
An Architecture-Agnostic Integer Linear Programming

Approach to CGRA Mapping

S. Alexander Chin
Dept. of Electrical and Computer Engineering

University of Toronto
Toronto, Canada

xan@ece.utoronto.ca

Jason H. Anderson
Dept. of Electrical and Computer Engineering

University of Toronto
Toronto, Canada

janders@ece.utoronto.ca

ABSTRACT
Coarse-grained reconfigurable architectures (CGRAs) have gained
traction as a potential solution to implement accelerators for comp-
ute-intensive kernels, particularly in domains requiring hardware
programmability. Architecture and CAD for CGRAs are tightly
intertwined, with many prior works having combined architectures
and tools. In this work, we present an architecture-agnostic integer
linear programming (ILP) approach for CGRA mapping, integrated
within an open-source CGRA architecture evaluation framework.
The mapper accepts an application and an architecture description
as input and can generate an optimal mapping, if indeed mapping
is feasible. An experimental study demonstrates its effectiveness
over a range of CGRA architectures.

ACM Reference Format:
S. Alexander Chin and Jason H. Anderson. 2018. An Architecture-Agnostic
Integer Linear Programming Approach to CGRA Mapping. In DAC ’18:
The 55th Annual Design Automation Conference 2018, June 24–29, 2018, San
Francisco, CA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3195970.3195986

1 INTRODUCTION
CGRAs contain large coarse-grained ALU-like logic blocks and
employ datapath-style wide interconnect. When a CGRA’s compute
and interconnect capabilities align closely with application needs,
higher speed and energy efficiency can be realized relative to FPGAs,
as CGRAs are closer to ASICs on the scale of programmability [9].
Two commercial CGRAs have appeared in the market, the Samsung
Reconfigurable Processor [8] and the STP Reconfigurable Processor
from Renesas Electronics [22]. Aside from these, a considerable
number of architectures and mapping techniques for CGRAs have
been developed [1, 4, 7, 20, 21] in academia. In the context of CGRAs,
mapping refers to scheduling, placing and routing an application
onto a CGRA. In this paper, we consider CGRA mapping for generic
CGRA architectures; that is, both the application, as well as the
CGRA architecture model are an input to the mapper.

Recent CGRA mapping approaches rely on a graph representa-
tion [14] of the CGRA architecture within the mapping flows [2, 5,
13, 14, 18, 19]. The flexibility offered by this graph representation
generically captures the capabilities of CGRAs with fixed-latency
datapaths and multiple execution contexts (where CGRA behavior
changes on a cycle-by-cycle basis). In some prior works, a sim-
ulated annealing approach is used as the core algorithm to map

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3195986

an application onto a CGRA [5, 14], though other heuristic tech-
niques have also been developed [2, 13, 18, 19]. In this work, we
present an Integer Linear Programming (ILP) formulation for map-
ping applications onto CGRAs. By using ILP for CGRA mapping,
one can provably determine mapping feasibility or infeasibility,
unlike heuristic methods. Decisively knowing whether a mapping
solution exists or not, and whether a solution is optimal, can be
of benefit to architects and CAD experts. For example, the com-
plexity or amount of routing or storage structures can be tuned
down to the limit of ‘mappability’ on an architecture for a very
specific application domain – eliminating extra silicon area and
power. Since such a formulation creates a bound on what is achiev-
able through heuristic methods, CAD experts benefit by being able
to quantify the effectiveness of their own heuristic methods and
through improvements in heuristic methods, the gap to the opti-
mum can be narrowed. Constraint-based methodologies have been
successfully employed in computer-aided design tools for recon-
figurable architectures [6, 15] as well as other spatial computing
architectures [11, 16, 23, 24]. Though our formulation bears some
similarity with prior work, we believe this to be the first that ap-
plies directly to CGRAs modelled using Modulo Routing Resource
Graphs (MRRGs) [14]. The MRRG model is extremely flexible and
is able to model complex routing and computation units in one or
more dynamic device contexts. Further discussion on MRRGs is
given in Section 3.2.

Our mapper is integrated into our open-source CGRA archi-
tecture evaluation framework, CGRA-ME [3], wherein the target
architecture is not fixed or ‘templated’, but is described in a generic
language and provided to the CGRA mapping tool, permitting map-
ping and evaluation of a wide range of CGRA architectures. Allow-
ing this generic description of CGRA architectures increases the
complexity of the mapping problem, as minimal assumptions can
be made about the architectures themselves. This is analogous to
the well-known VTR fined-grained FPGA architecture evaluation
framework [12], where the underlying CAD algorithms are reactive
to the user-provided architecture. We believe the ILP-based mapper
within the framework will be useful to the research community
for investigating a wide range of CGRA design methodologies and
architectures.

