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ABSTRACT
With the trend toward specialization, an efficient memory-path
design is vital to capitalize customization in data-path. A monolithic
memory hierarchy is often highly inefficient for irregular applica-
tions, traditionally targeted for CPUs. New approaches and tools are
required to offer application-specific memory customization com-
bining the benefits of cache and scratchpad memory simultaneously.

This paper introduces a novel approach for automated application-
specific on-chip memory assignment and tiling. The approach offers
two major tools: (1) static memory access analysis and (2) variable-
level memory assignment. Static memory analysis performs at the
LLVM abstraction. It extracts target-independent pointer behavi-
ors, measures the access strides and analyze the prefetchability of
variables. (2) variable-level memory assignment creates a memory al-
location graph for memory assignment (cache vs. scratchpad) based
on the variables size and their estimated locality. It also explores
the opportunity for tiling memory access. For the exploration and
results, this paper uses Machsuite benchmarks (with both regular
& irregular memory access behaviors), and gem5-Aladdin tool for
performance & power evaluation. The proposed approach optimizes
the memory hierarchy by automatically combining the benefits of
cache, (tiled-) scratchpad at variable level granularity per individual
applications. The results demonstrate more than 45% improvement
in our power-stall product, on average, over the monolithic cache or
scratchpad design.

ACM Reference Format:
Samuel Rogers and Hamed Tabkhi. 2018. Locality Aware Memory Assign-
ment and Tiling. In DAC ’18: DAC ’18: The 55th Annual Design Automation
Conference 2018, June 24–29, 2018, San Francisco, CA, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3195970.3196070

1 INTRODUCTION
Customization has emerged as a promising approach for high-performance,
low power execution of many challenging applications [1–3]. Des-
pite the trend toward customization, the main focus has been on
application-specific data-path customization. The application-specific
memory-path design has been not explored in depth. An efficient
memory-path design is vital to capitalize customization in data-path.
For custom hardware/specialized accelerators, Scratchpad memory
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(SPM) has been the predominant memory choice to hide long access
latency to the main memory. The scratchpad often performs well for
regular streaming memory access patterns (with short strides). How-
ever many irregular applications, traditionally targeted for CPUs,
monolithic SPM design is highly inefficient, diminishing the benefits
of data-path customization.

Much like the design of the data-path, the memory-path design
for HWACCs is highly application-specific. As an example, Fig. 1
compares the memory performance (evaluated by measuring the
memory stalls) and power across different memory assignments for
the MD-KNN application. An optimized memory design (combining
the benefits of cache, SPM and tiled-SPM selectively across vari-
ables) achieves far better memory performance per watt compared
to monolithic SPM or cache. Fig. 1 presents that application-specific
memory fine-tuning can reconcile the conflicting access pattern of
an application (appeaser across the variables) resulting in an optim-
ized power-stall product (PSP) (Fig. 1c) with much lower physical
memory requirements (Fig. 1d).
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Figure 1: MD-Grid Exploration

Studying and exploring cache for HWACCs is at early stages, and
there is not much research exploring the memory-path (cache vs.
SPM) for HWACCs. Determining which hierarchy is best has until
now been largely ad-hoc, requiring many simulations to identify a
Pareto-optimal solution. One of the early studies is gem5-Aladdin
[4] which integrated the cache memory modeling present in gem5
[5] into the accelerator model provided by Aladdin [6]. However,
approaches such as [5, 7], leave the memory design space exploration
and optimization to the designer. Overall, there is lack of tools that
can look at an application and allocate the correct type of memory.
Novel tools are required to streamline the design of an efficient
application-specific memory-path.

This paper introduces a novel approach for automated application-
specific on-chip memory assignment and tiling. The approach offers



an integrated tool-chain with two major phases: (1) static memory ac-
cess analysis and (2) variable-level memory assignment. It works at
LLVM abstraction and statically extracts and analyzes variables and
the memory footprint (job size). At the memory assignment, the pro-
posed approach assigns on-chip memory and design memory-path
(combining cache, SPM, tiled-SPM) intrinsic to the application. Our
results, based on gem5-Aladdin [4] running the Machsuite bench-
mark suite [8], reveals significant benefits. On average, the results
demonstrate 45% improvement in the power-stall product, with sig-
nificant saving in on-chip memory demand, over the monolithic
cache or scratchpad design.

This paper is organized as follows: Section 2 briefly overviews
related work. Section 3 overviews our proposed approach. Section 4
presents the static memory access analysis. Section 4 explains se-
lective memory prefetching with static binary analysis. Section 5
expands the variable-level memory assignment. Section 6 presents
the simulation results and finally Section 7 concludes this paper.

