
An Energy Efficient Approximate Adder with Carry Skip for
Error Resilient Neuromorphic VLSI Systems

Yongtae Kim, Yong Zhang and Peng Li
Department of Electrical and Computer Engineering

Texas A&M University, College Station, TX 77843 USA
{fcore4, zhangyong, pli}@tamu.edu

ABSTRACT
We propose a novel approximate adder design to signifi-
cantly reduce energy consumption with a very moderate er-
ror rate. The significantly improved error rate and critical
path delay stem from the employed carry prediction tech-
nique that leverages the information from less significant in-
put bits in a parallel manner. An error magnitude reduction
scheme is proposed to further reduce amount of error once
detected with low cost. Implemented in a commercial 90 nm
CMOS process, it is shown that the proposed adder is up to
2.4× faster and 43% more energy efficient over traditional
adders while having an error rate of only 0.18%. The pro-
posed adder has been adopted in a VLSI-based neuromor-
phic character recognition chip using unsupervised learning.
The approximation errors of the proposed adder have been
shown to have negligible impact on the training process.
Moreover, the energy savings of up to 48.5% over traditional
adders is achieved for the neuromorphic circuit with scaled
supply level. Finally, we achieve error-free operations by
including a low-overhead error correction logic.

1. INTRODUCTION
Modern VLSI systems integrate many high-performance

functional modules, such as multi-media and communication
processors, thanks to the aggressive CMOS technology scal-
ing. However, today’s circuit designers are facing increasing
challenges in managing chip power consumption. Recently,
a new design paradigm of approximate-/soft-computing has
emerged as one promising solution to remedy the energy-
efficiency challenge [6, 17, 2]. The key observation is that
many applications, such as digital signal processing (DSP)
and neuromorphic systems, have inherent error resilience,
and hence 100% precision in computation is not required.
This provides opportunities for energy saving by relaxing
computation accuracy while achieving an acceptable pro-
cessing quality.

Particularly, the core of many DSP and neuromorphic ap-
plications lies in processing specific kernel functions, which
occupy a significant portion of silicon area and computation
time [15, 7]. For instance, MPEG motion estimation heav-
ily performs L1-norm arithmetic for sum of absolute differ-
ence (SAD) calculation [18] and spiking neural networks use
leaky integrate-and-fire (LIF) operations to mimic neuron
behavior [8]. Clearly, adders are the primary component for
building these arithmetic kernel functions. In this regard, it
is particularly attractive to design approximate adders for
considerable energy saving. Lu proposes an approximate
adder [12] that leverages a limited number of previous (less
significant) input bits for carry speculation to increase the
overall speed. The critical drawback of this approach is the

use of a considerable number of carry generators, which gives
rise to large area and high power dissipation. The ETAI [21]
and LOA [13] are split into an accurate part for higher order
bits and an inaccurate part, which utilizes a modified XOR
(ETAI) and OR function (LOA) to approximately compute
the remaining lower bits. A few transistors are eliminated
from the traditional mirror adder to reduce power and area
at the expense of accuracy degradation in [5]. Those two ap-
proaches are limited by high error rates. The segment based
approximate adders are presented in [20] and [3] which are
named ETAII and VLCSA-1, respectively. The carry for
each k-bit segment is predicted from the lower k-bit inputs
to reduce the delay of carry propagation. Similarly, the ACA
[9] adopts a number of 2k-bit sub-adders and leverages only
k most significant bit (MSB) outputs of the sub-adders to
achieve approximate additions. Unfortunately, these adders
have high error rates for the carry generations, particularly
for 2’s complement signed additions of small numbers. In
addition, the use of carry selection in VLCSA-1 and mid-
dle sub-adders in ACA result in power consumption and
area overhead. The lack of an error magnitude reduction
in ETAII degrades the quality of addition. In [14], the ap-
proximation errors for less significant bits are reduced by
conditional bounding logic with dithering, which causes de-
lay and area overhead.

In this paper, we propose a novel approximate adder with
a carry skip scheme. While reducing the worst-case carry
propagation delay, this carry skip scheme allows for highly
accurate carry prediction, making it possible to either speed
up addition operations, or reduce energy dissipation by low-
ering the supply level. The significantly improved error rate
and critical path delay stem from the employed carry pre-
diction technique that leverages the information from less
significant input bits in a parallel manner. An error magni-
tude reduction scheme is proposed to further reduce amount
of error once detected with low cost. Our adder design is
rather flexible in the sense that a low-overhead error cor-
rection logic can be readily included to achieve error-free
operations at the cost of one additional clock cycle. Imple-
mented in a commercial 90 nm CMOS process, it is shown
that the proposed adder is up to 2.4× faster and 43% more
energy efficient over traditional adders while having an error
rate of only 0.18%. To evaluate the performance of the pro-
posed adder under neuromorphic applications, we develop a
behavioral evaluation approach for a VLSI-based neuromor-
phic character recognition chip using unsupervised learn-
ing. The approximation errors of the proposed adder have
been shown to have negligible impact on the training process
while other approximate adders lead to unacceptable level of
performance degradation. Furthermore, the proposed adder
enables the energy reductions of up to 48.5% over traditional

130978-1-4799-1071-7/13/$31.00 ©2013 IEEE

adders on the digital neuron circuit in the scaled supply.

