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ABSTRACT 

We give a short overview of stochastic computing (SC) and its uses. 

SC computes with randomized bit-streams that loosely resemble 

the neural spike trains of the brain. Its key feature is the use of low-

cost and low-power logic elements to implement complex 

numerical operations in a highly error-tolerant fashion. These 

advantages must be weighed against SC’s inherently slow 

computing speed and low precision. Although studied sporadically 

since its invention in the 1960s, SC has regained interest recently 

as potentially suited to some emerging nanotechnologies, and to 

applications such as ECC decoding and biomedical image 

processing. However, a number of major challenges must be 
overcome if this potential is to be fully realized. 

Categories and Subject Descriptors 

B.2 [Arithmetic and Logic Structures]: Design styles. 

General Terms 

Algorithms, design, theory. 
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1. INTRODUCTION 
The neural signals processed by the brain consist of long sequences 

of noisy voltage spikes of the kind shown in Figure 1 which 

resemble 0-1 sequences or bit-streams. The timing of the spikes 

appears random, but a significant amount of the information they 

convey is in their rate or frequency over some window of time [8].  

Stochastic computing or SC [2]  processes random bit-streams 

called stochastic numbers (SNs), whose information content lies in 

the frequency of the 1’s. In SC’s basic unipolar format, a bit-stream 

X of length N has the value 𝑝𝑋 =  𝑁1/𝑁, where N1 is the number of 

1’s appearing in X. For instance, the upper bit-stream in Figure 1 

has the value 9/19. The positions of the 1’s are not prescribed, so 

many different bit-streams can have the same 𝑝𝑋. X can be obtained 

from a stochastic number generator (SNG) of the kind shown in 

Figure 2a, which produces 1’s and 0’s with probabilities 𝑝𝑋 =
𝐵/2𝑘 and 1 − 𝑝𝑋,  resp. In many applications, SC can be seen as 

computing with digitized probabilities defined by bit-streams. 

 

 

 

 

Figure 1:  Neural spike trains and artificial bit-streams. 

What made SC interesting when it first appeared in the 1960’s [9] 

was its ability to perform complex numerical operations on SNs by 

means of tiny logic circuits. The iconic example is multiplication,  

which can be implemented by the single AND gate of  Figure 2b. 

Suppose X and Y are applied to the AND, producing the bit-stream 

Z = X  Y. A bit of Z is 1 if and only if X and Y are both 1, so that 

𝑝𝑍  𝑝𝑋 × 𝑝𝑌 provided X and Y are (nearly) statistically inde-

pendent or un-correlated, and the bit-stream length N is sufficient.  

Another fundamental SC component appears in Figure 2c. A two-

way multiplexer (MUX) plays the role of adder and calculates 𝑝𝑧 =

0.5(𝑝𝑥1
+ 𝑝𝑥2

). The constant SN r = 0.5 applied to the MUX’s 

select input ensures that pz lies in the unit interval [0,1] and so can 

be treated as a probability.  

Returning to the SNG of Figure 2a, it consists of a pseudo-random 

number source such as a linear feedback shift register (LFSR) and 

a magnitude comparator; it converts an unsigned k-bit binary 

number B to an N-bit stochastic bit-stream X. The SNG samples a 

signal of fixed probability 𝐵/2𝑘 and, at a rate of one bit per clock 

cycle, it produces an approximation  𝑝𝑋   𝐵/2𝑘 whose precision 

tends to improve with N.  However, to increase precision from k to 

k + 1 bits, N must be at least doubled. This points to a fundamental 

tradeoff associated with SC: the computing elements are orders of 

magnitude simpler than those of conventional (weighted binary) 

logic, but the operations themselves may take orders of magnitude 

longer to execute. For this reason, SC is best suited to applications 

requiring low numerical precision. 
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Figure 2: Key stochastic components: (a) stochastic number 

generator (SNG); (b) multiplier; (c) adder. 
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Signed arithmetic can be performed by interpreting  the value of 

bit-stream X as 2𝑝𝑋 − 1, called the bipolar value, rather than the 

unipolar value  𝑝𝑋. Thus, 01101000, which has the unipolar value 

3/8 = 0.375, has the bipolar value 0.25. An XNOR gate multiplies 

two bipolar SNs, while a MUX again acts as a scaled adder. Other 

operations like division are more difficult to implement in SC and 

may require the use of sequential logic components [9].  SC can be 

summarized as an unconventional and approximate computing 

technique where bit-streams denote probability-style stochastic  

numbers, and logic circuits perform arithmetic operations.  

