
33.4 

Efficient Compression and Application of Deterministic 
patterns in a Logic BIST Architecture 

Peter Wohl John A. Waicukauski 
Synopsys Inc. Synopsys Inc. 

Williston VT 05495 Tualatin OR 97062 
wohl@synopsys.com johnwaic@synopsys.com 

ABSTRACT 

We present a novel method to eficiently generate, compress and 
apply test patterns in a logic BIST architecture. Patterns are gen- 
erated by a mod$ed automatic test pattern generator (ATPG) and 
are encoded as linear feedback shij register (LFSR) initial values 
(seeds); one or more patterns can be encoded into a single LFSR 
seed. During test application, seeds are loaded into the LFSR with 
no cycle overhead. The methodpresented achieves reductions of at 
least I OOx in test data and I Ox in tester cycles compared to deter- 
ministic ATPG while maintaining complete fault coverage, as con- 
firmed by experimental results on industrial designs. 

Categories and Subject Descriptors: B.8.1 [Perfor- 
mance and Reliability] : Reliability, Testing and Fault-Tol- 
erance. 
General Terms: Algorithms, Design. 
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off between increased test application time and reduced test cover- 
age. Several solutions have been devised to address this problem. 
Using a multiplicity of parallel scan chains reduces the number of 
cycles per scan load, although not enough to compensate for the 
increased number of patterns [4], [5]. Adding test points to the 
design can improve fault detection by pseudo-random patterns, 
reducing the total number of patterns, but silicon area and propaga- 
tion delay are increased. Further, pseudo-random patterns can be 
biased or modified so that they test random-resistant faults at the 
cost of adding silicon area, BIST data and BIST synthesis time [7], 
[8]. Deterministic ATPG patterns are often added to BIST patterns 
for a complete test coverage, but the total data volume stored on the 
tester is much greater than just the BIST data [4]. Finally, signifi- 
cant attention has recently been given to initializing (seeding) the 
PRPG so that desired scan cells are set to values that achieve target 
faults detection [9], [lo], [ l l] ,  [12], [13], [14], [15]. This solution 
can improve test coverage, but can result in increased pattern count 
and test application time. 

Keywords: self-test (BIST), test-generation (ATPG). 
2. PROPOSED DBIST SOLUTION 

1. INTRODUCTION 

Testing digital circuits represents a significant portion of the 
design, manufacture and service cost. Scan [l], [2] and logic BIST 
[3], [4] are the primary design-for-test (DFT) methods to control 
test cost. Logic BIST (hereafter referred to as BIST) is commonly 
implemented as originally described in [5]: values from a pseudo- 
random patterns generator (PRPG) are loaded into the internal scan 
chains of the design to be tested, and the chain outputs are unloaded 
into a signature analyzer that performs test response compaction. 
After a predetermined number of cycles, the state of the signature 
analyzer is compared to the known “signature” of the fault-free 
design. All inputs and outputs of the tested design are bounded by 
scan cells. The PRPG is commonly implemented as a linear-feed- 
back shift register (LFSR) and the signature analyzer is often 
implemented as a multiple-input signature register (MISR) [3], [6]. 

To achieve a test coverage close to that achievable by deterministic 
ATPG patterns, the number of BIST patterns must be significantly 
greater and, in some cases, unreasonably so which forces a trade- 
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We present an efficient solution that combines the same high fault 
coverage as deterministic ATPG (with full access to scan cells) 
with a logic BIST architecture. Compared to deterministic ATPG 
with highest dynamic compaction of test patterns, our method 
achieves significant reductions in both test data and tester cycles. 
Test patterns are generated by a modified deterministic ATPG, 
compressed into LFSR seeds and applied in a modified BIST archi- 
tecture; hence we hereafter refer to our method as “deterministic 
BIST”, or DBIST. To facilitate comparison with full-scan-cell- 
access deterministic ATPG, we present DBIST as a test stored on 
and driven by a tester; nonetheless, DBIST can also be imple- 
mented as a stand-alone selftest. The proposed solution consists of 
an apparatus that enables reseeding the PRPG LFSR with no cycle 
overhead (section 3), and a method to compress one or more deter- 
ministic ATPG patterns into a single LFSR seed (sections 4). Sec- 
tion 5 compares deterministic and DBIST patterns and section 6 
presents experimental results on industrial designs. Section 7 con- 
cludes this paper. 

