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Abstract 
This paper addresses two key concepe in device test pro- 
gram development: test class programming and pattem 
management. These are explored in the context of an open 
architecture test system, where the primary requirement is 
the flexibility to integrate extemally developed capabilities 
into fhe system. Development against an open architecture 
test system includes the integration of sofhare-based solu- 
tions (such as user-developed test classes) and thirdparty 
hardware modules, including the sofhare necessary to 
support the modules. This paper focuses on the open 
architecture facets of test programming and pattem mon- 
agement, as embodied in the OPEN STAR^' specification. 
The softwoe for Advantest Corporation's T2000 system is 
used as a concrete example for highlighting these concepts. 

1 Introduction 
Several innovative approaches to cutting the cost of testing 
have been presented over the last decade or so [l] - [5 ] ,  
ranging from parallel device under tesf (DUT) operation 
[I], which is now a standard feature of most high-end test- 
ers, to a call for an open architecture (OA) test system [3]. 
It is in this last area that there has recently been a lot of 
interest [6] - [13], both in the semiconductor manufactur- 
ing community, and the ATE vendor space. The 
OPENSTARTM test system [13], proposed by the Semicon- 
ductor Test Consortium (STC), is such a system, whose 
goal is to provide an architectural solution, under which 
third party software and instruments can be developed, 
certified individually, and integrated reliably into ATE. 
This architecture is aimed at allowing deployment of ATE 
by a customer in a "plug and play" manner. 

' OPEN STAR^ is a trademark of the Semiconductor Test Consor- 
tium (STC). 

The essential hardware attributes of an open architecture 
ATE have been discussed in [6] ,  [IO], [13]. To make fun- 
damental improvements in cost, competitive capability, 
platform support, and performance scaling, it is necessary 
that ATE move from proprietary platform architectures to 
modular solutions that scale and encourage multiple snp- 
plier participation [6].  

As mentioned in [SI, a key component in enabling such an 
architecture is the system software, and its ability to sup- 
port extensions with minimal required changes. Ideally, 
there should be no need for re-compilation into executable 
machine code for additional or new vendor-provided func- 
tionality. 

For the end user, two very desirable elements in a test sys- 
tem are a test control programming environment, and a 
software runtime measurement or test object. Such a sys- 
tem should provide 

1. a modular development environment, permitting users 
to write individual components dealing with different 
aspects of the test, and then mixing and matching them 
in various ways; 
an iterative development environment, with opportuni- 
ties for minimizing recompilation efforts when only 
parts of a test program, and not the entire test program, 
change; 
a way to separate test methodology from DUT- 
specific data, thereby allowing code reuse in their test 
objects; 
a way to generalize test methodology providing ob- 
jects; and 
a degree of  insulation from vendordependent charac- 
teristics of the OA test system. 

Equally important to the testing process is the management 
of the test patterns used to exercise and evaluate the DUT. 
While the Stondard Test Interjace Language (STIL) [ 141 is 
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especially suited for representation of digital device pat- 
terns, in the context of ai open architecture test system, the 
pattem management scheme must allow for seamless inclu- 
sion of user-defined pattern formats, even some that are not 
intended for digital device testing. The pattern management 
system must allow the integration of these user-defined 
pattern formats in such a way that the specific contents of 
these formats may remain unknown to the framework; only 
the means to access these data are relevant. 

Traditionally, a high-level language such as C, C-H or 
Java, or a proprietary language fiom a particular vendor, 
has been used for test programming. Currently, there are 
testers fiom several vendors with disparate and incompati- 
ble programming environments and proprietary data ma- 
nipulation methods for DUI test implementation. These 
offen require a major effort in coding and making new re- 
leases to accommodate new functionality. Recently, the 
approach of [I21 is one of the fmt that targets an OA para- 
digm, and deals with some of the above goals. 

In contrast to currently existing test systems, the 
OPENsTARTM standard proposes a complete test program- 
ming environment in support of all the above goals [13]. 
While using the ANSUISO C++ language for test pro- 
gramming, it, at the same time, allows hiding of the com- 
plexity of that language' kom the less sophisticated user 
through a much simpler test programming language, the 
OPENSTARm Test Programming Language (OTPL) [15], 
and a compiler to transform programs written in that lan- 
guage to C*. The standard also provides for a pattern 
management framework designed to allow the incorpora- 
tion of externallydefined pattern syntax in support of third 
party vendor modules. 

It must be clearly understood here that OTPL is neither 
necessary nor recommended for test programming in the 
OPEN STAR^ system, which can he accomplished perfectly 
well through only the use of ANSI C H ;  the intention was 
not to create "yet another proprietary language", but to 
provide a simpler programming tool for users who did not 
want to be bothered with,using C-H directly. 