2 RELATED WORK
Mei et al. first proposed theModulo Routing Resource Graph (MRRG)
model in DRESC [14]. This novel work frames the constraints of
the modulo scheduling problem, operator placement, and value
routing, within the graph itself and subsequent works have capi-
talised upon this abstraction. The core algorithm within DRESC
is simulated annealing. Following DRESC, SPR [5] uses a similar
simulated annealing method with some additions.

More recently, many works have examined graph based ap-
proaches to mapping. Park et al. [18] used a graph theory technique
called graph embedding to draw the target application onto a three
dimensional target space representing functional units over time.

Park et al. [19] followed on with edge-centric modulo scheduling. In
this method, routing of values is prioritized, where operator place-
ment is secondary. Chen et al. propose a graph minor approach
to mapping [2]. Their algorithm involves node reductions on the
MRRG to test if the application graph is a minor of the MRRG. Yet
another graph based technique is proposed by Ma et al. [13].

Lee et al. [11] present two algorithms, not based on an MRRG
approach, that are quite specific to their proposed architecture.
The first is an architecture-specific ILP approach that optimizes
for latency. The second approach is a list-scheduling and quantum-
inspired evolutionary algorithm. Yoon et al. [23, 24] also incorporate
ILP techniques into their work and Nowatzki et al. [16] present
an ILP formulation for three specific template architectures. The
major difference between other ILP formulations and this work is
that our formulation is valid over any architecture from which an
MRRG can be generated.

3 BACKGROUND

3.1 Data-Flow Graph
A data-flow graph (DFG) is a directed graphG(V ,E), where vertices
represent operations and edges are data dependencies between
operations. In many CGRA toolflows, a DFG is used to represent
the kernel computations. The DFG accounts for all computation
operations, as well as memory accesses and I/O. This graph repre-
sentation is also able to capture loop-carried dependencies through
back-edges within the DFG structure. Two example DFGs are shown
in Fig. 5, and will be elaborated upon below.

3.2 Modulo Routing Resource Graph
The Modulo Routing Resource Graph (MRRG) [14] is an abstract
representation of the physical architecture of a CGRA and in this
work we use an MRRG to model the CGRA during mapping. The
graph contains, as vertices, all of the resources of the CGRA: the
routes within the physical architecture, the storage elements, and
the functional units that execute operations, including I/O and
memory access.

An MRRG is capable of modelling multiple contexts, which is
a feature of many CGRAs. In these architectures, routes and/or
functional units can be shared to perform different routes and/or
operations on subsequent cycles in a repeating pattern. The MRRG
is a ‘modulo’ graph that represents the resources available during
multiple recurring cycles of operation of the architecture [14]. For
example, with two contexts, the CGRA toggles between two con-
figurations; with three contexts, the CGRA cycles through three
configurations, and so on.

An MRRG is a directed graphG(V ,E), where each vertex, v ∈ V ,
represents a CGRA resource. There are two types of vertices in the
graph, one set for the routing resources, RouteRes , and one for func-
tional units, FuncUnits. Each edge, e ∈ E, represents connectivity
between an element of FuncUnits and an element of RouteRes , or
between two elements of RouteRes . The MRRG contains a replica
of the device model graph for each context. Edges between nodes
in different replicas represent the capability to pass data from one
context to another. For the case of N contexts, there would be N
replicas, indexed from 0 to N − 1. Edges are present between some
nodes in replica i and replica i + 1mod N , modelling the ability to
produce data in a context, and consume the data in the subsequent
context. For example, in the two context case, a node representing
a register in context 0 may have an edge to a node representing a
computational unit in context 1, representing the ability to compute
a value in context 0 and then consume it in the next context. We
illustrate properties of the MRRG in the following examples.

R

R

R R

Cycle 0 Cycle 1 Cycle n%II

R R

…

…

R

R

R R

R R

…
R

R

R R

R

Cycle 2

Figure 1: MRRG fragment for a multiplexer and register.