All patterns can be controlled by LFSR seeds so that all “care bits” 
(scan cells that must be set to a certain value) are set to the desired 
value, while all other scan cells are set to pseudo-random values 
from the LFSR. The LFSR could also be used to apply “random” 
patterns (with no care bits determined); however, when DBIST pat- 
terns are applied from a tester, it is important to minimize the total 
number of patterns so that the total number of tester cycles is min- 
imized. In this environment, it is preferable not to use random pat- 
terns because the total number of patterns would increase. 
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3. RESEEDING WITH 0-CYCLE OVER- 
HEAD USING SHADOWS 
Figure 1 shows the basic DBIST architecture. As is common in 
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Figure 1. DBIST Architecture. 

logic BIST, all primary inputs and outputs of the tested design are 
wrapped by scan cells. All scan cells of the design are linked in par- 
allel, with intemal scan chains placed between the pattem genera- 
tor and the signature analyzer. Values from the PRPG-LFSR are 
loaded into the scan chains of the design to be tested, and the scan 
chain outputs are unloaded into a signature analyzer that performs 
test-response compaction. To reduce test application time, we use 
a large number of short parallel scan chains. A combinational phase 
shifter converts the uni-dimensional stream of pseudo-random val- 
ues generated by the LFSR into a two-dimensional array of values 
to load parallel scan chains [6], [16]. The values unloaded from 
scan chains are fed into a MISR that must be at least as wide as 
there are scan chains [6]. But, a wide MISR increases BIST over- 
head by requiring a large area and storage of wide signatures. 
Therefore, we use a smaller MISR and a combinational [space-] 
compactor between the scan-chain outputs and the signature-ana- 
lyzer inputs [ 1 71. 

A PRPG shadow register, of the same length as the PRPG LFSR, 
has been added to the classical BET architecture [5], [6]. The 
PRPG shadow is loaded through several parallel scan chains so that 
it can be fully loaded in the number of cycles it takes to load the 
intemal chains. After a new PRPG seed has been loaded into the 
PRPG shadow, it is transferred in a single cycle to the PRPG LFSR. 
The architecture in Figure 1 achieves reseeding of the PRPG LFSR 
with 0-cycle overhead; the PRPG is continuously clocked and the 
scan chains are loaded every cycle with a new value. During the 
functional capture clock, the values loaded in the PRPG shadow 
can be transferred into the PRPG LFSR, thus allowing any pattem 
to start with a new seed if required. To use the same seed for mul- 
tiple patterns, the transfer of the PRPG shadow into the PRPG 
LFSR is simply delayed until the prior seed has been used for all 
desired pattems. 

Figure 2 details the PRPG shadow and the transfer mechanism. The 
PRPG shadow register is the same length as the PRPG LFSR; it is 
loaded through several parallel scan chains. In BIST mode, the 
scan chains of the design are configured into many, short intemal 
chains, but no shorter than the shadow chains, so that the shadow 
can be completely reloaded during a single load; therefore, no addi- 
tional test cycles are added to reload seeds. The PRPG shadow con- 
tent is transferred to the PRPG LFSR during the capture cycle, 
when < shadow-transfer >=l, so no cycle is added even for 
the transfer of the new seed to the PRPG LFSR. The PRPG shadow 
registers are only loaded through scan; they need no unload. 
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Figure 2. Detailed Representation of PRPG 
Shadow, LFSR and Transfer Mechanism. 

The architecture in Figure 1 also supports a special scan mode to 
enable testing of the DBIST logic itself. In this mode, the PRPG 
shadow is configured as a single scan chain which is both loaded 
and unloaded. The PRPG LFSR, the MISR LFSR and the DBIST 
controller state elements (not shown in Figure 1) are also config- 
ured as scan chains. The intemal scan chains of the design are 
bypassed with multiplexors. In this mode, all DBIST logic (includ- 
ing the aforementioned scan chains and the phase shifter, compac- 
tor and DBIST controller) can be fully tested with a handful of scan 
ATPG patterns. 

