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ABSTRACT

Various models with Long Short-Term Memory (LSTM) network

have demonstrated prior art performances in sequential informa-

tion processing. Previous LSTM-specific architectures set large

on-chip memory for weight storage to alleviate the memory-bound

issue and facilitate the LSTM inference in cloud computing. In

this paper, E-LSTM is proposed for embedded scenarios with the

consideration of the chip-area and limited data-access bandwidth.

The heterogeneous hardware in E-LSTM tightly couples an LSTM

co-processor with an embedded RISC-V CPU. The eSELL format

is developed to represent the sparse weight matrix. With the pro-

posed cell fusion optimization based on the inherent sparsity in

computation, E-LSTM achieves up to 2.2× speedup of processing

throughput.

1 INTRODUCTION

Long Short-Term Memory (LSTM) networks have demonstrated

prior art accuracy in learning sequential information, such as speech

recognition [4], machine comprehension [8] and translation [3].

However, running LSTM on a general-purpose CPU suffers poor

real-time performance for its computation- and memory-intensive

workload [1]. To speed up the LSTM inference, specific hardware

accelerators have been proposed that target the cloud computing

scenario [6, 7, 14]. These designs adopt the large-batch parallelism

that processes multiple input sequences concurrently. In addition,

large on-chip buffers are employed to store the entire networks

model to meet the ultra-high bandwidth requirement of weight

access. However, a majority of embedded scenarios need to con-

duct inference locally for real-time processing. The LSTM-specific

hardware for embedded scenario has apparent differences with

that for cloud scenario. First, batch-parallelism introduces extra

latency since the system starts computation after receive all input

sequences of a batch. Second, buffering the entire model on-chip is

infeasible in the chip-area sensitive scenario. Importantly, the accel-

erator should be coupled with a CPU to facilitate control-flexibility

and performance.
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The main contributions of this work are listed below,

• E-LSTM employs the tightly-coupled heterogeneous archi-

tecture that provides an ultra-low latency on the communi-

cation between the CPU and accelerator.

• Considering the model sparsity in LSTM, eSELL sparse-

matrix format was developed that reduces the area cost of

the on-chip buffer by 63%.

• We observed the inherent sparsity of the hidden state in

LSTM computation. Based on this, we developed the cell

fusion scheme that achieves up to 2.2× performance speedup

to the implementation without optimization.

• The source code of E-LSTM is publicly available at

https://github.com/rbshi/elstm.

2 BACKGROUND

2.1 Long Short-Term Memory

A typical schematic of LSTM networks is presented in Fig. 1. LSTM

cell is the fundamental component that accepts an input sequence

(x1,x2, ...,xts ), where each xt is a vector representing the infor-

mation of time point t and ts is the fixed length (time step) of a

sample sequence. For the given input sequence, the computation

of a LSTM layer consists of ts cell iterations and each iteration

generates an output vector ht . Equ. 1-5 listed the arithmetic of a

single cell iteration. Each vector in the left-hand-side of equations

represents a specific gate in LSTM cell, readers are referred to [5]

for further understanding the gates. The weight matrix and bias

vector are denoted asW ,U and b respectively. For the input vector

xt ∈ Rm , if the length of ht (hidden size) is n, we haveW ∈ Rn×m

and U ∈ Rn×n . The arithmetic ofWxt and Uht is matrix-vector

multiplication that accounts for the main portion of computational

workload; “+, ·” is the element-wise operation of vectors and “σ ,
tanh” is the activation function. In particular, as the unrolled cell

iterations in Fig. 1, a context link connects the neighboring cell

iterations via the output vector ht and the cell-state vector ct . The
context link leads to the successive iteration depends on the results

from the previous one.

ft = σ (Wf xt +Uf ht−1 + bf ) (1)

it = σ (Wixt +Uiht−1 + bi ) (2)

ct = ft · ct−1 + it · tanh(Wcxt +Ucht−1 + bc ) (3)

ot = σ (Woxt +Uoht−1 + bo ) (4)

ht = ot · tanh(ct ) (5)

Prior work presented that the regular weight matrix of LSTM net-

works contains redundancy, and a portion of matrix elements can

be pruned to zero with an acceptable accuracy loss [15]. The sparse

weight matrix significantly benefits the computational throughput
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Figure 1: The LSTM cell and its unrolled schematic.
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by decreasing the workload on arithmetic operations. Nevertheless,

sparse LSTM achieves unsatisfying performance on the general-

purpose CPU due to the control-flow overhead. Thus, the specific

hardware should be designed to fully utilize the advantage of sparse

computation.