Cycle 0 Cycle 1 Cycle n%II

…
…

M
U
L

M
U
L

M
U
L

II=1
L=1

II=2
L=2

II=1
L=2

Cycle 2

R

R F R

R

R

F R

R

R

F R

R

R

F R

R

R

F R

R

R F R

R

R F R

R

R F R

R

R F R

R

R F

Cycle 3

…

…

Figure 2: MRRG fragments for different latency and initia-
tion interval functional units.

Fig. 1 shows the translation of a multiplexer and register primi-
tive to their respective MRRGs. The 2-to-1 multiplexer shown can
provide routing of values between functional units. The 2-to-1 mul-
tiplexer in this example is dynamically reconfigurable - it is able
to route from different inputs in different cycles or contexts. The
MRRG shown contains four nodes per cycle, two input and one
output RouteRes and an internal multiplexing RouteRes that guar-
antees exclusivity to a single input. That is, on any cycle only one
input can be routed to the output. Since it modelled as dynami-
cally reconfigurable, this multiplexer may be reused on subsequent
cycles for different routes, and multiple copies of this four node
structure are present for each cycle (each context). In the case of
the register in Fig. 1, it is modelled in the MRRG as a special wire as
it moves a value from one cycle to the next. So its input node starts
in cycle i and its output node ends in cycle i + 1. Each cycle this
register can be reused, so this pattern is repeated for each cycle.

Fig. 2 shows the translation of three functional units, that per-
form a multiplication operation, with different latencies (L) and
initiation intervals (II) and their respective MRRGs. The first ex-
ample shows a functional unit that performs a 1-cycle multiply
(latency of 1 cycle and initiation interval of 1 cycle). The MRRG
for this unit consists of two input RouteRes vertices that are the
operands of the multiply, a functional unit resource node that rep-
resents usage of the physical function at the associated timeslot,
and an output RouteRes vertex. Since operation has a latency of
1-cycle, the output vertex is in the subsequent cycle. Since the initi-
ation interval is 1-cycle, this functional unit can take inputs every
cycle, so the MRRG is replicated every cycle. The second example
in Fig. 2 shows a functional unit that performs a multiply that takes
2-cycles (latency of 2 cycles) with no pipelining (initiation interval
of 2 cycles). Here, we have a similar structure but the output node
is delayed by a second cycle and instead of repeating this structure
every cycle, we repeat every 2 cycles since this resource is only
available every two cycles (initiation interval of 2 cycles). In the last
example in Fig. 2, we show a functional unit performing multiply

FU

REG

Function Block

From previous
clock cycle

To next
clock cycle

Figure 3: An example functional block that contains a func-
tional unit (with a latency of 0 cycles), register and input
multiplexers, and its corresponding MRRG structure for 1
cycle / 1 context.

with 2-cycle latency but is fully pipelined (initiation interval of 1
cycle).

Fig. 3 shows an example functional block datapath and its corre-
sponding MRRG, illustrating how a larger MRRG is generated from
the primitive components.

3.3 Mapping
CGRA mapping associates the operations and their connectivity
within the DFG to the MRRG. The overall CGRA mapping problem
is simplified through the use of the MRRG, as the MRRG frames the
constraints of the modulo scheduling problem, operator placement,
and data routing within the graph itself. Associating the DFG to the
MRRG involves placing each operation in the DFG on a valid MRRG
FuncUnit node, as well as finding a valid data routing through the
RouteRes nodes to respective operations placed on other FuncUnit
nodes. These FuncUnit nodes within the MRRG represent an execu-
tion time-slot of a physical functional unit - there could be multiple
nodes that correspond to a single functional unit, but each node
would represent execution on different device contexts. As long
as all operations can be mapped to FuncUnit nodes, while having
valid routes between the operations, a feasible mapping exists that
respects data-dependence, signifying that the architecture is able to
perform the necessary computations of the benchmark application.

4 ILP FORMULATION

4.1 Definitions
We first define four sets of items; the first two relate to the CGRA
device model, the second two relate to the application beingmapped
into the CGRA:

• FuncUnits: contains all execution slots of every functional
unit within the architecture – each corresponds to one func-
tional unit node within the MRRG.

• RouteRes: contains all routing resources (wire, bus, multi-
plexer, or register) within the architecture: each corresponds
to one routing resource node within the MRRG.

• Ops: all operations in the DFG to be mapped.
• Vals: all values produced by operations in the DFG to be
mapped. Each Vals is split into SubVals. A sub-value repre-
sents a source to sink connection in a multi-fanout value.
For example, there are two sub-values for the two fanout net
in DFG B in Fig. 5.