This paper uses the T2000 System Software (TSS) - in- 
corporated in Advantest Corporation's T2000 next genera- 
tion open architecture tester - as a concrete example of an 
implementation of the OPENST." specifications. The 
user should fist  refer to a companion paper in these pro- 
ceedings [16] for a discission of the overall software archi- 
tecture of the OPEN STAR^ system, which is essential to the 
proper understanding of; the material presented in this pa- 
per, and which, for the sake of brevity, is not repeated here. 

The rest of this paper is organized as follows. Section 2 
provides a short overview of the software programming 
environment in the TSS. Section 3 provides a brief de- 
scription of how the TSS test development environment 
supports modularity, and an iterative development envi- 
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ronment for user test programs. Sections 4 and 5 introduce 
and describe the techniques used in the TSS to realize the 
goal of generalizing a user measurement (test) object, while 
section 6 describes pattern management in an open archi- 
tecture framework. Finally, section 7 provides a summary. 
Note that a discussion of providing insulation from vendor- 
specific elements and enhancements in an open architecture 
environment, being an entire topic in itself, is beyond the 
scope of this paper; it is discussed in detail in [ 131. 

2 The Programming Environment 
The native operating system platform for the TSS is Micro- 
soft Windows, chosen in order to leverage the large number 
of development tools available, as well as for its low cost. 
This also has benefits in program and support portability 
(e.g., a field service engineer could connect his laptop 
which runs the tester operating system to perform advanced 
diagnostics). However, for large compute-intensive opera- 
tions (such as test pattern compiles), the relevant software 
is unbundled, and capable of running independently to al- 
low job scheduling across distributed platform. 

2.1 Native Interface Language 
ANSVISO standard C+t is the native interface language of 
the OPENST" system, and hence, of the TSS platform. 
There are performance and platform issues associated with 
the choice of any approach for providing a system inter- 
face. C t c  was chosen as the best candidate for addressing 
both these concerns. Other popular system interface mod- 
els, such as Microsoft's Component Object Model (COM), 
have an adverse impact on both these fronts as far as 
OPENSTAFP requirements are concerned, and yet other 
choices such as the Application Binary Interface (-1) on 
Sun Microsystems' Solaris OS are obviously not suited for 
the Windows platform. Another popular language with 
abstract interface support, Java, though very suitable for 
components such as graphical user interfaces (GUS), is 
demonstrably slower than C++ when it comes to systems 
programming. Since it was judged that a source-level 
compatibility, in terms of a widely-applicable and effi- 
ciently implemented language, was essential, C+t was the 
best choice. Of course, there are a multitude of options 
available (to provide a layer over the OPENSTARTM C++ 
interfaces) that allows a third party to integrate into any 
OPWSTARTM system with a language of their choice, but 
this is a responsibility of the third party. 

3 Test Programming in TSS 
The principal user component of the TSS programming 
environment is the test plan. A test plan is a test program 
written by the test engineer. The test plan uses measure- 



menf or test classes, which realize the separation of test 
data and code (and hence, the reusability of code) for par- 
ticular types of tests. 

The test plan may be written directly as a Ci+ test pro- 
gram, or described in a set of test plan description files, 
using the OPENSTAR~ Test Programming Language 
(OTPL) [13], [15]. These files are processed by the OTPL 
compiler to produce C++ code. The generated C* code is 
then compiled into the executable test program, which is in 
the form of a dynamic link library (DLL). The data re- 
quired for populating a test class instance are parameterized 
by the user in the test plan description files. 

3.1 OTPL Support for Modularity 
The OTPL defines the syntax and semantics of files that 
provide the input for a test program. One of the objectives 
to be met in the design of this language was modulari’ry. A 
test programming language supports modular development 
if it permits users to write individual components dealing 
with different aspects of the test, and then permits these 
components to be mixed and matched in various ways to 
yield a complete test program. To this end, the OTPL al- 
lows for the information needed for a test program to be 
assembled together fiom several files. These files are in 
support of several OTPL sub-languages, which include, 
among many, a user-variables sub-language, a levels sub- 
language, a timings sub-language, a bin definition snb- 
language, a test plan (flow) sub-language, a pre-headers 
sub-language (for test classes), and so on. 

A single test program comprises a single testplan file, and 
the files it imports. An “import” refers to another file with 
data that is either directly referenced by the importer (the 
file that specifies the import), or is imported by some other 
file directly referenced by the importer. The test plan file 
could define OTPL objects within it, or it could import this 
information fiom other files. The OTPL allows any of the 
above language components to be either in their own indi- 
vidual files, or directly in-lined into a test plan file. Note 
that the test plan is similar in concept to a C/Ct+-language 
main ( )  function. 