2 RELATED WORK
The memory hierarchy has been studied extensively in general-
purpose CPUs. Many innovative solutions have been developed
for memory-path optimization (cache vs. SPM) on embedded CPUs
[9–12]. Extensive work has been done in that portion of the field to
optimize hybrid memory structures for domain specific CPUs. Such
optimizations have shown to lead to significant improvements (20%
or more) in both raw performance and overall power consumption
within a specific domain [10, 12].

In contrast to general-purpose CPUs, memory exploration and
memory-path optimization for hardware accelerators are at early
stages. Accelerator-centric approaches, such as [6, 7, 13], have
assumed that accelerated applications demonstrate highly regular
streaming data access patterns. As a result, the majority of the re-
search has centered on improving the performance and power con-
sumption of data-path with the assumption of direct memory access
(DMA) and local scratchpad memories (SPM) for the memory-path
[4, 14, 15]. Some researchers have proposed hand-crafted optimized
memory-path for particular applications [2, 16–18]. However, their
narrow scope, as well as their manual design, limits their useful-
ness. When focusing on highly regular applications, as was done in
Chen et al [17] and Cong et al [18] it is possible to create highly
efficient data tiling schemes that reduce memory stalls and power
consumption at the cost of programming complexity. However as
development shifts toward the creation of accelerators for more ir-
regular applications, traditional optimization are often impractical to
implement.

To address this problem, the Aladdin simulator[6] was extended
and integrated it into the memory system provided by gem5[5] to
create gem5-Aladdin[4]. This integration brought a more advanced
memory model to Aladdin allowing for exploration of hybrid SPM-
cache models accelerators. The capacity to sweep across a wide
range of memory configurations can be valuable for memory optim-
ization. The challenge in HWACC design then becomes a matter
of identifying the optimal use of SPMs and/or caches for a given
application. Tools like PARADE [7] and gem5-Aladdin [4] place this
entire burden in the hands of the user, offering no insight as to where
this optimization point rests without doing exhaustive simulation.

3 APPROACH OVERVIEW
This section overviews our proposed approach in an integrated
scheme. It performs at the LLVM abstraction, an intermediate rep-
resentation between high-level languages and assembly. LLVM
provides an architecture-independent flat representation of all vari-
ables appearing in an application. It captures the raw semantic of
execution without the effects of target-specific constraints or optim-
izations. Fig. 2 presents an abstract high-level model of proposed
approach. Internally, the proposed approach consists of two ma-
jor tools: (1) static memory access analysis and (2) variable-level
memory assignment. It receives the target-independent but optim-
ized LLVM model of the application as an input, and make a fully
automatic memory allocation decision (cache, SPM, SPM-tiled) as
the design decision output. For creating the LLVM, we use standard
CLang tool (a compiler front-end) to translate high-level C/C++
code to an optimized LLVM.
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Figure 2: Memory Allocation Tool Chain

4 STATIC MEMORY ACCESS ANALYSIS
This section presents the details of our proposed static memory
access analysis.

4.1 Pointer Identification
Pointer Identification parses the LLVM file. It searches for all func-
tions, appearing in the optimized LLVM, and then lists all pointers
within every function. It also identifies the scope of each pointer
(global or local). All pointer analysis occurs at the function level
granularity to avoid control behaviors that are not statically iden-
tifiable. Fig. 3 presents the flow-chart graph of Pointer Identific-
ation. Within the scope of a function run-time dependent pointer
indexes can be broken down into (1) loop indexes, (2) internal vari-
able indexes, and (3) external variable indexes. Loop indexes are
easily predictable. Internal variable indexes are predictable if the
controlling variable is itself predictable. The only type of index that
causes issues in static analysis is the external variable index, which
is often governed by run-time conditions.

Pointer Identification calls Pointer Behavioral Analysis (Stage
2) whenever a new pointer address is found. Once all functions and
pointers in the LLVM file have been identified, the parser will move
onto Stage 3 where it measures the static locality of each pointer. In
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Figure 3: Pointer Identification (Stage 1)

the end, it is also able to calculate the job size per entire application
by statically extracting the volume of Bytes per variable array access
for each iteration of execution. For variables with runtime dependent
strides, it considers the worst-case access boundaries.