C2

F2

F1

C1

F3

R1 R2 R3

R4

C1

F2

F1

C2

F2

F1

F3

R5

R1

R2 R3

MRRG A

MRRG B MRRG C

R1

R2 R3

Figure 4: Three illustrative MRRGs.

Op1

Op2

Val1

Op3

SubVal1 1 SubVal1 2

Op1

Op2

Val1

SubVal1 1

DFG A DFG B

Figure 5: Two DFG fragments to illustrate value routing and
multi-fanout.

We define three sets of binary variables. The first set of variables
define the placement of operations onto functional units (a mapping
from Ops to FuncUnits). The second set of variables define the use
of routing resources by values (a mapping from Vals to RouteRes).
The third set of variables are abstract, and define the routing path
of values between functional units for each sink of a multi-fanout
value. For each value, we create a new binary variable that associates
routing resources, the value, and the termination point (sink). These
variables are necessary for the formulation, as will be elaborated
upon below. The three sets of binary variables are:

• Fp,q : functional-unit node p in the MRRG is used for sup-
porting operation q in the DFG.

• Ri, j : routing node i is used for routing value j.
• Ri, j,k : routing node i is used for routing value j to value j’s
sink k .

As will be apparent in the formulation below, Ri, j will be con-
strained to 1 whenever Ri, j,k is 1 (i.e. for any sink k). The sink-
specific variables, Ri, j,k , are required to achieve routing connectiv-
ity to each sink; the sink-agnostic variables, Ri, j , are used to ensure
no routing-resource overuse and in the ILP objective function to
minimize overall resource usage.

4.2 ILP Constraints and Objective Function
Operation Placement: Every operation in the DFG is placed on
exactly one functional unit.

∑

p∈FuncUnits

Fp,q = 1,∀q ∈ Ops (1)

Functional Unit Exclusivity: Each functional unit slot (repre-
sented by FuncUnits) is occupied by at most one DFG Operation
(i.e. there exist no overlaps among operations on functional units).

∑

q∈Ops

Fp,q ≤ 1,∀p ∈ FuncUnits (2)

Functional Unit Legality: Ensure that operations are only placed
on functional units that can implement the operation (applies to

heterogeneous architectures). Here, SupportedOps(p) is the set of
operations that are able to be executed by functional unit p.

Fp,q = 0

∀p ∈ FuncUnits,q ∈ Ops

where: q � SupportedOps(p) (3)

Route Exclusivity: Ensure that each routing resource is occupied
by at most one value (i.e. multiple DFG Values cannot be routed on
a single routing resource).

∑

j ∈Vals

Ri, j ≤ 1,∀i ∈ RouteRes (4)

Fanout Routing: Guarantee continuity of values between adja-
cent routing resources. We ensure for each fanout of a routing
resource used by a value, there is at least one downstream routing
resource that is used by the same value, whether this be another
routing resource or the sink of the fanout (which is itself a routing
resource). So, at least one output of a routing resource node must
be driven with the same value, or it must terminate at the input of
the downstream functional unit node.

Ri, j,k ≤
∑

m∈fanouts(i)

Rm, j,k

∀i ∈ RouteRes,∀j ∈ Vals,∀k ∈ sinks(j) (5)

Implied Placement: Ensure that Fanout Routing terminates at
the input of a functional unit, thereby implying a mapping of the
downstream operation to the functional unit. Here, we use the�
symbol to denote the existence of an edge between two nodes in
a directed graph. This constraint means that if the route for sink
k of value j terminates at functional unit p, then operation q must
necessarily be mapped onto functional unit p. This constraint also
accounts for operand correctness in the case of non-commutative
operations.

Fp,q ≥ Ri, j,k
∀p ∈ FuncUnits,∀q ∈ Ops,∀i ∈ RouteRes,∀j ∈ Vals

where: ∃(j � q) ∧ (i � p)

∀k ∈ sinks(j) (6)

Initial Fanout: Ensure that the routing resources at the output of a
functional unit are set to the output value of the mapped operation.
The binary variable Ri, j,k is set for each sink, k , of the output value.
This constraint is only applied when there is an edge from q to j in
the DFG and an edge from p to i in the MRRG. Again, we use the
� symbol to denote the existence of an edge between two nodes
in a directed graph.