2.2 Tightly-coupled Accelerator with RISC-V

Although LSTM has promising performance in various machine

learning applications, the heavy workload impedes the deploy-

ment of LSTM models in embedded scenarios. Heterogeneous ar-

chitecture is a solution to this problem. As Fig. 2(a) shows, the

typical heterogeneous system contains a general-purpose CPU and

a hardware accelerator tailored for the specific application. Due

to the closed developing environment of CPU hardware, the data

exchange between CPU and accelerator needs to be conducted via

DRAM, which introduces a long latency (≈20 ns for each word) in

the collaboration. The open-source RISC-V eco-system brings a new

communication mechanism to the heterogeneous system design

that alleviates the communication-latency problem. As Fig. 2(b)

shows, RISC-V specification provides a ROCC interface that allows

the accelerator to directly access the data in the L1-DCache of CPU.

Besides reducing the communication latency, another advantage

of cache sharing is that the DRAM controller in the accelerator

side is no longer needed. Meanwhile, the size of the on-chip buffer

can be reduced. Consequently, the tightly-coupled accelerator in

Fig. 2(b) significantly reduces the chip-area cost and power con-

sumption compared to the conventional heterogeneous architecture

in Fig. 2(a).

However, the bandwidth of the ROCC interface is limited (64-bits

per clock cycle). To use the RISC-V based heterogeneous system in

LSTM inference, the data format of sparse weight matrix should be

carefully designed to efficiently utilize the interface bandwidth.

2.3 Related Works on LSTM Acceleration

The techniques used by previous LSTMaccelerators are summarized

in Table 1 to highlight the design challenge and research gap of the

embedded LSTM in this work. In most previous works, the weight

matrix is stored in a large on-chip buffer to avoid re-accessing

the off-chip DRAM. These works use the sparse representation of

weight matrix or structured-dense matrix with a periodic repeat
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Figure 3: Parallel MACC operations in SpMV.

pattern to reduce the on-chip storage requirement. Nevertheless,

the size of compressed weight matrix exceeds 10MB which is in-

feasible in the chip-area sensitive scenario. In terms of workload

parallelization, three schemes were adopted in the previous works.

First, intra-cell parallelism concurrently executes multiple opera-

tions in one cell iteration. The scale of parallelism is proportional to

the memory throughput of weight matrix. Second, batch parallelism

is adopted in the cloud scenario that processes multiple input se-

quences in parallel. The parallelism scale increases via duplicating

the hardware module and broadcasting the weight value to the

parallel modules. Third, inter-cell parallelism is proposed in [16].

With the run-time preprocessing on the weight and input sequence,

some context links can be cut off, thus the unfolded cell link (Fig. 1)

can be partitioned to parallel slices.

In the latency-sensitive embedded scenario of this work, sequence-

batch mechanism introduces long latency that the system starts

execution after collecting all batch sequences. Besides, the band-

width limitation of ROCC interface impedes the scale-up of the

intra-cell parallelism. The inter-cell mechanism proposed in [16]

brings extra computation overhead, that does not fit the scenario

of E-LSTM. With the platform limitation, we investigated a new

parallel scheme that achieves lower latency without overhead.

Table 1: Design methods of LSTM acceleration.

Design Weight Sparse/Dense Parallelization Technique Scenario

ESE [7] On-chip Structured Sparse Intra-cell & Batch Cloud

C-LSTM [14] On-chip Structured Dense Intra-cell & Batch Cloud

Park et al. [12] Off-chip Sparse Intra-cell & Batch -

Zhang et al. [16] On-chip Dense Inter- & Intra-Cell Mobile-GPU

(with run-time overhead)

E-LSTM Off-chip Sparse Inter- & Intra-Cell Embedded, IoT

(this work) (without run-time overhead)

3 METHOD

In this section, we first describe the eSELL sparse format for weight

matrix, that not only decreases data-transfer but also reduces the

area-cost of on-chip buffer. Subsequently, we prepose the inherent

sparsity of hidden state in LSTM computation and the inter-cell

parallelization scheme based on it.