2. PROPOSED APPROXIMATE ADDER
In the approximate adder design, our key contributions

are (1) a significant reduction of the error rate by the carry
skip scheme enabling carry speculation in a parallel manner,
and (2) a very low-cost error magnitude reduction without
additional clock cycle scheme.

2.1 Approximate Adder Architecture
Denote the two inputs of the adder A and B, and the

(i)th least significant bits (LSBs) by ai and bi, respectively.
In addition, the propagate (pi), generate (gi), kill (ki), and
carry (ci) signals of the (i)th bit position are defined by

gi = aibi, ki = āib̄i, pi = ai ⊕ bi

ci =


1 if gi = 1

0 if ki = 1

ci−1 if pi = 1

(1)

where ci−1 is the carry of the (i-1)th bit position. Briefly, the
adder outputs the carry ci when gi=1 or ki=1 independently
of ci−1, otherwise, it propagates ci−1 to ci.

(i+1)th

Sub
Adder

(i)th

Sub
Adder

(i-1)th

Sub
Adder

Ak-1:0Ai+1 Bk-1:0Bi+1 Ak-1:0Ai Bk-1:0Bi Ak-1:0Ai-1 Bk-1:0Bi-1

Sapx,k-1:0Si+1 Sapx,k-1:0Si Sapx,k-1:0Si-1

CoutCi CoutCi-1

CinC
i^CinC

i+1^

(i+1)th block (i)th block (i-1)th block

(i+1)th

Sub
Carry Gen.

(i)th

Sub
Carry Gen.

(i-1)th

Sub
Carry Gen.

Figure 1: Block diagram of the proposed approxi-
mate adder.

Fig. 1 shows the block diagram of the proposed approx-
imate n-bit adder, which is divided into several k-bit sized
blocks. Each block contains a k-bit sub-adder and a k-bit
sub-carry generator, which create a partial summation and
a partial carry-out signal, respectively. The n-bit adder has
m = dn

k
e blocks. Also, as in Fig. 1, the k-bit inputs of

the (i)th block are represented by Ai
k−1:0 and Bi

k−1:0, and

the partial summation result is indicated by Si
apx,k−1:0. Note

that the sub-adders could be implemented by any traditional
accurate adders such as ripple-carry adder (RCA) and carry-
lookahead adder (CLA). At the beginning of an addition
operation, all the sub-carry generators simultaneously cre-
ate the partial carry-out signals (· · · , Ci+1

out , Ci
out, C

i−1
out , · · ·)

using only their k-bit inputs. Then, the sub-adders’ carry-

in signals (· · · , Ĉi+1
in , Ĉi

in, Ĉi−1
in , · · ·) are also concurrently

speculated from the two preceding k-bit sub-carry genera-
tors with a multiplexer. Finally, the sub-adders work with
the speculated carries and produce the partial summations
(· · · , Si+1

apx,k−1:0, Si
apx,k−1:0, Si−1

apx,k−1:0, · · ·). Therefore, the
critical path delay of the proposed approximate adder tapx
is derived by

tapx = tsa + tmux + tscg (2)

where tsa, tmux and tscg are the delays of the sub-adder, the
multiplexer, and the sub-carry generator, respectively. Note
that the multiplexer delay is negligible if k is large.

A

B

Sapx

Sub Adder

(i+1)th block (i)th block (i-1)th block

p/g/k

carry skip

CoutCi-1

CinC
i+1^

CoutCi

Figure 2: Proposed carry prediction using parallel
carry skip.

The proposed carry prediction works as follows. When
all the propagate signals of the (i)th block are true, the
carry-out of the (i-1)th block is required for more accurate
carry prediction. Thus, we utilize carry skip to speculate the
carry as depicted in Fig. 2. This carry skip scheme is par-
ticularly more advantageous over the alternative approach
of cascading two sub-carry generators, which could appre-
ciably increase the critical path delay when k is large. In

order to obtain the (i+1)th carry-in Ĉi+1
in , the multiplexer

selects Ci−1
out if all the propagate signals of the (i)th block are

true as in Fig. 2, otherwise, it chooses Ci
out. Hence, Ĉi+1

in is
expressed by

Ĉi+1
in = P i

k−1:0C
i
out + P i

k−1:0C
i−1
out

where P i
k−1:0 =

k−1∏
j=0

pij
(3)

In (3), Ci
out and Ci−1

out are the carry-out signals of the (i)th
and the (i-1)th blocks, respectively, and pij is the propagate
signal of the (j)th bit position of the (i)th block. Addition-
ally, the carry-out of the (i)th block is given by

Ci
out = gik−1 + gik−2p

i
k−1 + ...+ gi0

k−1∏
j=1

pij , Gi
k−1:0 (4)

where gij is the generate signal at (j)th bit position of the
(i)th block.

By adopting the carry skip scheme, the proposed adder
is able to enhance the carry prediction accuracy at the cost
of one multiplexer delay. It is important to note that
this carry skip scheme is rather general. A larger number
of preceding sub-carry generators can be connected in the
same parallel way to further improve the accuracy of carry
prediction, at a low cost of one multiplexer delay per each
included generator. In the rest of this paper, we focus on
the case of Fig. 2 since it already has a very low rate of
error.