Ri, j,k = Fp,q

∀i ∈ RouteRes,∀j ∈ Vals,∀p ∈ FuncUnits,∀q ∈ Ops

where: ∃(q � j) ∧ (p � i)

∀k ∈ sinks(j) (7)

Example 1: Consider mapping DFG A in Fig. 5 to MRRG A in
Fig. 4. IfOp1 is placed on FuncUnit1, F1,1 = 1. Since the Value in DFG
A has only one fanout, the Initial Fanout constraint ensures that
SubValue1 is associated with RoutinдRes1 with F1,1 = 1 = R1,1,1.
The Fanout Routing constraint then ensures that at least one of
R2,1,1 or R3,1,1 is equal to 1. Application of the Implied Placement
constraint on RoutinдRes2 and RoutinдRes3 allows the routing to
terminate at FuncUnit2 or FuncUnit3 setting F2,2 = 1 or F3,2 = 1,
placing Op2.

Routing Resource Usage: Since routing is formulated on a sink-
by-sink basis using sub-values, the following constraint ensures
that routing resources are associated with the corresponding values.

Ri, j ≥ Ri, j,k
∀i ∈ RouteRes,

∀j ∈ Vals,

∀k ∈ sinks(j) (8)

Multiplexer Input Exclusivity: Prevents self reinforcing routing
loops that would terminate fanout routing within the loop instead
of the required sink of the route. By disallowing multiplexer inputs
from having the same value, loops are prevented.

Ri, j =
∑

m∈fanins(i)

Rm, j

∀i ∈ {RouteRes | |fanins(i)| > 1},

∀j ∈ Vals (9)

Example 2: Consider mapping DFG A in Fig. 5 to MRRG B in
Fig. 4. If Op1 is placed on FuncUnit1 (F1,1 = 1), Initial Fanout and
Fanout Routing would set R2,1,1, R4,1,1 and R5,1,1 to 1. Routing can
now continue through more routing resources in a cloud of con-
nected routing resources inC1 orC2.Without the Multiplexer Input
Exclusivity constraint, routing through C1 and setting R1,1,1 = 1
is feasible. Now, the Fanout Routing constraint for RouteRes1 is al-
ready satisfied sinceR4,1,1 = 1 and SubValue1 has not been routed to
any FuncUnit. By applying the Routing Resource Usage constraint
and Multiplexer Input Exclusivity constraint, R1,1,1 = 1 is infeasible
because R2,1,1 = 1. Fanout Routing at RouteRes5 can now only be
satisfied by routing throughC2, ultimately to the sink at FuncUnit2.

Example 3: Consider mapping DFG B in Fig. 5 to MRRG C in
Fig. 4.Val1 has two fanouts – one toOp2 and one toOp3. Consider
applying our routing constraints to Values, instead of SubValues.
Op1 is placed on FuncUnit1 (F1,1 = 1), the Initial Fanout constraint
would set R1,1. Going through C1, R2,1 could be 1 fulfilling the
Fanout Routing constraint and with the Implied Placement con-
straint, mapping either Op2 or Op3 to FuncUnit2. If Op2 is mapped
to FuncUnit2 (F2,2 = 1), F3,3 = 1 due to the Operation Placement
constraint. Now, there is no other constraint that guarantees a con-
nection of the value throughC2 and RouteRes3 to FuncUnit3. Hence,
each sink is assigned a distinct SubValue for routing.

The objective function we use is minimizing the number of
routing resources used by the mapping.

Minimize
∑

∀i ∈RouteRes,∀j ∈Vals
Ri, j (10)

However, it is straightforward to apply alternative objective func-
tions, where, for example, specific types of resources have unique
costs. For example, one can imagine that resources such as long
wires, registers, register files or other data value routing structures
contribute significantly to power consumption and these nodes
could be weighted to optimize for power.

5 EXPERIMENTAL SETUP & RESULTS
To test our formulation, a number of benchmarks and architectures
were considered. The architectures were chosen to be representative
of CGRAs proposed in the literature with varying flexibility. Since
higher degrees of flexibility generally increases hardware costs, it
is interesting to see how much flexibility is enough to map a set of
benchmarks. Each architecture comprises a 4 × 4 2D-array of func-
tional blocks with 32-bit-wide bus-based interconnect. Each block

I/O

I/O B0 B1

B(X) B(X+1)I/O

I/O

…

…Mem
Port

Mem
Port

Figure 6: The arrangement of functional blocks in our test
architectures for Orthogonal connectivity. The functional
blocks are orthogonally connected to their nearest neigh-
bours while the periphery contains I/Os. Each row of Func-
tional Blocks share connectivity to onememory access port.

