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Abstract Simulated annealing (SA) was successfully 

implemented and accelerated by in-memory computing 

hardware/software package using RRAM crossbar arrays to 

solve a spin glass problem. Ta2O5-based RRAM array and 

stochastic Cu-based CBRAM devices were utilized for 

calculation of the Hamiltonian and decision of spin-flip events, 

respectively. A parallel spin-flip strategy was demonstrated to 

further accelerate the SA algorithm. 

I. INTRODUCTION 

The spin glass system is a representative combinational 

optimization problem (COP) which tries to find the globally 

optimal object in discrete space. Since COPs such as spin glass 

systems and the traveling salesmen problem are NP-hard, 

simulated annealing (SA), a metaheuristic algorithm that 

effectively search global optima, has been developed and 

widely used.[1] However, the convergence of SA may be slow 

because it involves compute-intensive operations within a 

massively connected interaction network and stochastic search 

rules that require random number generation (RNG) with an 

exponentially decaying probability distribution. Recently, there 

have been significant progress in RRAM-based acceleration of 

numerical computation such as partial differential equation and 

neural network using vector-matrix multiplication,[2,3] in-

memory computing,[4] and stochastic computing using 

stochastic bit streams.[5,6] Inspired by the ability of RRAM 

devices for numerical computation, in this work, we utilized the 

ability for vector-matrix multiplication of Ta2O5 RRAM-based 

crossbar and stochastic switching observed in Cu-based 

CBRAM devices to accelerate an SA algorithm that solves a 

spin glass problem effectively. 

II. SPIN GLASS PROBLEM AND SIMULATED ANNEALING  

Finding the ground state of a two-dimensional (2D) spin 

glass, from randomly mixed states as shown in Fig.1a is a 

classical problem in COP. Although the interaction between 

two spins is simple such that the Hamiltonian is just a 

multiplication between neighboring spins weighted by the 

coupling strength, complex interactions between arbitrary spin 

pairs exist in the spin glass, as illustrated in Fig.1b and make 

the problem difficult to solve in polynomial time.[7] Fig.2a 

shows the flowchart of conventional SA that starts from 

initializing the spin configuration, followed by calculating the 

change of Hamiltonian  due to flip of randomly selected yth 

single spin, . The Hamiltonian of the spin glass is given as: 

where J is the amplitude of the coupling strength,  and  are 

the xth and yth spin in the spin glass. <x,y> in Eq (1) indicates 

that the spin multiplication needs to be conducted only for 

neighboring spins. The introduction of Nxy, a coupling strength 

(CS) matrix, makes the expression more concise. Elements in 

Nxy are  and  are neighbors of  for 

non-neighboring spins. If a spin flip decreases energy, e.g. 

inversion of leading to negative , SA accepts the change 

because it stabilizes the spin system. If on the other hand  

is positive, the spin flip will happen with a probability 

proportional to the Boltzmann factor ( ) 

where T is absolute temperature. After a fixed number of 

attempted spin flips, the temperature T is decreased following a 

cooling schedule, and the process is repeated at the new 

temperature. The stochastic hill climbing provided by the 

Boltzmann factor enables the spin glass to escape from local 

optima as depicted in Fig.2b, and the escape probability 

decrease to zero as time increases and temperature cools down. 

III. SIMULATED ANNEALING ACCELERATED BY RRAM 

ARRAY AND STOCHASTIC CBRAM 

During SA, calculations of the inner products in  and 

the probability generated by the RNG function in the 

Boltzmann factor make the process compute-intensive. To 

reduce the computational cost and speed up SA, inner products 

between the spin vector  and neighboring spins, as determined 

by the CS matrix, can be directly obtained in an RRAM array 

storing the CS matrix , as shown in Fig.3a-b. For example, 

when the yth spin attempts to be flipped, all xth row ( ) in 

the RRAM array in Fig.3c are applied with a Vx(= Vread) pulse, 

and the output current at the yth column is proportional to 

, producing the desired value of . As a result, 

the inner-products can be readily obtained from read operations 

through the RRAM array.  