3.1 eSELL Format of Sparse Model

3.1.1 Access Coalescing of On-chip Buffer. Compressed Sparse Col-

umn/ROW (CSC/R) and Encoded Column (EC) are used to represent

the sparse weight matrix in the previous LSTM accelerators [7, 12].

Fig. 3(a) depicts the data access of both methods in Sparse Matrix-

vector multiplication (SpMV). Although the non-zero elements of

each weight column are arranged to successive memory addresses,
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Figure 4: Construction steps of eSELL format for the sparse matrix.

the results show random accesses to the on-chip buffer since the ad-

dress is determined by the indices of the compressed column. While

parallel multiply-accumulate (MACC) operations are conducted in

each cycle, a multi-ports SRAMmust be used to construct the result

buffer for random and parallel access (e.g., 4-ports SRAM is used

in Fig. 3(a)). Note that the port number (#port) greatly affects the

chip-area cost and timing performance. According to the SRAM

evaluation model in [2], the SRAM area is proportional to (#port)0.7,
and the access latency is proportional to (#port)1.3. Thus, we inves-
tigate an advanced sparse format that coalesces the results access of

the parallel MACC computation to continuous data in the on-chip

buffer. By doing so, a single-port SRAM with wider port width can

fulfill the requirements, and the SRAM reshaping does not increase

the area cost. For example, in Fig. 3(b), the non-zero elements of

each row are shifted to left-hand-side during compression. Thus

the parallel MACC computation with the newly constructed weight

column have continuous access to the result buffer.

3.1.2 eSELL Sparse Matrix Representation. We propose Encoded-

SELL (eSELL), an improved version of SELL sparse-matrix format

[9] that coalesces the data access and reduces the port number of

result buffer. The construction of eSELL format consists of four

steps. A demonstration is presented in Fig. 4. In STEP1, the original
sparse matrix is partitioned to blocks and each block is encoded by

the subsequent steps independently. STEP2 permutates the rows

that sort the rows with descending order by the number of non-zero

(NNZ ) elements in each row. Meanwhile, the original row indexes

before permutation (denoted as IDXrow ) are recorded. In STEP3, the
non-zero values are shifted and gathered to the left-hand-side. Also,

the original column indices (denoted as IDXcol ) are recorded and

labeled on Fig. 4(a)-STEP3. Subsequently, one block is partitioned

to chunks and each chunk is regarded as a dense matrix during

computation. Due to the row permutation in STEP2, the first row
contains the most non-zero elements in the chunk. Thus, the value

of NNZ in the first row of each chunk is recorded as the chunk

width (CHKw ). The zero elements in the rest rows of the chunk

are kept (shade squares in Fig. 4(a)-STEP3) that construct a regular
dense chunk. In Fig. 4(a) example, parameters BLKh , BLKw and

CHKh are set to 8, 4 and 4 respectively. As a result, the width of

CHK0 and CHK1 are 3 and 1. The SpMV computation with eSELL

adopts the chunk-column-major order. As indicated by arrows on

Fig. 4(a)-STEP4,CHKw columns of a chunk are sequentially fetched

in computation followed by the the columns in the chunk below.

With this scheme, the parallel accesses to the result buffer are

coalesced to 8 (BLKh ) continuous elements that can be realized

with a single-port SRAM.