2.2 Error Analysis
The carry prediction error of the proposed adder occurs

when a carry propagation chain has a length greater than
2k. In other words, if all the propagate signals of more than
two consecutive blocks are true and a carry is generated in
the preceding block, then the carry prediction is incorrect.
Assuming that the adder inputs A and B are bitwise inde-
pendent, then the propagate and generate signals are bitwise
independent as well. We denote the event that the carry-in

131

prediction of the (i)th sub-adder is mistaken due to a carry
propagation path of a length between 2k and 3k−1 by Ei

cin:

Ei
cin =P i−1

k−1:0P
i−2
k−1:0G

i−3
k−1:0 (5)

where P i
k−1:0 and Gi

k−1:0 are defined in (3) and (4), respec-
tively and the probability of the event is given by

P(Ei
cin) =P(P i−1

k−1:0P
i−2
k−1:0G

i−3
k−1:0)

=P(P i−1
k−1:0)P(P i−2

k−1:0)P(Gi−3
k−1:0)

(6)

In (6), P(P i
k−1:0) [= P(P i−1

k−1:0) = · · ·] and P(Gi
k−1:0) [=

P(Gi−1
k−1:0) = · · ·] are given by

P(P i
k−1:0) = P(

k−1∏
j=0

pij) =

k−1∏
j=0

P(pij) =
1

2k

P(Gi
k−1:0) = P(gik−1 + gik−2p

i
k−1 + · · ·+ gi0

k−1∏
j=1

pij)

= P(gik−1) + P(gik−2p
i
k−1) + · · ·+ P(gi0

k−1∏
j=1

pij)

=
1

4
+

1

4
· 1

2
+ · · ·+ 1

4
· 1

2k−1
=

1

2

(
1− 1

2k

)
(7)

where gik−1, gik−2p
i
k−1, · · · , gi0

k−1∏
j=1

pij are mutually exclusive.

The proposed adder produces an error if any error event
Ei

cin occurs for any of the sub-adders except for the three
least significant ones. Note that the (0)th, (1)st and (2)nd
sub-adders always have the correct carry-in signals in our
design. Thus, the overall error rate of the proposed adder
under random inputs is expressed by

Perr(n, k) = P(E
dn
k
e−1

cin + E
dn
k
e−2

cin + · · ·+ E4
cin + E3

cin)
(8)

By the inclusion-exclusion principle [1], it is given by

Perr(n, k) =
∑

3≤i≤m

P(Ei
cin)

−
∑

3≤i1<i2≤m

P(Ei2
cinE

i1
cin)

+
∑

3≤i1<i2<i3≤m

P(Ei3
cinE

i2
cinE

i1
cin)

− · · ·+ (−1)m−1P(Em
cinE

m−1
cin · · ·E3

cin)

where m = dn/ke − 1

(9)

Once Ei
cin occurs, neither Ei−1

cin nor Ei−2
cin can do. This

is because that under this case the carry propagate chain
lengths for the (i-1)th and (i-2)th sub-adders become less
than 2k due to P i−2

k−1:0 = Gi−3
k−1:0 = 1 and thus the carry

speculations for these sub-adders are always correct. In
short, P(Eir

cin · · ·E
i1
cin) = 0 if ∃q : iq − iq−1 < 3 where

3 ≤ i1 < · · · < ir ≤ dnk e − 1. Then, we can rewrite (9)

to yield

Perr(n, k) =

m−2∑
r=1

(−1)r+1

 ∑
3≤i1<···<ir≤m,
∀q:iq−iq−1≥3

P(Eir
cin · · ·E

i1
cin)


where m = dn/ke − 1

(10)

Eir
cin, E

ir−1

cin , · · ·Ei1
cin are independent if ∀q : iq − iq−1 ≥ 3.

Therefore, by putting (6), (7) and (10) together, the overall
error rate for the adder under random inputs is

Perr(n, k) =

m−2∑
r=1

(−1)r+1

 ∑
3≤i1<···<ir≤m,
∀q:iq−iq−1≥3

P(Eir
cin) · · ·P(Ei1

cin)



=

m−2∑
r=1

(−1)r+1

 ∑
3≤i1<···<ir≤m,
∀q:iq−iq−1≥3

(
1

22k+1

(
1− 1

2k

))r


where m = dn/ke − 1

(11)

Note that the error rate for cases where more than two
preceding blocks are used in the carry skip scheme can be
derived in a similar way, which is further improved.

Figure 3: Error rates under different n and k.

Fig. 3 exhibits the error rates of the proposed adder with
the different n and k. Under the case of n=16 and k=4,
compared to the previously presented approximate adders
[20, 3, 9], the proposed adder considerably reduce the error
rate from 5.86% to 0.18% for random input patterns.

2.3 Error Magnitude Reduction
In addition to error rate, another important metric to eval-

uate approximate adders is error significance, which should
be minimized and is defined by the ratio of the error mag-
nitude to the correct summation result as follows [16]

error significance =

∣∣∣∣Sapx − Scor

Scor

∣∣∣∣ (12)

where Sapx and Scor are the approximate and correct out-
puts for given inputs.

Fig. 4 depicts the block diagram of the proposed error
magnitude reduction and one example of its operation. In
the example, since all the propagate signals of the (i)th and

132

(i+1)th

Block
(i)th

Block

Error Magnitude Reduction

Pk-1:0Sapx,k-1:0, P
i+1Si+1 Pk-1:0Sapx,k-1:0, P

iSi

Semr,k-1:0Si+1 Semr,k-1:0Si Semr,k-1:0Si-1

(i-1)th

Block

Sapx,k-1:0,Si-1 Pk-1:0Pi-1

A

B

Sapx

p/g/k

Scor

Semr

coutci-2 =1

Error
Magnitude
Reduction

Figure 4: Block diagram of the error magnitude re-
duction and an example of its operation.