within our test architecture (shown in Fig. 3), contains a single func-
tional unit ALU, an output register, and block I/O. The functional
unit within the block can perform RISC-like operations such as add,
mul, shl, etc. Each row within the array shares a memory port as
shown in Fig. 6. This port is modelled as a special functional unit
that can only perform load and store operations. We consider two
functional block architectures and two interconnect architectures
with multiple contexts. One set of functional block architectures,
Homogeneous, has full fledged ALUs including a multiplier, whereas
in the Heterogeneous architectures, only half of the ALUs in the
architecture contain a multiplier. One style of interconnect archi-
tecture is Orthogonal, with each block having connectivity with
the four ordinal directions. This connectivity is also depicted in
Fig. 6. The other style of interconnect architecture is Diagonal, with
each block having additional connectivity to diagonal blocks. For
Diagonal interconnect, the size of each functional block’s input
multiplexer was increased to accommodate the additional inputs.
Additionally, we model these architectures with 1 and 2 execution
contexts.

The benchmark data-flow graphs were chosen to have varying
number of operations, number of multiply operations and routing
requirements. They reflect different mapping difficulties for the
target architectures. The benchmarks are comprised of LLVM [10]
compiled DFGs, leveraging CGRA-ME [3], as well as hand-crafted
DFGs. Table 1 shows detailed characteristics of each benchmark.

CGRA-ME [3] was also leveraged for modelling the architectures
and the existing mapping infrastructure. The framework allows for
the generic specification of architectures in a high-level XML-based
language. Detailed functional blocks and routing structures can be
constructed directly within this language, and also the higher level
connectivity such as how top-level blocks are integrated together.
From this architecture model, the framework also has the capability
of automatically generating a corresponding MRRG model for the
mapper.

The ILP formulation was implemented as newmapper within our
existing framework. To solve the ILP formulation, the Gurobi [17]
solver was integrated into the framework. This sophisticated solver
is free-to-use for academic use. The overall flow of mapping is
shown and described in Fig. 7.

More than 80% of the runs completed within one hour and the
ILP solver was able to determine feasibility/infeasibility for all
formulations of benchmark/architectures except 2 that timed out
after 24 hours (Table 2).

Benchmark I/Os Operations # Multiplies
accum 10 8 4
mac 1 9 3
add_10 10 10 0
add_14 14 14 0
add_16 16 16 0
mult_10 10 9 9
mult_14 14 13 13
mult_16 16 15 15
2x2-f 5 5 1
2x2-p 6 6 1
cos_4 5 14 12
cosh_4 5 14 12
exp_4 4 9 5
exp_5 5 12 9
exp_6 6 15 14
sinh_4 5 13 9
tay_4 5 10 6
extreme 16 19 4
weighted_sum 16 16 8

Table 1: Benchmarks: showing the number of I/Os, internal
operations and Multiplies. Load/Stores are considered to be
internal operations.

ILP
Formulation

Mappable /
Unmappable

Data-Flow
Graph

Architecture

MRRG

MRRG
Generation

Contexts

ILP Solver

Simulated
Annealing
Mapper

Mappable /
Unmappable

Figure 7: The mapping flow within our framework for ILP-
based mapping and simulated annealing-based mapping.
The architecture description and the number of contexts is
input into the framework, where it generates an MRRG. For
ILP-based mapping, the ILP formulation is created from the
input DFG benchmark and the MRRG. The formulation is
then solved by the ILP Solver, in our case Gurobi. The sim-
ulated annealing-based mapper takes the DFG and MRRG
directly as inputs tomap the benchmark to the architecture.

Benchmark
Single Context (II=1) Dual Context (II=2)

Hetero. Hetero. Homo. Homo. Hetero. Hetero. Homo. Homo.
Orth. Diag. Orth. Diag. Orth. Diag. Orth. Diag.