4.2 Pointer Behavioral Analysis
Pointer Behavioral Analysis extracts the nature of each pointer (static
vs. dynamic). Fig. 4 presents the flow-chart graph of Pointer Beha-
vioral Analysis. With every call, it first checks the pointer list to
determine if the referenced pointer already exists or not. If not, the
new pointer will be added to the pointer lists of the current function.
Otherwise, the existing pointer entry will be updated with the des-
tination register of the operation and the source register(s)/index(es)
of the address calculation. It internally detects the prefetchability of
variables, and their access strides.
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Figure 4: Pointer Behavioral Analysis (Stage 2)
4.2.1 Predictability Analysis. Before any static analysis of

stride can be performed, we must first separate the pointers with
runtime dependencies from those with purely static dependencies.
To determine the static/run-time nature of the address calculation,
each index is recursively traced. If the recursive trace of an index
concludes with an unpredictable variable, the pointer access will
be marked as a run-time dependent variable. Otherwise, the pointer
will retain its current classification of static/run-time. A key LLVM
optimization that aids in this process is the separation of loop control
variables from other conditional variables. This leads to unique
loop index variables, even when a variable name is re-used in the
original host code, and helps us to extract independent loop behaviors
which are always statically predictable. When all index traces are
completed, and the pointer behavior is updated, the parser transitions
back to Stage 1.

4.2.2 Stride Measurement. Once we have identified the vari-
ables that can be statically analyzed we move on to measuring their
strides. Fig. 5 shows the general flow of the of Stride Measurement

stage. For variable indices we do a quick recursive trace covering its
last three operational dependencies. This is deep enough to capture
the loop behaviors of 2-D and 3-D arrays that are accessed liked
1-D arrays (ex: A[i*rowlength+j]). Otherwise the stride is marked as
variable and assumed to have a long or irregular stride. In the case of
variables with constant indices, this is simply a matter of checking
the distance between successive indices. If there is irregularity in
the stride, the pointer is marked as having a variable stride. For loop
indices our tool retraces the code around which the loop index was
identified, looking for the .next variable associated with that loop
index. The .next statement will contain the value by which the loop
index is incremented or decremented, or in other words its stride.
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Figure 5: Stride Measurement (Stage 3)
4.2.3 Memory Access Pattern (MAP)-File. The Memory

Access Pattern (MAP) file provides a brief summary of the iden-
tified pointers and their static behaviors extracted by the first part
of our tool chain. It serves as the foundation on which we identify
optimal memory assignments, but also offers a key for hand tracing
of LLVM if a designer wishes to further code optimization at the
LLVM abstraction.

Function: TYPE @FUNC_NAME 
Parameters: (PARAMS) 

Variable: %PTR_NAME    STRIDE_LENGTH 
Type: PTR_TYPE 
Accesses: 

%REG_OP -> INDEX_LIST 
Variable: %PTR_NAME2   STRIDE_LENGTH 
Type: PTR_TYPE 
Accesses: 

%REG_OP -> INDEX_LIST 
%REG_OP -> INDEX_LIST 

Figure 6: Memory Access Pattern-file (MAP-file)
The MAP file outlined in Fig. 6 groups pointer information at

the function level and displays information for every global variable
captured within that function. The MAP file contains the data type,
stride length as captured in the Stride Measurement phase of Pointer
Behavior Analysis, and a list of all accesses associated with each
variable. Accesses are indexed by their associated register operation
as captured in LLVM. This provides a quick reference used for
spatial and temporal locality measurements.

5 VARIABLE-LEVEL ASSIGNMENT
This section presents the details of our proposed variable-level
memory assignment.

5.1 Locality Measurement
Locality Measurement (Stage 4) is responsible for assessing the in-
herent static locality of each unique variable array in the program



(identifiable by a unique pointer). It assesses the spatial locality
based on the length of the stride that appears for each variable. It
also assesses the temporal locality by statically measuring the reuse
potential of each variable index. We use Eq. 1, originally described
by Weinburg et al. in [19], to assess the static locality of identified
pointers. For loop and constant indexed pointers the locality calcu-
lated in Stride Measurement is used. For pointers previously marked
as having variable strides, we perform one last trace of the LLVM to
identify the stride between each access.

Lspatial =
∞Õ

str ide=1

P(stride)
stride

(1)

To capture the temporal locality of each variable, we use a modi-
fied version of Eq. 2, sourced from Weinburg et al.[19]. Since the
raw addresses of memory access are not exposed in LLVM, we in-
stead define our reuse distance by the number of memory operations
before a non-loop index is repeated.