(i-1)th blocks are true, the carry-in for the (i+1)th sub-
adder is speculated to “0” although the correct one is “1” due
to Ci−2

out = 1. Then, the error significance is 1
27

. Note that it

could reach 1
2

for the worst case inputs of Ai+1
7:0 = 00000001

and Bi+1
7:0 = 00000000. To reduce the amount of error, the

proposed adder forces all the output bits of the (i)th and
the (i-1)th sub-adders to “1” when P i

k−1:0 = P i−1
k−1:0 = 1.

The reduction can be implemented by ORing each partial
summation (i.e. Si

apx,k−1:0 and Si−1
apx,k−1:0) and the product

of the propagate signals (i.e. P i
k−1:0P

i−1
k−1:0). It allows the

error significance to be reduced by 1
22k

. As a result of the
reduction, the adder finally produces the error reduced out-
put of Si

emr,k−1:0 = Si−1
emr,k−1:0 = 11111111 and the error

significance decreases from 1
27

to 1
223

. It is worth mention-
ing that the error magnitude reduction always produces the
exact right results when Ci−2

out = 0. Consequently, the worst
case error magnitude is reduced from 2n−k to 2n−3k through
the use of error magnitude reduction.

3. NEUROMORPHIC VLSI SYSTEM
We briefly introduce the neuromorphic VLSI system that

is our primary target application of this paper.

3.1 Overall Hardware Architecture
Fig. 5 depicts the block diagram of a general digital neuro-

morphic hardware architecture for spiking neural networks.
It consists of three arrays of synapse, learning, and neu-
ron circuits as well as a control and an interface circuits
for them. The N × N crossbar array can represent a fully
recurrent network topology and store N2 possible synaptic
weights among N neurons. It could be implemented with
either traditional CMOS memory cells or emerging nanode-
vices such as memristors [8, 11]. An axon (output) and a
dendrite (input) of a biological neuron correspond to a row
and a column of the array. The connection between the
(j)th row and the (i)th column keeps a synaptic weight be-
tween neuron j and i, which is represented by wji, on the
crossbar. To mimic the behavior of a biological neuron, each
neuron circuit, which can be either excitatory or inhibitory,
emulates the neuron dynamics (e.g. according to LIF and
Hodgkin-Huxley models) and generates a spike when it fires.
The learning circuits cooperate with the respective neurons

N x N Synaptic Crossbar

Read/Write Interface, Controller

Synapse Array

Spike
I/O

N Dendrites

N
 A

x
o

n
s

Synaptic
Weight

(wji)

Learning
Circuit

Learning
Circuit

Learning Array
N

Vleak wjiKext

Adder

+ +

Multiplier

Ksyn

Register

Registers

Ei

Neuron
Circuit

Neuron
Circuit

Neuron Array
N

Figure 5: Block diagram of a digital neuromorphic
VLSI system and implementation of LIF neurons.

and update the synaptic weights according to a learning-
rule, such as spike timing dependent plasticity (STDP).

3.2 Digital Leaky Integrate and Fire Neuron
Among the various neuron models, the LIF model is suit-

able for digital implementation with a few arithmetic compo-
nents and widely used [8, 11]. Its dynamics can be indicated
by [11]

V t+1
i = V t

i +Ksyn

M∑
j=1

wjiS
t
j +KextE

t
i − Vleak

St+1
i =

{
1 if V t+1

i > Vth

0 otherwise

(13)

where V t
i is the membrane potential of neuron i at time t,

St
i is the spike bit that indicates whether neuron i fired at

time t and is set to“1”when the membrane potential exceeds
the given threshold voltage Vth, wji is the synaptic weight
between neuron j and i, Et

j is the spike bit for the external
input for neuron i, M is the number of pre-synaptic neu-
rons, Vleak is the leaky potential, and Ksyn and Kext are the
weight parameters for synapses and external input spikes,
respectively. A digital implementation of the LIF neuron is
also shown in Fig. 5. It contains both a multiplier and an
adder. The adder dominates the computation time because
the multiplier is relatively small due to narrower bit-widths
in multiplications. If each synaptic weight, model parame-
ter and membrane potential are represented using 3, 5 and
16-bits, respectively, the addition operations contribute to
32% of the power and 73% of the processing time for the
LIF computation with RCA. When implemented with CLA,
the add operations consume 56% of both the power and pro-
cessing time of the computation. Thus, it is important to
reduce the delay and power of the adder to improve energy
efficiency of neuromorphic computing.

3.3 Evaluation Environment
Evaluating the performance of proposed adder design by

simulating the long training process of neuromorphic sys-
tems at the transistor level is computationally intractable.
Instead, we develop a hardware-aware spiking neural net-
work simulator for neuromorphic systems. The key net-
work features and hardware design parameters including the

133

digital LIF neuron dynamics, the STDP learning rule, bit-
widths used to represent various neuron model parameters
are fully captured in the simulator. The proposed approxi-
mate adder is carefully characterized and its circuit profiles
are extracted from HSPICE simulations [10]. To evaluate
the approximate nature of our adder, we disable the error
correction logic and inject the characterized input-specific
adder error into each add operation in the behavioral sim-
ulator, providing a precise evaluation of the impacts of the
adder error for neuromorphic computation.