To further compress the sparse representation, we present STEP4
that encodes the column indices of each row to a 3-bit value. The

encoding scheme is presented as a tree in Fig. 4(b). Each node is

labeled with a sequence of column indices from a chunk row, and

the depth of each node is equal to the NNZ of this row. All possible

sequences of column indices with BLKw = 4 are listed in the tree,

and the corresponding coding is labeled under each node. The node

shares the same coding with its leaf nodes in the left-hand-side,

and the uniqueness of coding is kept among nodes with the same

depth. For example, in the chunk with CHKw = 3, the column

indices sequence (1, 2, 3) and (1, 2) have the same coding. These

two rows perform the same computation in SpMV due to the zero

element is remained in STEP3, and each row contains 3 (CHKw ) el-

ements. In Fig. 4(a)-STEP4, the Encoded-IDXcol (EIDXcol ) is listed
corresponding to the column indices labeled on elements of STEP3.

3.1.3 Alignment with ROCC Interface. In E-LSTM, we set BLKw ,
BLKh to 4, 8 respectively and each block is partitioned to 2 chunks

as Fig. 4. The value of matrix element is represented by 16-bit

half-precision floating-point format. The eSELL representation is

packed as 64-bit words and sent to the accelerator sequentially in

the chunk-column-major order. As Fig. 5 shows, the packed storage

of a block is composed of two chunk heads and element values.

The chunk head contains the compression information IDXrow ,
EIDXcol andCHKw that have 27 bits in total. The bit-width of each

component is labeled on each segment of the ROCC word in Fig. 5.

The element values of a chunk column are packed to a word and

stored following the block head.

3.2 Optimization for Inter-cell Parallelization

3.2.1 Accelerator Architecture and Throughput Bottleneck. Ageneric

accelerator architecture used in E-LSTM is depicted in Fig. 6. The
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CPU core sends the customized instructions via ROCC interface

to the Controller in accelerator, which generates control signals

of submodules. After loading the parameters of LSTM networks

layer to the control registers, the Controller sends load request

of input and bias vector (x , b) on ROCC interface, and then stores

the response data to the buffer (BUFx, BUFb) on-chip. Subsequently,
Controller loads the eSELL representation of weight matrix (W ,

U ) to eSELL Decoder and starts the computation on SpMV process-

ing element (SpMV PE). The result vector of SpMV is stored in BUFwx

and BUFuh for the following vector operation as Equ. 1-5. Vector PE
performs the vector-wise computation of each LSTM gate, and it

stores the hidden state (ht ) to BUFh. After one cell iteration, the
output vector ht are sent back to CPU via ROCC.

Inter-cell parallelism in LSTM is not an embarrassing parallel

case as the processing throughput cannot be easily scaled up by

increasing the number of PE (Npe ). We give a temporal analysis of

the bottleneck in the matrix-vector multiplication, that accounts

for the majority of computation workload and ROCC communica-

tion. Because the workload of vector operation (on Vector PE) is
much less and can be simultaneously executed with SpMV, its time

consumption is omitted in the following content. Fig. 7(a) shows

the working status of accelerator with single SpMV PE, and the PE

is capable of calculating 4 MACC operation with the weight values

in a ROCC word. The PE calculatesWxt and Uht in interleave,

and the ROCC is fully utilized. When PE number is increasing, as

Fig. 7(b),Wxt of different cell iterations can be calculated in parallel
with weight sharing, while the Uht can only be processed in se-

quential due to the data dependency between successive iterations.

Moreover, it is infeasible to computeWxt and Uht concurrently
because of the conflict on ROCC interface in loading theW andU .

Thus, the parallel PEs are low utilized during the run-time.

3.2.2 Computation with Inherent Sparsity of Hidden State. With

the timing diagram in Fig. 7(b), an intuitive optimization target is

to shorten the computational period ofUht which is the bottleneck

of overall throughput. The inherent sparsity of hidden state (ht )
contributes to this. LSTM uses the Sigmoid (σ ) and hyperbolic

tangent (tanh) as the activation functions. Note that the σ function

outputs a value close to zero in a significant probability. For instance,

assuming the value of input x uniformly distributes in [−6, 6], the

probability of P(σ (x) < 0.1) ≈ 0.32. Thus, a considerable portion of

ht values are close to zero, as it is obtained from multiplying σ (·)
by tanh(ct ) and tanh(ct ) ranges in (−1, 1). Furthermore, as Equ. 3 ,

two σ (·) items exist in the multiplication factors of ct , thus tanh(ct )
vector also contains considerable elements close to zero. As the

values in ht that close to zero have a tiny impact on both the final

results and the subsequent computation, we propose to set these

values to zero during run-time, and we name the sparsity of ht as

PE Uh1Wx1 UhtsWxts…Wx2

ROCC
(a)  Single SpMV PE Time
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Figure 7: Working status of SpMV-PEs and ROCC interface.

inherent sparsity because the LSTM algorithm inherently results

to it. The sparsity of ht (denoted as Sph ) is evaluated in Section 4

with the real-world LSTM models.