accum 1 1 1 1 1 1 1 1
mac 1 1 1 1 1 1 1 1

add_10 1 1 1 1 1 1 1 1
add_14 0 1 0 1 1 1 1 1
add_16 0 1 0 1 1 1 1 1
mult_10 0 0 1 1 1 1 1 1
mult_14 0 0 0 1 1 1 1 1
mult_16 0 0 0 1 1 1 1 1
2x2-f 1 1 1 1 1 1 1 1
2x2-p 1 1 1 1 1 1 1 1
cos_4 0 0 0 0 1 1 1 1
cosh_4 0 0 0 0 1 1 1 1
exp_4 0 1 0 1 1 1 1 1
exp_5 0 0 0 1 1 1 1 1
exp_6 0 0 0 0 T 1 T 1
sinh_4 0 0 0 1 1 1 1 1
tay_4 0 1 0 1 1 1 1 1

extreme 0 0 0 0 1 1 1 1
weighted_sum 0 0 0 1 1 1 1 1
Total Feasible 5 9 6 15 18 19 18 19

Table 2: Mapping Results. 1 signifies a feasible mapping, 0
signifies an infeasible mapping. T, signifies a solver timeout
where the solver was unable to find a feasible solution or
prove infeasibility.

Figure 8: Comparison between the Simulated Annealing Mapper and the ILP Mapper.

Table 2 shows the full results of the ILP mapper over the eight
CGRA architectures and 19 benchmarks. The single context archi-
tectures on the left of the table exhibit varying degrees of success to
map each benchmark. The Heterogeneous Orthogonal architecture,
the most constrained architecture, was only able to accommodate
5 benchmarks, whereas the most flexible, Homogeneous Diago-
nal, was able to map 15. It is also interesting to note that quite a
few benchmarks were not able to be mapped in a single context
(cos_4, cosh_4, and extreme). The Heterogeneous Diagonal and Ho-
mogeneous Orthogonal architectures show interesting trade-offs
between reduced multipliers with extra routing and many multipli-
ers with constrained routing. The mult_14 andmult_16 benchmarks
both require many multipliers and routing, and are both unmap-
pable. However the smaller mult_10 benchmark is able to map to
the Homogeneous Orthogonal architecture.

All benchmarks were able to be mapped in dual context archi-
tectures aside from the 2 solver timeouts. This shows the flexibility
that a second context gives at the price of halved throughput (since
II=2) and extra hardware (and power) to support the second config-
uration context. If strict mappability for the given benchmark set
is the architect’s concern, a Heterogeneous Diagonal architecture
(that contains half the multipliers of a Homogeneous architecture)
with support for two contexts may be sufficient, since all bench-
marks can be mapped to this architecture. Additionally, 9 of the
benchmarks could still be mapped with higher throughput (I I = 1)
while the other 10 would need to be mapped with two configuration
contexts (I I = 2). But if performance is a concern, a Homogeneous
architecture with Diagonal routing will be the best option since
feasible mappings exist for the most benchmarks with I I = 1.

For contrast, the annealing-mapper that is built into the existing
framework was also run with moderate parameters (number of
inner-loop iterations, penalty factors, temperature schedule, etc.)
on the same set of benchmarks and architectures. A comparison
of the results of both mappers is shown in the bar graph in Fig. 8.
Overall, the ILP mapper is able to find more mapping solutions for
all eight architectures.

6 CONCLUSION
The presented ILP formulation allows one to provably determine
mapping feasibility or infeasibility and produce an optimal mapping.
Architects are able to evaluate the ‘mappability’ of the architec-
tures for sets of domain-specific benchmarks, allowing them to
tune the flexibility of the architecture while staying isolated from
CAD tool effects. CAD experts are more easily able to evaluate and
improve upon the effectiveness of heuristic methods since this ILP
formulation forms a bound on what is achievable. To these ends,
this work enables future architecture exploration and CAD tool
improvements.

The implementation of the formulation in this work is already
integrated into our open-source CGRA framework, CGRA-ME [3],
furthering the tools available to the CGRA research community.

REFERENCES
[1] Hideharu Amano. 2006. A Survey on Dynamically Reconfigurable Processors.

IEICE Transactions 89-B, 12 (2006), 3179–3187.
[2] Liang Chen and Tulika Mitra. 2014. Graph Minor Approach for Application

Mapping on CGRAs. ACM TRETS 7, 3, Article 21 (Sept. 2014), 25 pages.
[3] S. Alexander Chin, Noriaki Sakamoto, Allan Rui, Jim Zhao, Jin Hee Kim, Yuko

Hara-Azumi, and Jason Anderson. 2017. CGRA-ME: A Unified Framework for
CGRA Modelling and Exploration. In IEEE ASAP 2017. 184–189.

[4] Bjorn De Sutter, Praveen Raghavan, and Andy Lambrechts. 2013. Coarse-Grained
Reconfigurable Array Architectures. Springer New York, 553–592.