...
...
...

.........
......
..
.

14

14

.

.
.

Inhibitory neuron Excitatory neuron

Input
layer

Output
layer

CBA

Z

Figure 6: Network for character recognition.

We specifically consider the case where the neuromorphic
hardware is configured to be a two-layer network for char-
acter recognition as illustrated in Fig. 6 [4]. The input
and output layers have 196 and 36 excitatory neurons, re-
spectively. Each excitatory input neuron receives a binary
input representing the value of a pixel in a 14 × 14 pixel
input pattern, and projects its output to all excitatory out-
put neurons through plastic synapses. In the input layer, 6
inhibitory neurons are employed to modulate the firing fre-
quencies of excitatory neurons by providing negative feed-
back. The inhibitory neuron in the output layer provides
strong negative feedback to implement the winner-take-all
(WTA) mechanism. To train the network, 26 input patterns
of alphabets “A” – “Z” are applied one by one to the input
layer. Before training, weights of all plastic synapses are
random values. Thus, the input to each excitatory output
neuron is the inner product of the signal vector represent-
ing the activity of excitatory input neurons and a random
weight vector. The weight vector describes the receptive
field, i.e. the area in which the presence of stimulus leads
to excitation of the corresponding output neuron. Dur-
ing training, the network learns each alphabet by reshaping
the receptive fields of certain excitatory output neurons such
that these neurons receive strong inputs and generate spikes
when the corresponding input pattern is applied. In this
network, we use 3, 5 and 16-bits respectively to represent
each synaptic weight, model parameter and the membrane
potential for each neuron and employ a 16-bit adder for the
LIF computation.

4. SIMULATION RESULTS
The proposed approximate adder was designed in Verilog

HDL and synthesized with a commercial 90 nm CMOS tech-
nology and standard cell library. Also, the gate-level netlist
was translated into transistor-level to perform HSPICE sim-
ulations. Each sub-adder was implemented using an RCA
structure.

4.1 Performance of the Proposed Approximate
Adder

First, we examine the implementations for the proposed
adder with various values of n and k. Table 1 reports the re-
sults of area, delay, power, and error rate under the nominal
supply of 1.2 V. Note that the error magnitude reduction
circuit is included in all the proposed design implementa-
tions. The delay increases as k increases with a fixed n
while the error rate and the power decrease. With a lower k
for a given n, more carry prediction blocks are needed and
the carry prediction with a smaller number of LSBs causes
more errors. Meanwhile, under a given k, while the delay
remains almost the same as n increases, the error rate in-
creases slowly. The proposed 128-bit adder with k=4 has
an error rate even slightly less than the error rate of 5.86%
of other 16-bit approximate adders with the same k [20, 3,
9]. Hence, the proposed design can be equally well used for
wide bit-width additions.

Table 1: Proposed adder with different n and k.
parameters area delay power error rate

(n, k) (µm2) (ps) (mW) (%)

(16, 2) 525 202 0.902 11.55
(16, 3) 533 297 0.708 2.05
(16, 4) 466 359 0.600 0.18
(16, 5) 509 431 0.591 0.05

(32, 4) 1147 345 1.682 0.91
(64, 4) 2389 344 3.039 2.36
(128, 4) 4873 339 5.827 5.19

4.2 Comparison with Six Other Approximate
Adders

We also implemented two traditional accurate adders (RCA
and CLA) and six previously presented approximate adders,
which are Lu’s Adder (LUA) [12], LOA [13], ETAI [21],
ETAII [20], VLCSA-1 [3] and ACA [9], in the same commer-
cial 90 nm CMOS technology, so as to compare with the pro-
posed adder in area, delay and power aspects. The VLCSA-
1 and ACA have their own error detection and correction
mechanisms. The invoking of these modules, however, re-
quires additional clock cycles, leading to timing overhead
and potential architectural design complications needed for
facilitating a given processing application. To examine the
approximate natures of the different adder designs, to be
fair, we exclude the error detection and correction modules
and their timing, power and area overheads from this com-
parison. The same RCA structure is used for the sub-
adders in ETAII, VLCSA-1, ACA and the proposed adder
and the parameters of n=16 and k=4 are adopted in these
adders as well as LUA. Moreover, we split LOA and ETAI to
have both 8-bit sizes for the accurate and inaccurate parts
and RCA structure is employed for the accurate parts. We
denote these two adders by LOA (N-M) and ETAI (N-M),
where N and M indicate the bit widths of the accurate and
inaccurate parts, respectively. Table 2 summarizes the per-
formance comparison under the regular supply of 1.2 V. The
RCA exhibits the lowest power with the longest delay due to
the bit-by-bit carry propagate chain and the CLA consumes
the largest energy. The LUA is the fastest but occupies the
second largest area due to the considerable number of carry
generators. The error rate of EATI (8-8) reaches 90%, which
may limit its practical use, due to lack of carry prediction
for the accurate part (i.e. the carry is fixed to zero). On the
other hand, thanks to the simple carry speculation scheme
of LOA (8-8), which is achieved by ANDing two MSBs of
each operand of the inaccurate part, the error rate is im-
proved to 43.75%, which is still fairly large. The use of the
simple OR operation for the inaccurate part allows it to be