4. MULTIPLE PATTERNS PER SEED 
Testing a single fault typically requires only a small number 
(around 20) of scan cells to be set at desired values; these values are 
referred to as “care bits” and, collectively, as a “test cube”. ATPG 
exploits the sparsity of care bits by generating pattems that each 
test as many target faults as possible, a process termed “dynamic 
compaction.” Even so, in the final test cube, only a small percent- 
age of the total number of scan cells are set; attempts to find further 
faults that can be tested by the same pattem are likely to fail 
because of conflicting values in some of the specified bit positions. 
For deterministic pattems the remaining bits are filled in randomly 
with the hope of fortuitously detecting additional faults. The fully 
specified pattem is then fault-simulated and all detected faults are 
taken off the active fault list. In DBIST, the test cube is encoded as 
an LFSR seed computed so that the desired bits are set when the 
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LFSR is loading the scan chains; don’t-care bits are filled in ran- 
domly from the LFSR. At the beginning of an ATPG run, a few test 
patterns can be created to each set thousands of care bits and test 
hundreds of target faults. To supply thousands of care bits from an 
LFSR seed would require an LFSR with at least as many bits, cer- 
tainly an impractical approach. Another approach continuously 
streams “seed bits into a smaller LFSR [15], but during the fill-up 
cycles too few care bits can be controlled, while later too many bits 
are available to control the remaining few care bits. We chose to use 
an LFSR of reasonable size (250 - 500 bits) and limit DBIST ATPG 
to a smaller number of care bits per test pattern, about 19 bits less 
than the LFSR size [9]. 

For large designs that require thousands of highly compacted deter- 
ministic patterns to fully test, the number of care bits per pattern 
decreases very rapidly. After a few hundred patterns, test cubes are 
only about one hundred bits, and the last hundreds of patterns have 
test cubes of around 20-40 bits each. Several small test cubes can 
be encoded into a single seed [lo]. After loading a seed, the LFSR 
is clocked during each intemal chain shift and provides all needed 
care bits for the loads of several consecutive patterns. 

To generate DBIST test patterns and encode them as seeds, test 
generation, encoding into seeds, and fault simulation are alternated 
to obtain an optimal set of seed-encoded patterns. Unlike previous 
methods [lo], [ l l] ,  a variable-sized set of patterns is first created 
by ATPG and then encoded into a single seed; the set encoded into 
a single seed may contain any number of patterns and need not be 
augmented with dummy cubes or random pattems. If the system of 
equations to satisfy all care bits in a pattem set has no solution (no 
seed exists), the care bits associated with the last targeted fault are 
removed and the resulting reduced system of equations is solved. 
We found that, in 98% of cases, a seed could be found to satisfy all 
care bits; for the remaining cases, a seed was found after removing 
a small number of care bits. 

The test-pattern generator [ 181 was modified to generate and add 
test cubes to each pattern until the total number of scan cells set for 
all patterns reaches a user-selectable limit, total-cells, or the num- 
ber of patterns reaches its limit, patsger-set; patsqer-set is also 
user-selectable, but is set to a high enough value (at least 20) to not 
limit the generation of an optimally encoded DBIST pattern set. 
The test generator targets as many faults as possible in a single pat- 
tern but, at the same time, limits the number of scan cells set to a 
selectable limit, cellsgerqattern. Unlike previous methods [ 1 13, 
DBIST ATPG uses the same powerful fault dynamic compaction 
algorithm as deterministic ATPG and need not be biased toward 
patterns with the least number of specified bits. 

Controlling the set of patterns encoded into a single seed by the two 
selectable limits, cellsqergattern and total-cells, minimizes 
total data volume and number of patterns at the same time, without 
the added complexity of changing the LFSR polynomial [lo]. 
Computing LFSR seeds for multiple patterns results in full utiliza- 
tion of each seed, particularly towards the tail end of the pattem set 
where each compacted pattern has only few care bits. Minimizing 
the total number of seeds directly reduces total test data because 
MISR signatures, the other component of test data, represent only 
a very small part. Minimizing test data is most important for self- 
test implementation of DBIST if all data is to be stored on-chip. 

5. COMPARING DBIST WITH DETERMIN- 
ISTIC PATTERNS 

DBIST encodes load data into LFSR seeds and unload data into 
MISR signatures; most data is taken by LFSR seeds. The data 
reduction vs. deterministic ATPG can be computed as: 

( 3  C e l l s )  . (1) 
Datadet  Patde t  P a t s p e r s e e d  
Databis t  Patb is t  PRPGlen 
--- 

assuming that 2 bits are required to store unload data and only 1 bit 
is required to store load values; Putdet and Patbist are the number 
of deterministic ATPG and, respectively, DBIST patterns; Cells is 
the number of scan cells; PutsperSeed is the average number of 
DBIST patterns that use the same seed, typically 1.5 - 3 (section 6); 
PRPGlen, the number of bits of the PRPG LFSR, is from 250-500. 
For very large designs (last rows in Table 1) larger or additional 
PRPGs and MISRs can be added to support as many internal scan 
chains as desired. 