For a particular  SN format,  such  as  unipolar, bipolar or inverse 

bipolar [1], every logic function z(x1,x2,…, xn) implements  a  well-

defined arithmetic function Z(X1,X2,…, Xn) which constitutes its 

stochastic behavior [4]. To see this, consider z’s canonical sum-of-

minterms form   

𝑧(𝑥1, 𝑥2 … , 𝑥𝑛) = ⋁ 𝑐𝑖   𝑚𝑖
2𝑛−1
𝑖=0                              

Here ci is 0 or 1, and mi is a minterm  𝑥̃𝑖,1 𝑥̃𝑖,2⋯ 𝑥̃𝑖,𝑛 where  

𝑥̃𝑖,𝑗  is 𝑥𝑖,𝑗  or  𝑥̅𝑖,𝑗 .  For an XOR gate, we have  𝑧XOR(𝑥1, 𝑥2) =  𝑚1 ∨

𝑚2 = (𝑥̅1  𝑥2)  (𝑥1  𝑥̅2) . Now suppose n SNs are applied to 

the inputs of z. Let Xi denote the (unipolar) value 𝑝𝑋𝑖
 of the SN 

applied to xi, and let  𝑋̅𝑖 denote 1  𝑝𝑋𝑖
 .  Assuming all the input 

SNs are independent, the stochastic function implemented by z is 

𝑍(𝑋1, 𝑋2 … , 𝑋𝑛) = ∑ 𝑐𝑖𝑀𝑖
2𝑛−1
𝑖=0                                             

where 𝑀𝑖 = 𝑀̃𝑖,1𝑀̃𝑖,2 ⋯ 𝑀̃𝑖,𝑛 with 𝑀̃𝑖,𝑗 = 𝑋𝑖,𝑗  if the corresponding 

minterm mi has  𝑥̃𝑖,𝑗 = 𝑥𝑖,𝑗 , and  𝑀̃𝑖,𝑗  = 1 − 𝑋𝑖,𝑗 if 𝑥̃𝑖,𝑗 = 𝑥̅𝑖,𝑗 . 

Hence, the XOR gate realizes the multivariate polynomial    

𝑍XOR(𝑋1, 𝑋2) =  𝑋1 + 𝑋2 −  2𝑋1𝑋2 in unipolar format, while it 

implements −𝑋1𝑋2, i.e., multiplication with negation, in bipolar.  

2. APPLICATIONS 
Up to now, the main advantage seen for stochastic circuits has been 

their small size, which indicates their suitability for applications 

needing massive numbers of small circuits. However, this low 

hardware cost may be offset by the need for large numbers of SNGs 

to create independent input SNs and subsequently re-randomize 

them to reduce the effects of correlation. Smallness also suggests 

low power, but the longer computation times of SC may result in 

higher energy costs [16]. 

The practical application of SC has been stymied in the past by the 

lack of general procedures to design and optimize stochastic 

circuits. Recent research has shed light on this problem, although 

much remains to be learned. Several general design approaches 

have appeared recently [1][17]. In [1], for instance, the spectral 

transforms of logic functions are used to synthesize circuit 

implementations of relatively low area. 

SNs are subject to design-related errors from several sources [6]. 

These include insufficient bit-stream length, quantization errors 

during binary-to-stochastic number conversion, and correlation 

(insufficient independence) among interacting bit-streams. On the 

other hand, stochastic circuits tolerate environmental errors that 

seriously affect the behavior of conventional binary circuits.  For 

example, flipping a bit, especially a high-significance bit, has a 

drastic effect on the accuracy of a binary circuit. On the other hand, 

flipping a few bits of a long SN X often has little effect on 𝑝𝑋. 

Moreover, if 0-to-1 and 1-to-0 bit-flips are equally likely, such 

errors tend to cancel. Thus SC seems very well-suited to 

applications like space-craft electronics which operate under 

severe, radiation-induced error conditions. 

Early SC research mostly addressed applications having some or 

all  of  the  following  characteristics:   small component size,   low   
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 Figure 3. Illustration of edge detection: (a) original image;  

(b) processed image; (c) stochastic edge-detector circuit [3]. 

power, massive parallelism, low precision needs, and high error 

tolerance.  It  is  worth noting  that  these  are also typical  features 

of  analog computation [14], reflecting the fact that the probabilities 

represented by SNs are basically analog quantities. Among the very 

early applications of SC are artificial neural networks [5] and 

control systems [18], which have many analog features. 

The revival of interest in SC since 2000 can be traced to the 

decoding needs of newer classes of error-correcting codes, 

especially low-density parity-check LDPC codes [10]. Because 

they handle very long code words (thousands of bits), LDPC 

decoders require extremely complex logic if implemented by 

conventional binary means; they also employ probabilistic 

decoding algorithms. These features suggest that LDPC decoders 

can exploit the small size, error tolerance, and probabilistic aspects 

of SC to achieve  high area efficiency and throughput, as has been 

demonstrated very recently [12]. 