134

Table 2: Comparison with other 16-bit adders.

area
(µm2)

delay
(ps)

power
(mW)

energy
(pJ)

error
rate
(%)

RCA 334 856 0.343 0.294 0.00
CLA 514 407 0.922 0.375 0.00
LUA 609 234 0.908 0.212 16.68

LOA (8-8) 200 450 0.420 0.189 43.75
ETAI (8-8) 234 435 0.470 0.204 90.00

ETAII 374 254 0.564 0.143 5.86
VLCSA-11 673 277 1.337 0.370 5.86

ACA1 472 374 0.666 0.249 5.86
Proposed2 466 359 0.600 0.215 0.18

1 without the error detection and correction
2 with the error magnitude reduction

the most area efficient adder. Among the adders having the
same error rate of 5.86%, the ETAII is the most efficient in
area, delay, power and energy aspects. As a result of the
use of carry selection in VLCSA-1, it dissipates the highest
power, which is up to 3.9× more than the others. The
carry skip scheme allows the proposed adder to have the
lowest error rate of 0.18% among the approximate adders
and to be 2.4× faster than RCA. Our design is comparable
to ACA with respect to area, delay, power and energy while
having much lower error rate thanks to carry skip.

Figure 7: Energy comparison under supply scaling.

Fig. 7 plots the energy comparison under scaled volt-
ages. The energy efficiency of VLCSA-1 is hindered by a
high power dissipation in spite of its relatively fast speed.
It takes almost the same amount of energy as CLA that
consumes the highest energy, whereas the ETAII does the
lowest among the adders. The good tradeoff between de-
lay and power obtained by carry skip allows our adder to be
more energy efficient than the two accurate adders, VLCSA-
1 and ACA. Particularly, our design attains an energy saving
of 27% and 43% compared to RCA and CLA, respectively.
Besides, the proposed adder, LUA, LOA (8-8) and ETAI
(8-8) show similar energy consumptions under the scaled
voltages while our design enjoys the lowest error rate.

4.3 Comparison on Error-Free Operations
The main objective of this work is to develop an efficient

approximate adder with low error rate for neuromorphic ap-
plications. For completeness, we also compare the error-free
operations of various designs. We consider the error de-
tection and correction schemes for VLCSA-1, ACA and the

proposed adder. In each of these designs, the error detection
is achieved by checking the propagate and generate signals
in the approximate addition phase. Upon detecting an er-
ror, the error correction circuit reconstructs accurate results
by leveraging propagate and generate signals [19, 3] or by
adding “1” to sub-adder output [9], either of which requires
an additional clock cycle. The VLCSA-1 and ACA exploit
the prefix adder and incrementor, respectively, for error cor-
rection. For the proposed adder, the prefix adder based
error correction circuit is implemented to produce error-free
results [19, 3]. Note that the error magnitude reduction of
our adder is not necessary here and thus removed in this
implementation. Obviously, the error correction circuit is
activated whenever errors are detected in the addition phase
[9] and the effective energy Eeff can be expressed by

Eeff = Papxtapx + Perr · Pectec (14)

where Papx, tapx, Pec and tec are the power and delay of the
approximate adder and those of the error correction circuit,
respectively, and Perr is the error rate of the approximate
adder. The implementations are summarized in Table 3.
The error correction circuits have shorter delays than the
respective approximate adders. The critical path delays of
VLCSA-1 and ACA are slightly longer than the delays in Ta-
ble 2 due to the additional error detection logic. Conversely,
the proposed adder’s critical path delay becomes shorter in
spite of the error detection circuit since the error magnitude
reduction block is eliminated. Our design occupies the low-
est area and is the most efficient adder in terms of power
and effective energy.

Table 3: Approximate adders with error detection
and correction.

area
(µm2)

critical
path delay

(ps)

power
(mW)

effective
energy
(pJ)

VLCSA-1
899 296 2.094 0.473

(71.7%)1 (-7.0%) (137.8%) (142.1%)

ACA
580 389 1.269 0.287

(10.8%) (22.1%) (44.1%) (46.9%)
Proposed 524 318 0.881 0.195

1 (*) overheads against the proposed adder

4.4 Impacts of adder errors on the Neuromor-
phic Application

We use the neuromorphic application of Fig. 6 and the
evaluation environment described in Section 3.3 to systemat-
ically examine the impacts of adder errors of several designs.
First, we fix the supply level to 1.2 V so and clock the chip
at the nominal clock rate of 100 MHz so that the errors pro-
duced are only due to the approximate natures of the adders
since there is no timing failure. Fig. 8 shows the receptive
fields of all excitatory output neurons after the training with
the various adders and the corresponding error rates during
the training process are depicted in Fig. 9 as well. The
receptive fields with the accurate adders (RCA and CLA) as
in Fig. 8(a) are trained well to respond to the inputs from
“A” to “Z”. This means that every letter appears once at
least in the receptive fields. The results in Fig. 8(a) serves
as a golden reference for the approximate adders.