The number of scan chains in deterministic ATPG is limited by 
available pins. By contrast, DBIST can use a large number of 
shorter, internal chains, achieving a tester cycles reduction: 

Cdet  Patde t  Clendet  
Cbis t  Patbis tClenbis t  
-=-- 

Clendet and Clenbist are the length of scan chains when determin- 
istic ATPG and, respectively, DBIST patterns are applied. The 
number of scan chains in DBIST mode can be larger than the num- 
ber of scan chains in deterministic ATPG mode, on the average, by 
a factor of 20 - 30, because DBIST chains do not require tester pins. 
Consequently, Clenbist is, on the average, 20 - 30 times smaller 
than Clendet. 

6. RESULTS 
This section provides experimental confirmation of the assump- 
tions made when comparing DBIST with deterministic patterns 

Patde t  1 
Patbis t  2 

(section 5). The most critical assumption is that - 2 - ; this 

ratio directly affects the reduction of both data (equation (1)) and 
cycles (equation (2)). The data reduction further depends on 
PutsperSeed, the average number of DBIST patterns that use the 
same seed; the cycle reduction depends on the length (Clendet) of 
scan chains available in deterministic ATPG mode. Results mea- 
sured on several industrial designs are shown in Table l. The total 
design sizes are estimated as number of equivalent NAND-gates. 
The area overhead of DBIST logic is I-2%; larger or multiple 
PRPGs and MISRs support more internal chains, thereby reducing 
chain length and total cycle count, but increasing the area over- 
head. The number of scan cells and the total number of faults are 
also shown as measures of design size. 

For all designs, the fault coverage obtained from deterministic 
ATPG and from DBIST pattems were within 0.2% (differences 
were due to different fault accounting), ranging from 98% to 99+%. 
The number of seeds for DBIST patterns increases with design 
size, but the ratio Patsperseed remains within a small range (1.5 to 
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Table 1. DBIST results. 

#gates 
(1000s) 

150 

I Design size I ATPG results I DBIST effectiveness I 
Patdetl CPUdetf Patsper Datadet  C d e t  #scan cells #faults #chains #chains PRPGIen #seeds 

(1000s) (1000s) (det) (bist) (total) Patbist CPUbist Seed Databis t  Cb i s t  

6.4 216 16 512 257 458 0.5 2.6 1.4 55 11.8 

-- 

1 
Patbis.t 2 

3). More importantly, ~ Patdet 2 - as expected. Interestingly, the 

total CPU time for DBIST is less than the CPU time for determin- 
istic pattems even though DBIST includes additional operations 
(such as seed encoding) and generates more pattems; this is due to 
the fact that deterministic ATPG tries much harder to merge faults 
into a pattern whereas DBIST ATPG is limited by 
cellsqerqattern, which limits the fault-merging effort. As 

expected, the DBIST data reduction Datadet  
Databis t  

increases with the 

number of scan cells; the DBIST cycles reduction 

constant and larger than 10 (Table 1). 

is about 
Cbis t  

7. CONCLUSIONS 
We presented DBIST, a deterministic BIST method that combines 
test-generation, LFSR-seed encoding and fault simulation to 
achieve the same high fault coverage as deterministic ATPG while 
applying patterns in a logic BIST architecture. The number of pat- 
tems encoded into a single LFSR seed varies continuously to 
accommodate the most efficient encoding. LFSR seeds control all 
care bits in all patterns. We also presented a mechanism that allows 
seeds to be loaded and the LFSR reseeded with no cycle overhead. 
The resulting patterns are fully compatible with scan testers. 
DBIST can be applied to all fault models that deterministic test 
generation supports. DBIST can also be implemented as self-con- 
tained BIST, storing the seeds on-chip. Both test data volume and 
tester cycles are significantly reduced over highly compacted 
deterministic pattems while obtaining the same test coverage. The 
method presented is fully integrated into an automated flow that 
performs all design modifications, rules checking and DBIST pat- 
tem generation. 
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