[5] Stephen Friedman, Allan Carroll, Brian Van Essen, Benjamin Ylvisaker, Carl
Ebeling, and Scott Hauck. 2009. SPR: An Architecture-adaptive CGRA Mapping
Tool. In ACM FPGA. 191–200.

[6] Marcel Gort and Jason H. Anderson. 2013. Combined Architecture/Algorithm
Approach to Fast FPGA Routing. IEEE Trans. on VLSI 21, 6 (June 2013), 1067–1079.

[7] Reiner Hartenstein. 2001. Coarse Grain Reconfigurable Architectures. In
IEEE/ACM ASP-DAC. 564–569.

[8] Changmoo Kim, Moo-Kyoung Chung, Yeon-Gon Cho, Mario Konijnenburg, Soo-
jung Ryu, and Jeongwook Kim. 2014. ULP-SRP: Ultra Low-Power Samsung
Reconfigurable Processor for Biomedical Applications. ACM TRETS 7, 3 (2014),
22:1–22:15.

[9] Ian Kuon and Jonathan Rose. 2007. Measuring the gap between FPGAs and ASICs.
IEEE Trans. On CAD 26, 2 (Feb. 2007), 203–215.

[10] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In IEEE / ACM Intl. Symp. on Code
Gen. and Opt. 75–88.

[11] Ganghee Lee, Kiyoung Choi, and Nikil D. Dutt. 2011. Mapping Multi-Domain
Applications Onto Coarse-Grained Reconfigurable Architectures. IEEE Trans. on
CAD 30, 5 (2011), 637–650.

[12] Jason Luu et al. 2014. VTR 7.0: Next Generation Architecture and CAD System
for FPGAs. ACM TRETS 7, 2, Article 6 (July 2014), 6:1–6:30 pages.

[13] Lu Ma, , Wei Ge, and Zhi Qi. 2012. A Graph-Based Spatial Mapping Algorithm
for a Coarse Grained Reconfigurable Architecture Template. Inf. in Ctrl., Auto.
and Robo., 669–678.

[14] Bingfeng Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. 2002.
DRESC: A Retargetable Compiler for Coarse-grained Reconfigurable Architec-
tures. In IEEE FPL. 166–173.

[15] Gi-Joon Nam et al. 2002. A New FPGA Detailed Routing Approach Via Search-
Based Boolean Satisfiability. IEEE Trans. on CAD 21, 6 (2002), 674–684.

[16] Tony Nowatzki et al. 2013. A General Constraint-centric Scheduling Framework
for Spatial Architectures. SIGPLAN Not. 48, 6 (June 2013), 495–506.

[17] Gurobi Optimization. 2017. Gurobi Optimizer. (2017). http://www.gurobi.com/
[18] Hyunchul Park et al. 2006. Modulo Graph Embedding: Mapping Applications onto

Coarse-Grained Reconfigurable Architectures. In IEEE/ACM CASES. 136–146.
[19] Hyunchul Park et al. 2008. Edge-Centric Modulo Scheduling for Coarse-Grained

Reconfigurable Architectures. In IEEE/ACM PACT. 166–176.
[20] Vaishali Tehre and Ravindra Kshirsagar. 2012. Survey on Coarse Grained Recon-

figurable Architectures. Intl. Jrnl. of Comp. Appl. 48, 16 (2012), 1–7.
[21] Russell Tessier, Kenneth Pocek, and AndrÃľ DeHon. 2015. Reconfigurable Com-

puting Architectures. Proc. of the IEEE 103, 3 (2015), 332–354.
[22] Takao Toi and et al. 2013. Optimizing Time and Space Multiplexed Computation

in a Dynamically Reconfigurable Processor. In IEEE FPT. 106–111.
[23] Jonghee W. Yoon et al. 2008. SPKM : A Novel Graph Drawing based Algorithm

for Application Mapping onto Coarse-Grained Reconfigurable Architectures. In
ASP-DAC 2008. 776–782.

[24] Jonghee W. Yoon et al. 2009. A Graph Drawing Based Spatial Mapping Algorithm
for Coarse-Grained Reconfigurable Architectures. IEEE Trans. on VLSI 17, 11
(Nov 2009), 1565–1578.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 28.80 points
 Normalise (advanced option): 'original'

 32

 D:20180419081402
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 28.8000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

		2018-09-07T16:41:44-0400
	Preflight Ticket Signature