The proposed adder with n=16 and k=4 has less than
1% error rate for the LIF computations during the training.
Note that no error detection and correction is considered but
the error magnitude reduction is. Fortunately, thanks to the
error resilience of the neuromorphic system, Fig. 8(b) shows

135

(a) (b) (c) (e)

(f) (g) (h) (j)

(d)

(i)

Figure 8: Receptive fields with 16-bit (a) RCA/CLA, (b) proposed approximate adder, (c) LUA, (d) LOA
(8-8), (e) ETAI (8-8), (f) ETAII, (g) VLCSA-1, (h) ACA, (i) LOA (13-3) and (j) ETAI (15-1).

1
0

10

20

30

40

50

60

E
rr

o
r

R
a
te

 (
%

)

1
0

10

20

30

40

50

60

E
rr

o
r

R
a
te

 (
%

)

E
T

A
I

(1
5

-1
)

L
O

A
 (

1
3

-3
)

A
C

A

V
L

C
S

A
-1

E
T

A
II

E
T

A
I

(8
-8

)

L
O

A
 (

8
-8

)

L
U

A

P
ro

p
o

s
e

d

14.70%

48.30%

14.91% 14.70% 14.71% 14.71%

47.97%

6.96%

0.97%

Figure 9: Error rates during training process.

that the receptive fields are trained successfully to recognize
all the letters and the approximation errors have negligible
effect on the training process of the character recognition
system. We also test the other approximate adders with
the network. For LOA and ETAI, the 8-bit accurate and
inaccurate parts are used (i.e. LOA (8-8) and ETAI (8-
8)). n=16 and k=4 are adopted and only the approximate
adder part (i.e. without the error detection and correction)
is utilized for VLCSA-1 and ACA. These adders have an
error rate of more than 14%. Especially, the error rate of
LOA (8-8) reaches 48.30% throughout the training. As seen
in Fig. 8(c) – (h), the approximate adders produce a set
of receptive fields with random synaptic weights. These
high error rates give rise to failures in training the network
since the approximation errors cause the neurons to either
fire randomly or cease to fire. In particular, the 2’s com-
plement signed additions of small numbers frequently occur
for the training. In this case, the LUA, ETAII, VLCSA-1
and ACA produce many wrong carry predictions and unac-
ceptable performance degradation. This result suggests the
carry speculation with only 4-bit of less significant inputs in
these 16-bit adders might be insufficient for this application.
To shed more light on this, we increase the accuracy of LOA
and ETAI by expanding the accurate part of the adder at
the cost of increased delay and energy dissipation. When the

LOA and ETAI have 13 and 15-bits accurate parts, respec-
tively, the network starts to perform better. Although the
LOA (13-3) still has a relatively high error rate of 47.97%,
the corresponding receptive fields as in Fig. 8(i) are trained
such that all alphabets except for “R”, “V ” and “X” can
be identified. Due to the expansion of the accurate part of
the adder, the errors now concentrate more on LSBs with
smaller error magnitudes. Similarly, the inclusion of a 15-
bit accurate part in ETAI (15-1) allows the network to be
trained for all letters except for “C”, “D” and “E” as illus-
trated in Fig. 8(j). Clearly, our design outperforms all other
approximate adders.

To show the energy efficiency of the these adders in the
neuromorphic hardware, we scale down the supply voltage
and obtain the energy dissipation in one LIF operation in-
volving a multiplication of a synaptic weight wji with the
weight parameter Ksyn and an addition of the membrane
potential V t

i with the multiplier output Ksynwji, a key pro-
cessing step in (13). The clock frequency is fixed at the
maximum value such that neurons with RCA can operate
without any error in the regular supply voltage of 1.2 V. For
each adder design, we scale down the supply voltage with a
0.05 V step as long as there is no critical timing failure cre-
ated in the neuron circuit. Fig. 10 plots the energy compar-
ison with the neurons with the different adders under scaled
power supply levels. The energies are normalized against the
neurons with RCA. Neurons with LUA, ETAII or VLCSA-1
can operate at a supply voltage of 0.9 V. The ETAII is the
most energy efficient design while having a much larger error
rate than the proposed adder and leading to poor learning
performance (see Fig. 8(f)). Regrettably, the high power
consumption from the carry selection in VLCSA-1 is an ob-
stacle to attain energy efficiency. The CLA, ACA and the
proposed design can operate at the scaled supply voltage of
0.95 V. The proposed adder consumes about 26% and 8%
less energy than CLA and ACA, respectively. Our design
achieves the energy savings of up to 48.5% and 26.1% over
RCA and CLA, respectively. It can be seen that our adder
has the most competitive energy and error tradeoff among
all these designs. Since a few hundreds of silicon neurons
are integrated in the form of an array [8, 11], the total en-
ergy saving resulted from our design is remarkable for the
neuromorphic chip.

136

0.90 0.95 1.00 1.05 1.10 1.15 1.20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Supply Voltage (V)

N
o

rm
a
li
ze

d
 E

n
e
rg

y

RCA

CLA

LUA

LOA (8-8)

ETAI (8-8)

ETAII

VLCSA-1

ACA

LOA (13-3)

ETAI (15-1)

Proposed

0.90 0.95 1.00 1.05 1.10 1.15 1.20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Supply Voltage (V)

N
o

rm
a
li
ze

d
 E

n
e
rg

y

Figure 10: Normalized energies of the LIF neuron with various adders with supply voltage scaling.