’ 3.2 Building an OTPL Test Program 
The OTPL test program description files specify the objects 
used in a user test plan, and their relationships to one an- 
other. These files are translated to C+t code by the OTPL 
compiler, and are meant to be executed on a T2000 Site 
Controller (cf. [16]) in the form of an implementation of 
the standard OPEN STAR^ interface ITestPlan. This code 
is packaged into a Windows dynamic link library (DLL), 
which can be loaded onto a Site Controller. This DLL is 
known as the testprogram. The test program DLL is gen- 
erated to have standard known entry points that the Site 

Controller software can use to generate and retnrn the 
TeStPlan object it contains. 

The process of conversion fiom a test plan OTPL descrip- 
tion to an implementation of ITeStPlan is accomplished 
by the OTPL compiler in two phases: translation and com- 
pilation, as follows: 

In the translation phase, the OTPL compiler processes 
a test plan file (and the various other OTPL files it im- 
ports), as well as the OTPLpre-headers for all the test 
types used in the test plan (cf. $5.2). In this phase, it 
creates the Ct+ code for the TestPlan object and the 
C+t headers for the test types encountered, along with 
all other supporting files, such as project makefiles, 
DLL “boilerplate” code, etc. 
In the compilation phase, which occurs after the OTPL 
compiler has created the necessaq files, a native Ci+ 
compiler is invoked to compile the files and link them 
into a DLL. 

3.2.1 Iterative Development Support 

Consider the conversion and compilation of a test plan de- 
scription file MyTeStPlan. tpl that uses (i.e., imports) a 
levels definition OTPL file MyLevels . lvl. If, after build- 
ing the MyTestPlan DLL, the user made a change to the 
defmitions of levels (i.e., operating parameters) in 
MyLevels. lvl, he would then invoke the OTPL compiler 
again, passing it the main test plan description file 
MyTestPlan. tpl. The OTPL compiler would recognize 
that the main test plan file is unchanged, so that MyTest- 
Plan. h/ . cpp would not be recreated. However, while 
processing the main test plan file, it would see that the 
MyLevels . lvl file has changed. Therefore, it would rec- 
reate the MyLevelS . cpp file. The native Ctt. compiler 
would then be invoked to rebuild the test plan DLL. This 
avoids recompiling MyTeStPlan. cpp, and Ody compiles 
MyLevels . cpp and re-links the DLL. 

Thus, the modular, separate file-based approach in OTPL 
programming, together with the OTPL compiler support for 
regenerating C* output files only if the generated source 
is different fiom the present source, is especially useful in 
cutting down re-compile and re-link times for large test 
plans that take a significant amount of time to compile. 

3.3 Running a Test Program 
The Site Controller software loads the test program DLL - 
and test class DLLs - into its process space and calls a 
“factory” function [I71 within the DLL to create an in- 
stance of the TestPlan object. The TestPlan object in 
tum uses “factory” functions to create test class instances 
for the test types it contains fiom the corresponding test 
class DLLs. Once the TeStPlan object and its subordinate 
test class objects have been created, the Site Controller 
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sofhvare can then execute the test plan or interact with it in 
any other way. 

4 Test Objects in TSS 
If a test program is written for a DUT, in general more than 
ninety percent of the program code is datu for device test, 
and the rest is the “real” code which realizes the test meth- 
odology. The data is DUT-dependent (e.g., power supply 
conditions, signal voltage conditions, timing conditions, 
etc.). The test code consists of methods to load the speci- 
fied device conditions onlto ATE hardware, and also those 
needed to realize the use! specified objectives (such data- 
logging, etc). The TSS framework provides a hardware- 
independent test and tester object model that allows the 
user to perform the task of DUT test programming. 

Since test methodology is a significant component in de- 
vice test quality and tester productivity, a limited number 
of persons are generally permitted to create and modify test 
programs, which should thus be encapsulated and bidden 
from the end users. This separation results in the safer op- 
eration of the system. Moreover, to increase the reusability 
of test code, such code should be independent of any de- 
vice-specific data (e.g., pin name, stimulus data, etc.), or 
device-test-specific data, (e.g., conditions for DC tests, 
measwement pins, number of target pins, name of pattern 
file, addresses of pattern programs, etc.). If code for a test 
is compiled with data of these types, the reusability of the 
test code would decrease. Therefore, any device-specific 
data or device-test-speciqc data should he made available 
to the test code ezrernally, as inputs during code execution 
time. 

In the TSS, a test class, which is an implementation of the 
standard OPENSTARTM ITeSt interface, realizes the separa- 
tion of test data and code (and hence, the reusability of 
code) for a particular type of test. Such a test class could 
he regarded as a “template” for separate instances of it, 
which differ from each other only on the basis of device- 
specific andor device-test-specific data. Instances of test 
classes are specified in the test plan file. 