Based on the inherent sparsity of ht , the computation of Uht
becomes Sparse Matrix-Sparse Vector multiplication (SpMSpV).

Because E-LSTM adopts the column-major order in matrix-vector

multiplication, the accelerator loads and computes only a portion

of weight columns corresponding to non-zero values in ht . Thus,
the workloads of both the PE and ROCC interface decrease and this

reduces the time consumption ofUht .

3.2.3 Computation with Cell Fusion. Although the time consumed

onUht is decreased, the PE stall period on Fig. 7(b) still exists and

significantly degrades the performance. We propose the cell fusion

scheme to alleviate this limitation via increasing the arithmetic

intensity of weight matrix. As Fig. 8 example, the accelerator has

Npe PEs (Npe=3), (Npe − 1) of them calculatesWxt in parallel and

the rest one processesUht . In particular, operations ofWxt from
different cell iterations (t ) are fused and computed by one PE in

interleave. Specifically, once the PE obtains a weight value from

the ROCC interface, it multiplies the weight to several xt vectors
in interleave. The number of fused cell iteration is defined as the

fusion factor and denoted as Nf use . In the Fig. 8 example, Nf use is

3 and each PE computesWxt of 3 cell iterations concurrently (e.g.,

Wx1,2,3). Because each value ofW is reused for Nf use times on

one PE, the cell fusion increases the arithmetic intensity ofW and

decreases the ROCC load request to a frequency of once per Nf use

cycles. Therefore, (Nf use−1)/Nf use of the ROCC period is available,

and the free period can be used to load matrixU which drives the

Uht computation in the rest one PE. Compared to Fig. 7(b), cell

fusion with a proper Nf use effectively decreases the stall period.

The cost of cell fusion is Nf use times on-chip memory usage for

the temporary results vector buffer BUFwx.

3.2.4 Fusion Factor Selection. The fusion factor value Nf use is the

key to the efficiency of E-LSTM accelerator. In the case without

cell fusion (Nf use=1), (Npe − 1) PEs stalls duringUht as Fig. 7(b).
In the case that all cell iterations of the input sequence are fused

(Nf use=ts), the PEs stall at the beginning and end of computation

(as Fig. 8) because Uht should start after the entireWxt workload.
Therefore, we construct a model to estimate the time consumption

on processing a sequence and help to select the proper Nf use . As

labeled on Fig. 8, the entire period is separated into three segments

in which PEs perform different behaviors. In prolog segment, the

accelerator only calculates theWxt as the following h computation

depends on it. The main segment computesWxt and Uht simul-

taneously, and the ROCC loadsW ,U in interleave. In the epilog

segment, one PE finishes the restUht that corresponds to the last

group of fused cell iterations. The time consumption on one sample



Wx1,2,3

Wx4,5,6

Uh1

P
E

1

ROCC

P
E

2

Uh2 Uh3 Uh4 Uh5 Uh6

Wx7,8,9

Wx10,11,12

Wx13,14,15

Wx16,17,18

Uh7 Uh8 Uh9 Uh10 Uh11 Uh12 … Uh18Stall

    Stall

    Stall

P
E

3

Nfuse=3, ts=18

Time

Load Matrix W Load Matrix UFree

Tprolog Tmain Tepilog

Figure 8: Working status with cell-fusion optimization.

sequence (T ) is the sum of the periods of three segments. Equ. 6

gives the computation model,

Tproloд = Twx × Nf use

Tmain = ( �
ts

(Npe − 1) × Nf use
)� − 1) ×Titer

Tepiloд = ((ts − 1)%((Npe − 1) × Nf use ) + 1) ×Tuh

Titer = Tproloд +max(0, Tuh × Nf use × (Npe − 1) −Tproloд ×
Nf use−1

Nf use
)

Twx = len(x ) × len(h) × (1 − Spw )

Tuh = len(h) × len(h) × (1 − Spu ) × (1 − Sph )

(6)

where ts is the time step in each sample sequence, len(x ,h) is the
vector length of xt and ht that determines the weight matrix size.