Ltemporal =

loд2(N )Õ
i=0

(dist2(i+1) − dist2i ) ∗ (loд2(N ) − i)
loд2(N ) (2)

The spatial and temporal locality measurements are combined
using Eq. 3 and adjusted by a spatial locality weight (ws) and a
temporal locality weight (wt). Since data tiling and vectorization
optimization require high spatial locality, more so than temporal
locality, we place a higher emphasis on spatial locality. The temporal
locality is still an important factor in the performance of cache, so
we still consider its effects even when spatial locality is lower.

Ltotal =
�
ws ∗ Lspatial +wt ∗ Ltemporal

�
∗ 100 (3)

5.2 Memory Assignment
Once a locality level has been assigned to each pointer (variable in-
dex), the Memory Assignment (Stage 4) assigns memory types with
respect to the conceptual graph in Fig. 7. Variable-level memory as-
signment provides the opportunity for dedicated memory allocation
with respect to the behavior of individual variables in the application.
It often results in a hybrid memory model combining the benefits of
cache and SPM.

Fig. 7 summarizes the memory assignment decision with respect
to job size and locality. As the job size and locality of the data in-
creases, cache becomes more efficient due to its selective on-demand
data access. As job size and locality decrease, cache loses its advant-
age over SPM and suffer more memory stalls due to cache-trashing
and the high number of misses. There is a conceptual threshold in
job size and locality which make the cache more preferable over
SPM. Once the locality hits a certain threshold associated with data
having a strong streaming behavior, the assignment changes over to a
tiled SPM as shown in the rightmost sector of Fig. 7. This is because
tiling and double buffering optimizations enable a programmer to
significantly reduce the size of their SPM without exposing stalls to
the datapath.

The greatest advantage of SPM is its capacity to capture the spatial
and temporal locality of data within the granularity of its job size.
One significant drawback of SPM is the power cost of maintaining a
large on-chip memory. The power costs can be mitigated if the data
can be further divided into tiles, but this optimization is limited to
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Figure 7: Memory Allocation Graph

streaming data. Cache, in contrast, can bypass this limitation entirely
and offer a transparent interface by directly requesting data as needed
from memory at a higher power cost per Byte of memory. While this
means that a cache will be far less efficient than a similarly sized
SPM, a small cache can achieve parity in efficiency for data that
requires a very large SPM.

5.2.1 Tiling Eligibility. Using the locality approximation, it is
possible to determine the eligibility of a variable for tiling. Vari-
ables with high spatial locality are immediately marked as eligible
for tiling. It is also possible, however, that a variable with lower
locality may still be eligible for tiling to some degree. To identify
this potential, we look at the list of indices associated with the vari-
able. In some cases, a strided access behavior may be obfuscated
by intermediate calculations, such as when a 2-dimensional matrix
is exposed as a 1-dimensional array. In this case, the indices of the
pointer will appear variable in LLVM, but actually point to a loop
index modulated by some intermediate operations. In this case the
the pointer is marked as a potential variable for tiling, however tiling
potential may be severely limited due to low spatial locality.

6 EVALUATION
6.1 Simulation Setup
For the simulation results, we use the Machsuite benchmark suite
[8], dedicated for HWACC research, and gem5-Aladdin [4] for per-
formance and power estimation. Our tool (captured in C++) runs
alongside gem5-Aladdin to identify memory access patterns and
make an automatic memory assignment decision. It will be released
to the public upon publication of this work.

To evaluate our tool, we compare our suggested optimization to a
job-sized SPM and a variable size cache (sized for an optimal power-
stall product). We evaluate the performance of our memory assign-
ment by analyzing the memory stalls introduced to the accelerator
data path. The overall memory efficiency is measured by multiply-
ing stalls by the power consumed by memory. A lower power-stall
product (PSP) is representative of a more efficient memory design.
When tiling is suggested by our tool, we chose the minimum tile size
achievable without significant algorithm modifications. The DMA
engine is assumed to handle scheduling for tiled data in to avoid
unnecessary CPU overheads. In the case of a cache assignment, we
sweep the size of the cache to find the optimal PSP.



6.2 Performance and Power Comparison
Analyzing eight of the MachSuite benchmarks, our tool identified
one benchmark in which all variables could be tiled (MD-Grid),
two benchmarks in which some variables could be tiled (SPMV-
CRS, MD-KNN), and five benchmarks in which no variable could
be effectively tiled (BFS, FFT-Strided, FFT-Transpose, Needwun,
3D Stencil). A common characteristic of the benchmarks lacking
variables suitable for tiling is irregular array index patterns (BFS) or
alternatively, multidimensional arrays indexed such that locality is
destroyed (3D Stencil). This is not to say that all variants of these
applications share the same issue. In fact, as we discuss in our case
study later on, algortihmic changes can have a significant impact on
the optimal memory configuration.