Since only nearest neighbor interactions are non-zero, the 

CS matrix can be very large but sparse. The large CS matrix can 

be effectively mapped into smaller RRAM arrays where only 

the non-zero portions are stored, as illustrated in Fig.4,5. Here 

a  2D spin glass was chosen as an example. The  

CS matrix of the spin glass represents all-to-all connection, and 

can be divided into three groups (top-edge row, mid rows, and 

bottom-edge row), representing the coupling strength of a spin 

in the top (middle, or bottom) row with its neighbors. The 
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groups are 9 column wide (corresponding to the 9 spins in each 

row), and can be further divided into sub-groups of 3 spins (3 

columns), for spins at the left-edge, middle columns, and right-

edge, producing the patterns shown in Fig. 5. All the possible 

(non-zero) sub-matrix patterns can then be stored in a three-

column RRAM array ( ), as shown in Fig.5d. 

Experimentally, the  RRAM array was fabricated with a 

Pd/Ta/Ta2O5/Pd cell structure. The RRAM crossbar array is 

then wire-bonded and connected to a custom test board as 

shown in Fig.6.  

Reliable switching characteristics and tight forming, set and 

reset voltage distribution can be obtained from all devices in the 

RRAM array (Fig. 7a,b). The cell-to-cell current variations 

shown in Fig.7c can be significantly improved to be lower than 

1% using a write-verify method, as shown in Fig. 7d, enabling 

robust dot product operations to obtain .[8] The hill 

climbing probability was also obtained through hardware by 

using stochastic switching effects in a Cu-based CBRAM, as 

shown in Fig.8. The CBRAM device shows stochastic 

switching behavior at low programming voltage, with a 

switching probability  for 

programming pulse width , where  is a time constant 

dependent on the voltage amplitude. A Cu/ALD Al2O3/Pd 

CBRAM structure is used in this experimental implementation, 

with  for transition from HRS to LRS. After 

applying a single SET pulse, the probability of the device 

staying at HRS then follows the exponential decaying function 

, which follows the Boltzmann factor required for 

SA, after converting  to ).  

IV. EXPERIMENTAL DEMONSTRATION OF RRAM-

BASED SIMULATED ANNEALING 

The flow chart of implementing SA to simulate a spin glass 

is shown in Fig.9. Starting from the initial spin configuration, a 

spin (ith row and jth column in the spin glass) is randomly 

selected for flip-trial. The spin vector is converted as input pulse 

vector based on its location and applied to the  Ta2O5 

RRAM array. After the current measurement from the selected 

column Iy, the sign of Iy is compared with . The flip-event of 

 is accepted if the signs match (corresponding to negative 

. If the signs of Iy and  do not match, the flip-event is 

only accepted if a single SET pulse on a the CBRAM does not 

change its original HRS state, following discussions above. The 

data flow is illustrated in Fig.10. 

A  2D ferromagnetic spin glass was tested to prove 

the concept of RRAM-based SA process.  Fig.11 shows one test 

case with a fixed spin edge condition, where all the edge spins 

(+1) state and the rest of the spins are 

-1) state at time = 0. Because the edge 

spins are always fixed, the only possible ground state of this 

-  The SA parameters such as 

J, T(t), and NT for the experiment are 1.0, , and 100, 

respectively. As time flows, the initially down-spins get 

affected by the edge spin states due to ferromagnetic interaction 

that favors spins with same orientations. Note some of the 

down-spins surrounded by other down spins are also flipped to 

up-spin (e.g. at time=5), although this event increases the total 

E. This is an example of hill climbing phenomenon which can 

speed up the optimization process by escaping from the local 

optima, as discussed in SA. The ground state is achieved at ~ 

time=200. Other cases with multiple ground states, i.e. initially 

random configurations without any fixed edges, were also 

tested using the RRAM-based SA, as shown in Fig.12.  Due to 

-

- s, the same initial condition can 

evolve to opposite results, as verified by the experiments. Note 

that the two solutions also show similar proportions of majority 

spin during the evolutions (e.g. at time=150), since the SA 

strategy leads to similar dynamic progress towards the 

respective ground state. Comparison between the experimental 

RRAM-based SA results and software results verifies the E and 

magnetization (M) of both cases show similar dynamics that 

converge to global optima near time = 200, further proving the 

successful experimental implementation of RRAM-based SA. 