Spw,u,h represent the sparsity of matrixW ,U and hidden state ht
respectively. The objective of performance fine-tuning is to find a

proper Nf use that minimizes theT and can be formatted as follows,

minimize
Nf use

T (Nf use ) = Tproloд +Tmain +Tepiloд

subject to Nf use × Npe × len(x) ≤ MaxSize(BUFx),

Nf use × Npe × 4 × len(h) ≤ MaxSize(BUFwx),

Nf use × Npe ≤ ts .

(7)

As mentioned above, cell fusion increases the storage requirements

on the vector xt and the intermediate result vector ofWxt . Thus,
Nf use should guarantee the storage requirement is less than the

corresponding buffer size inside the accelerator. In practice, the

optimal Nf use is obtained by linear searching the feasible field and

selecting the one with minimum T .

4 EXPERIMENTS AND EVALUATION

4.1 Experimental Setup

The entire E-LSTM framework has been implemented and embed-

ded with the RISC-V toolchains. In terms of compilation software,

we wrote Python scripts to translate the weight data to the eSELL

representation and then generate the ROCCwords in binary format;

Meanwhile, scripts were implemented to find the proper cell fusion

factor (Nf use ) with the input of the LSTM model parameters and

Npe in the accelerator. On the hardware system, with the conve-

nience of Spike (the cycle-level simulator in RISC-V eco-system),

we built the behavioral model of the E-LSTM accelerator and em-

bedded it to the CPU simulator to evaluate the performance of the

entire heterogeneous system.

4.2 LSTM Benchmarks

As listed in Table 2, three real-world tasks were used as the LSTM

benchmarks. These tasks belong to the fields of Optical Character
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Figure 9: Storage requirements of different sparse formats.

Recognition (OCR) and Language Model (LM), which are widely

adopted in the machine comprehension and translation on embed-

ded systems. In the OCR case, the 2-layer LSTM networks were

trained with the handwritten-digits dataset MNIST [10], and recog-

nition accuracy is the evaluation metric. The LM benchmarks were

used to predict the subsequent texts with the input word sequence.

We built two LM networks with PTB [13] and Wikitext [11] dataset

respectively. Perplexity (PPL) was employed as the metric, and a

lower PPL score represents a higher accuracy of prediction. Each of

the three tasks contains two LSTM layers and one fully connected

layer. The models are trained and verified within PyTorch frame-

work. Note that the values in the model are cast to half-precision

floating-point format (16-bit) in the inference.

To obtain the model with sparse weight matrix, we adjusted

the sparsity of W and U (Spw , Spu ) layer by layer and selected

the proper values considering the trade-off between accuracy and

model sparsity. The sparsity of each weight matrix is listed in Ta-

ble 2.
Table 2: Benchmark LSTM layers.

