton [67]. In the future,
intelligent neuroprostheses and biohybrid systems for therapeutic purposes are
foreseen [68, 69].

Figure 1.2.4: CEA-Leti roadmap of 3D technologies, showing the connection-
density evolution and corresponding hardware applications.
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