Another area to which SC has   been applied with some success in 

recent years is image processing [3][13]. One such application is to 

the design of retinal implants [15]. These are ICs that are surgically 

placed in the eye to sense and process images, and transfer the 

results via electrical pulses directly to the brain through the optic 

nerve. SC circuits can meet the very severe size and power 

constraints imposed by retinal implants, while also performing 

useful image-processing tasks [3]. The implant comprises a large 

rectangular array of pixel sensors, each of which provides an input 

bit-stream 𝑋𝑖,𝑗 to a local stochastic processor 𝑆𝑃𝑖,𝑗. This processor  

implements stochastic functions like the Roberts cross function 

  𝑍𝑖,𝑗 = 0.5 × (|𝑋𝑖,𝑗 − 𝑋𝑖+1,𝑗+1| + |𝑋𝑖,𝑗+1 − 𝑋𝑖+1,𝑗|) 

which performs edge detection on four bit-streams Xi,j, Xi+1,j, Xi,j+1 

and Xi+1,j+1 obtained from neighboring pixels; see Figure 3. An 

efficient implementation of  𝑍𝑖,𝑗  is shown in Figure 3c [3]. Its cost 

is substantially less than that of a conventional, non-stochastic 

implementation of the same edge-detection algorithm. 

3. CHALLENGES 
Many questions concerning the theory and applicability of SC are 

still open fifty years after the technique was first introduced.  Much 

of what we know at present applies to relatively small and mainly 

combinational circuits, reflecting the fact that few large-scale 

stochastic systems have actually been built.   

SC is essentially a hybrid technology that combines various 

features of analog, digital and probabilistic computing, often in 

subtle ways. These features include the following: 

1. Circuit size: The use of tiny components for addition and 

multiplication is SC’s most obvious advantage. However, adders 

must be scaled to keep their results in in the unit interval, and 

single-gate multipliers need input bit-streams that are uncorrelated. 

This implies using large numbers of SNGs driven by independent 

random sources.  SNGs are complex devices (Figure 2a) and can 



account for as much as 80% of the total circuit cost [17]. Thus 

reduction of SNG count is a significant challenge for SC. 

2. Operating speed: An obvious disadvantage of SC is the 

need for long SNs to achieve adequate numerical precision. This is 

compensated for to some extent by short clock cycles, and the 

possibility of dividing very long bit-streams into pieces that can be 

processed in parallel.  Massive parallelism of this type has often 

been suggested, but its feasibility remains to be proven. Another 

interesting possibility needing further investigation is  progressive 

precision, where bit-stream length is varied dynamically in 

response to application needs. Its potential value has been shown 

for some types of image processing [3]. 

3. Power and energy: The small size of  stochastic components 

implies they have relatively low power needs. However, the power 

consumption of a circuit’s SNGs also must be accounted for. 

Noting that energy = power × time,  the long run-times of stochastic 

circuits can lead to higher energy use than their conventional 

counterparts [16]. Thus, minimizing energy usage in SC is an 

significant open problem. 

4. Design issues: Considerable progress has been made in 

developing design methods for SC over the last few years 

[1][4][17], but challenging questions remain. Although every logic 

function z corresponds to some stochastic arithmetic function Z, as 

explained in Section 2, the converse is not true.  Some functions, 

even simple ones like the sum X1 + X2, are not stochastically 

realizable. In such cases, the target function Z must be replaced by 

a scaled or approximate version Z* that is stochastically realizable, 

but only heuristic ways to do this are known. Another little explored 

aspect of SC design is the fact that when the input streams include 

constant SNs (such as r = 0.5 in Figure 2c) two different logic 

functions z1 and  z2 may have the same stochastic behavior Z [7]. 

Correlation, which tends to reduce the efficiency of multiplication 

and other stochastic operations, has been employed to decrease 

circuit size, as in the edge detector of Figure 3c [3]; general ways 

to exploit correlation are not known, however. Finally, the role of 

sequential logic in the implementation of stochastic functions has 

many open questions. Overall, SC appears to offer a richer and 

much more challenging range of design problems than traditional  

logic synthesis. 

5. Nanotechnologies. Some of the nanoscale semiconductor 

technologies that are being investigated as possible replacements 

for CMOS circuits (in light of  the anticipated demise of Moore’s 

Law) seem well-suited to SC. These include memristors, which 

have been called inherently stochastic devices [11]. The success of 

these nanotechnologies in the construction of practical stochastic 

circuits remains to be seen, however. A related problem  is how to 

take advantage of the similarity between SC and the neural bit-

streams illustrated by Figure 1 in biomedical applications. Can 

stochastic processors be built that directly interact with the brain? 

In summary, the central challenge facing SC is to determine cost-

effective design techniques, technologies and applications that 

maximize SC’s advantages (such as powerful basic operations, the 

possibility of massive parallelism, and inherent error tolerance) 

while minimizing its disadvantages (low precision, long bit-

streams, and costly randomness requirements).   
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