For nearly every benchmark shown in Fig. 8b the base SPM
implementation outperformed the base cache implementation. In
contrast the cache implementation almost universally had a lower
overall power consumption than the SPM as seen in Fig. 8c. This
can be attributed to the PSP limitation used to identify the ideal
cache size. In Fig. 8a we see that the net PSP is similar for the base
SPM and cache implementation across the benchmarks. In contrast,
the tool optimized allocation was able to match the performance of
DMA with the power usage of the cache for all eight benchmarks.

The most dramatic stall and PSP improvements can be seen in
MD-Grid, MD-KNN, and SPMV-CRS. Each of these benchmarks
had data that could tiled without significant changes to their al-
gorithm. The performance increase in these benchmarks can be
attributed entirely to the tiling and double buffering of large parts
of their data, reducing both the delays exposed to their datapaths,
as well as the power consumed by on-chip memory. While the
benchmarks without tiled data did not benefit as significantly from
optimization, they still saw an average PSP reduction of 37%.

6.3 Memory Assignment
Looking at Fig. 9 we can see the final physical memory allocation
for each benchmark with respect to its job size, as well as the rel-
ative allocation between each type of memory. In all but two cases
the allocated memory was much smaller than the job size of the
benchmark. In the case of MD-Grid, the data could only be divided
into two tiles without significant changes to the benchmark. Even so,
it still enabled the use of double buffering to significantly improve
the performance and power usage. As mentioned above Merge Sort
followed the basic SPM implementation. The two most noticeable
differences in memory allocation vs. job size can be seen with the
Needwun and 3D Stencil allocations. These two applications had
the largest jobs sizes of any of the benchmarks tested (82KB and
128KB respectively). Without the ability to tile the data for these
benchmarks due to algorithmic limitations, the only way to reduce
the memory footprint of these applications was with caches. After
assigning variables according to our tools suggestion, and optimizing
cache size around a PSP target, we were able to reduce the memory
footprints of these two jobs to 2KB or less each. Caches played a big
role in reducing the memory footprints of the other benchmarks that
lacked data eligible for tiling. In both FFT implementations caches
reduced the memory footprint by roughly half, while accounting for
less than 10% of memory allocated.
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Figure 8: Performance and power comparison
6.4 Case Study: Algorithm Effects on Optimal

Memory Allocation
A key insight that can be explored through the use of our tool is the
impact of algorithmic changes on the optimal memory allocation
for a given application. Two different versions of a molecular dy-
namics application are implemented in MachSuite (MD-Grid and
MD-KNN). Both versions of the application take the same input,
perform the same basic operation, and produce the same output.
The way in which they organize and access data, however, is very
different. MD-Grid stores its data in a 3-dimensional data structure,
and exhibits a very neat stride behavior across its entire data that is
ideal for tiling. MD-KNN on the other hand stores its data in a much
less dense 1-dimensional data structure and several small supporting
data arrays. This leads to a more irregular access pattern in a part of
its data that limits tiling.

In Fig. 10 we can see memory access graphs for MD-Grid and
MD-KNN based on data generated by our tool. In Fig. 10a we can
see that the three main structures of MD-Grid all fall within the tiled
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Figure 9: Memory type distribution for optimized memory as-
signment
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Figure 10: Memory Access Graphs for Alternate MD Realiza-
tions
data range described by our conceptual memory access graph in Fig.
7. In comparison, we see in Fig. 10b that the MD-KNN algorithm has
data split across both the tiled SPM and untiled SPM regions. While
this kind of access may appear less than ideal at first, it actually
allows for deeper tiling optimization for the bulk of the data leading
to nearly 4 times reduction in the PSP.

Memory optimization isn’t merely application specific, but also
heavily algorithm specific. With the current shift toward domain
specific computing, this algorithm-level insight can be useful for
building an optimal memory hierarchy for a domain of applications.

7 CONCLUSIONS
This paper introduced a novel tool-chain to offer systematic application-
specific memory assignment. The proposed approach is based on
static application analysis. It works at the LLVM abstraction to ex-
tract memory access behaviors and enable memory allocation at an

application or variable granularity. It offers an automated way for
application-specific memory hierarchy design, combining the bene-
fits of both caches and SPMs. Our results, based on gem5-Aladdin
running the Machsuite benchmark suite revealed significant benefits
of the proposed approach. On average, the results demonstrated 45%
improvement in the power-stall product, with the significant saving
in on-chip memory, over the uniform cache or scratchpad design.
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