V. PARALLEL SPIN-FLIP STRATEGY USING MEMRITIVE 

SIMULATED ANNEALING 

To further accelerate the RRAM-based SA, it is possible to 

flip multiple non-neighboring spins together simultaneously to 

take advantage of the parallel vector-matrix multiplication (vs. 

vector-vector inner product) offered by RRAM arrays, as 

illustrated in Fig 14. The flipped spins have to be non-

neighboring to not affect the energy calculations compared with 

consecutive spin flips. The parallel spin-flip strategy was also 

implemented in the RRAM-based hardware. Comparisons of 

the experimental results obtained from the conventional single 

spin-flip and the parallel double spin-flip schemes are shown in 

Fig. 15, for the fixed edge test case. The E and M from double 

spin-flip scheme (red) show faster convergence than the single 

spin-flip scheme (blue). The single spin-flip scheme even fell 

into a local minimum near time=100 for a while before finally 

escaping, while the double spin-flip method already reached its 

ground state. Since the double spin flip should be equivalent to 

two consecutive spin flips (at the same temperature), the results 

are compared with another experiment where 2x iterations (i.e. 

2NT=200) are attempted at each time step using the single spin-

flip scheme (black curves). This approach indeed produced 

results similar to those obtained from the double spin-flip 

experiments, and suggested possibility of further acceleration 

of SA with an N spin-flip scheme that can be calculated 

simultaneously in RRAM-based array. 
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Fig.1. A 2D spin glass and the spin interactions represented 

by (a) connections to neighboring spins and (b) circular 

graph showing the complex couplings. 

 
Fig. 2. (a) Flow chart of the SA algorithm. (b) Schematic showing finite spin flip 

probability even for positive can help the system escape from local optima. 

ed 

 
Fig. 3. (a)  due to the change of  surrounded by its neighbor spins. 

(b) CS matrix where the 5th column represents interaction between 5th spin 

and all the other spins (c) Schematic of inner product between the 5th CS 

column vector and spin vector  conducted by RRAM array. 

probability

 
Fig. 5. 9 sub-patterns with three columns each from the  CS 

matrix, depending on the position of the spin in the 2D spin glass. (a) 

Top-Edge Row case, (b) Mid Row case, and (c) Bottom-Edge Row 

case. (d) All the non-zero and unique patterns in (a-c) can be stored in 

a single  RRAM array. 

p y y

 

Fig. 4. 

CS matrix of a 

 2D spin array. 

The large but sparse CS 

matrix can be sliced to 

fit into a smaller RRAM 

array. 

 
Fig. 6. (a) Schematic of the Ta2O5-based RRAM cell and 

array structure. SEM image of the RRAM crossbar array. (b) 

Test board comprised of FPGA, peripheral circuit, and the 

RRAM array chip for experimental implementation of 

simulated annealing. 

 

 

 
Fig. 8. (a) Structure and SEM image of Cu-based CBRAM 

devices. (b) Experimentally measured probability of HRS LRS 

switching (blue). The Boltzmann factor (red) can be obtained by 

the probability of the device staying at HRS after applying a 

single SET pulse with pulse width . 

d in 

Fig. 7. (a) I-V curves 

showing the forming 

(red) and subsequent 

switching (blue) 

processes. (b) 

Distribution of 

VForming, VSET, VReset 

of the 33 cells in the 

RRAM array.  

(c-d) Variation of 

device current 

without (c) and with 

(d) write-verify pulse 

method. 
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Fig. 13. (a) Average energy and (b) magnetization as a function of cooling 

schedule. Conventional software version of SA (red) and experimental SA 

results obtained from the RRAM array (blue) are compared. 

 

 
Fig. 9. Flowchart of implementing the SA algorithm using 

RRAM array for the 2D spin glass problem. 

 

 
Fig. 12. Time-dependent evolution of the spin glass system solved by the 

RRAM hardware, for random initial states with no fixed spins. Two ground 

states with - -

generated from the same initial state in different runs. 

 
Fig. 10. (a) Randomly initialized  spin array (with 225 spins). (b) The 

sparse  CS matrix. (c) Coupling strength patterns stored and 

measured from the RRAM array used in the experimental setup. 

 

 
Fig. 11. Evolution of the spin configuration at different time 

steps for the fixed spin-edge case. Data obtained experimentally 

from the RRAM array-based hardware system.  

 

Fig. 14. Schematic illustration 

of multi-spin flip method that 

exploits parallel vector-matrix 

multiplications in RRAM 

crossbar array. 

 
Fig. 15. Comparison of (a) energy, (b) magnetization, and (c) spin configuration snap shots, for 

results obtained using the single-spin method with 100 iterations per time step (blue), single-spin 

method with 200 iterations per time step (black), and double-spin method with 100 iterations per 

time step (red). All results are obtained from the RRAM hardware setup. 
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