5. CONCLUSION
A novel approximate adder design to considerably reduce

energy consumption with a very moderate error rate has
been presented for energy efficient neuromorphic VLSI sys-
tems. The proposed carry prediction with carry skip scheme
significantly enhances the overall error rate and the criti-
cal path delay. Additionally, the error magnitude reduc-
tion technique reduces the amount of error further with low
cost. Implemented in a commercial 90 nm CMOS process,
the proposed adder is 2.4× faster and 43% energy efficient
over traditional adders. We have demonstrated the perfor-
mance of the adders under an unsupervised learning based
VLSI neuromorphic character recognition chip by develop-
ing a hardware-aware simulation approach. The results have
proven that the approximation errors of the proposed adder
affect the training performance negligibly. Moreover, the
adder allows for energy savings of up to 48.5% over tra-
ditional adders for digital LIF neurons with scaled supply
voltage levels. Accordingly, the proposed design approach
is applicable to energy efficient neuromorphic VLSI system
designs.

6. ACKNOWLEDGMENT
This work was supported in part by an SRC gift under

task 2364.001.

7. REFERENCES
[1] R. A. Brualdi. Introductory combinatorics. Prentice-Hall, 2010.
[2] V. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and

S. Chakradhar. Scalable effort hardware design: Exploiting
algorithmic resilience for energy efficiency. In IEEE/ACM
Design Automation Conf. (DAC), pages 555–560, Jun. 2010.

[3] K. Du, P. Varman, and K. Mohanram. High performance
reliable variable latency carry select addition. In Design,
Automation Test in Europe (DATE), pages 1257–1262, Mar.
2012.

[4] S. Esser, A. Ndirango, and D. Modha. Binding sparse
spatiotemporal patterns in spiking computation. In Int. Joint
Conf. on Neural Networks (IJCNN), pages 1–9, Jul. 2010.

[5] V. Gupta, D. Mohapatra, S. Park, A. Raghunathan, and
K. Roy. Impact: Imprecise adders for low-power approximate
computing. In Int. Symp. on Low Power Electronics and
Design (ISLPED), pages 409–414, Aug. 2011.

[6] R. Hegde and N. Shanbhag. Soft digital dignal processing.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
9(6):813–823, Dec. 2001.

[7] J. Huang, J. Lach, and G. Robins. A methodology for
energy-quality tradeoff using imprecise hardware. In
IEEE/ACM Design Automation Conf. (DAC), pages 504–509,
Jun. 2012.

[8] J.-S. Seo et al.. A 45nm cmos neuromorphic chip with a
scalable architecture for learning in networks of spiking
neurons. In IEEE Custom Integrated Circuits Conf. (CICC),
pages 1–4, Sep. 2011.

[9] A. Kahng and S. Kang. Accuracy-configurable adder for
approximate arithmetic designs. In IEEE/ACM Design
Automation Conf. (DAC), pages 820–825, Jun. 2012.

[10] S. H. Kim, S. Mukhopadhyay, and M. Wolf. Modeling and
analysis of image dependence and its implications for energy
savings in error tolerant image processing. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., 30(8):1163–1172,
Aug. 2011.

[11] Y. Kim, Y. Zhang, and P. Li. A digital neuromorphic vlsi
architecture with memristor crossbar synaptic array for
machine learning. In IEEE Int. System-on-Chip Conf.
(SOCC), pages 328–333, Sep. 2012.

[12] S.-L. Lu. Speeding up processing with approximation circuits.
Computer, 37(3):67–73, Mar. 2004.

[13] H. Mahdiani, A. Ahmadi, S. Fakhraie, and C. Lucas.
Bio-inspired imprecise computational blocks for efficient vlsi
implementation of soft-computing applications. IEEE Trans.
Circuits Syst. I, 57(4):850–862, Apr. 2010.

[14] J. Miao, K. He, A. Gerstlauer, and M. Orshansky. Modeling
and synthesis of quality-energy optimal approximate adders. In
IEEE/ACM Int. Conf. on Comp.-Aided Design (ICCAD),
pages 728–735, Nov. 2012.

[15] D. Mohapatra, V. Chippa, A. Raghunathan, and K. Roy.
Design of voltage-scalable meta-functions for approximate
computing. In Design, Automation Test in Europe (DATE),
pages 1–6, Mar. 2011.

[16] Z. Pan and M. Breuer. Basing acceptable error-tolerant
performance on significance-based error-rate (sber). In IEEE
VLSI Test Symp. (VTS), Apr. 2008.

[17] B. Shim, S. Sridhara, and N. Shanbhag. Reliable low-power
digital signal processing via reduced precision redundancy.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
12(5):497–510, May 2004.

[18] J. Vanne, E. Aho, T. Hamalainen, and K. Kuusilinna. A
high-performance sum of absolute difference implementation for
motion estimation. IEEE Trans. Circuits Syst. for Video
Tech., 16(7):876–883, Jul. 2006.

[19] A. Verma, P. Brisk, and P. Ienne. Variable latency speculative
addition: A new paradigm for arithmetic circuit design. In
Design, Automation Test in Europe (DATE), pages
1250–1255, Mar. 2008.

[20] N. Zhu, W. L. Goh, and K. S. Yeo. An enhanced low-power
high-speed adder for error-tolerant application. In Int. Symp.
on Integrated Circuits (ISIC), pages 69–72, Dec. 2009.

[21] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong.
Design of low-power high-speed truncation-error-tolerant adder
and its application in digital signal processing. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., 18(8):1225–1229, Aug.
2010.

137

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