Name Layer len(x) len(h) ts Spw Spu Sph Score

OCR LSTM1 28 128 28 0.3 0.5 0.22 98.68/98.61/98.11

(MNIST) LSTM2 128 128 28 0.2 0.4 0.29 the higher score, the better

LM LSTM1 800 800 35 0.2 0.5 0.56 81.33/81.67/88.52

(PTB) LSTM2 800 800 35 0.2 0.6 0.41 the lower score, the better

LM LSTM1 1500 1500 35 0.4 0.5 0.37 101.63/102.15/106.5

(Wikitext) LSTM2 1500 1500 35 0.3 0.4 0.39 the lower score, the better

4.3 Effectiveness of the eSELL Sparse Format

The performance E-LSTM is limited by the weight loading through-

put on ROCC interface, and it is proportional to the compressed

matrix size. The eSELL format is evaluated and compared to other

matrix representations (dense, CSC, Encoded Column (EC)). Fig. 9

gives a data breakdown of the dense/compressed matrix in size of

768 × 768. The eSELL format has an apparent advantage compared

with the dense and CSC format when the matrix sparsity is less

than 60%. Note that the values of weight sparsity in all benchmark

layers are in this range. Compared with the original SELL format,

the column-indices encoding scheme in eSELL reduces the size of

column indices by 10%-50%. The competitive advantage of eSELL

is the lower buffer-area cost for its access-coalescing property. Al-

though the EC matrix representation has slightly less data volume

than eSELL, the corresponding area cost on the result-vector buffer

is 2.7× the consumption in eSELL-based design.

1The scores are measured with dense-weight model / sparse-weight model / sparse-
weight model & sparse hidden state respectively.



4.4 Inherent Sparsity of Hidden State

The inherent sparsity reduces the computation time ofUht , and it

is an important factor in the cell fusion optimization. Different from

the weight sparsity selection that directly adjusts the proportion of

zero elements in the matrix, the sparsity of ht is determined by a

threshold parameter (th) for each LSTM layer. The ht elements are

compared to th during run-time, and the ones with smaller absolute

value are set to zero (pruned). Note that the granularity of pruning

in the E-LSTM is four elements in vector ht instead of one. It is

because four weight columns compose the chunk column in eSELL,

and each chunk column is loaded to the accelerator as a whole. Thus,

one chunk column is skipped during computation if the absolute

value accumulation of the corresponding four ht elements is less

than the th. We considered the trade-off between accuracy and

sparsity of hidden state, then selected the proper threshold (th) for
each layer. The average ht sparsity over the entire dataset is given

in Table 2, that was used in the cell fusion factor selection.

4.5 Performance

The benefits brought by the inherent sparsity of ht and the cell

fusion were evaluated with the benchmark LSTM layers. The LSTM

accelerator was configured with 3 SpMV-PEs, and each PE performs

4 MACC operations per cycle. In terms of software, the E-LSTM

framework calculated the optimal Nf use with the parameters in Ta-

ble 2 and then generated the corresponding instructions. With the

RISC-V toolchain compilation, the executable file was loaded to the

Spike-based simulator for a behavioral emulation. The programwas

repeatedly executedwith 500 different sample sequences, and the av-

erage time consumption (measured in clock cycle) on one sequence

was obtained from the simulator. To present the improvement of

E-LSTM optimizations, we also report the performance in the set-

tings that without E-LSTM optimization (Sph = 0,Nf use = 1) and

with only sparse ht (Nf use = 1).

Fig. 10 shows the system time consumption on processing one

sample sequence. In each of the six benchmark layers, the exper-

iment without E-LSTM optimization (original) is the baseline for

comparison. The rest two experiments with E-LSTM optimization

show apparent improvement over the baseline, and the correspond-

ing value of speedup is labeled on each bar. Note that the optimal

Nf use values are labeled on top of the third bar in each layer, that

varies with different network parameters and sparsities in Table 2.

With the benchmark layers, E-LSTM achieves 1.4×-2.2× speedup

to the original scheme with slight overhead on the vector buffer

consumption. From the results, we learned the Sph significantly af-

fects the improvement of E-LSTM optimization, as the PTB-LSTM1

achieves the best speedup with the maximal Sph . In layer MNIST-

LSTM1, the improvement achieved by employing cell fusion is not

significant. This is because the len(x) and len(h) is greatly different

thus the throughput is limited by Uht computation. Besides the

benchmark layers, the users are easy to obtain the optimized per-

formance for their LSTM applications with the E-LSTM framework

before tapping out the entire system.

5 CONCLUSION

In this work, we propose an efficient scheme for LSTM inference on

the embedded heterogeneous system with the sparse weight matrix.
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Figure 10: Performance in different optimization schemes.

The eSELL matrix representation significantly reduces the area cost

of on-chip buffer. Furthermore, we observed the inherent sparsity

of hidden state in LSTM inference and proposed the cell-fusion

parallel scheme, that contributes to a higher pipeline efficiency

and a significant speedup under the bandwidth limitation on CPU-

accelerator interface.
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