Each test class typically implements a specific type of de- 
vice test or setup for device test. For example, functional, 
AC and DC paramefric tests could be implemented by 
separate test classes. While the system might implicitly 
h o w  about the interfaces for certain basic and often-used 
test classes (for which the system itself provides implemen- 
tations), custom test classes can also be freely used in test 
plans. The use of these custom test classes do not require a 
recompilation of system code that deals with the classes, 
and the making of any new release. This is because OTPL 
supports a generalization mechanism whereby all test 
classes are required to derive from the standard 
OPENSTARm ITest intkrface, and that is all the system 

deals with in its interaction with any test object. Customi- 
zation is made possible through the capabilities in OTPL to 
describe a custom test (with its own parameters) as a spe- 
cialization of the ITeSt interface. 

Test classes allow the user to configure class behavior by 
providing parameters that are used to specify the options 
for a particular instance of that test. For example, a func- 
tional test may take parameters called PLis t :  and Test- 
Conditions, to specify the list of pattems to execute, and 
the levels and timing conditions for the test, respectively. 
Specifymg different values for these parameters (through 
the use of different “Test” blocks in the test plan descrip- 
tion file) allows the user to create different instances of a 
Functional Test. Figure 1 shows how different test in- 
stances would be arrived at from a single test class. These 
instances would be specified in the test plan, and in gen- 
eral, can obtain their specific data either from defmitions of 
test parameter objects in the test plan, or algorithmically at 
rnntime, or even interactively at runtime through applica- 
tions that are able to manipulate their interfaces. 

I I 

U 

Figure 1. Test Class Use in TSS 

As mentioned above, test classes derive from ITest. That 
is, these are C-K classes that implement the standard 
OPENSTARTM ITest interface. In addition to the methods 
specified for the ITeSt interface, these classes provide the 
test-specific intelligence and logic required to perform spe- 
cific classes of device test. Test classes also implement the 
standard OPENST“ IFlowable interface. As a conse- 
quence of this, instances of test classes can be used in test 
flows - i.e., as flow items - in the test plan, to create a 
complex execution sequence of device tests. 

From the user’s perspective, these classes should be de- 
signed to allow the OTPL compiler to take the description 
of the tests and their parameters from the test plan file and 
generate correct C-H code, which can be compiled and 
linked to generate the test program. The next section 
shows how generalization of test class descriptions, allow- 
ing flexible customization of test classes, is made possible 
in OTPL. 
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5 Generalization of Test Classes 
OTPL provides a generic mechanism for defining any test 
class in the system. Thus, test class creators can use this 
mechanism to create custom test classes that can be loaded 
and used by the system without any additional facilities 
being necessary. Test class creators can develop their own 
classes implementing the ITeSt standard interface. While 
it is possible for them to do so entirely in native C+t, 
OTPL provides a mechanism that allows the customization 
of user test classes in a much simpler manner. This section 
presents the pre-header sub-language of OTPL that en- 
ables this. First, we discuss the requirements for an intro- 
spection capability on the part of the system to make this 
possible. 

5.1 Introspection Capability 
If an object of a test class could be interrogated regarding 
its methods and signatwes, then it could be verified that the 
appropriate parameters are available for inclusion in the 
generated source code. Such a feature would be very use- 
ful for error checking and validation during the translation 
phase. If the test engineer made a mistake in the names of 
parameters, or the number (or possibly the types) of argu- 
ments to these parameters, the translation phase could catch 
it and provide a meaningful error message at translation 
time instead of waiting for a compile-time error message 
fiom the C+t compiler. This would be more useful, and 
probably more understandable, to the test engineer. 

Introspection refers to the ability to ask an object to look 
within itself and retnrn information regarding its attributes 
and methods. Some languages, such as Java, provide this 
ability as a part of the language. Other languages, such as 
Visual Basic, impose such a requirement on objects in- 
tended to be used with it. C++ makes no provisions for this 
feahue. 

This method also lends well to providing for default pa- 
rameter values, as well as indications of optional parame- 
ters. In addition, if this capability is provided as a part of 
the implementation of all test classes, then GUI applica- 
tions could also use this information to dynamically build 
up dialogs and other user interface elements to help engi- 
neers make effective use of these classes. 

However, the disadvantage of providing this type of a fea- 
ture is that it adds a level of complexity to the implementa- 
tion of both the OTPL compiler and the test classes. This 
is due to the fact, as mentioned above, that C-H does not 
provide language support for this feature'. 

As we have seen in $2.1, languages that do have native support 
for inirospection were not deemed efficient enough for the 
OPENST" requirements. 

These complexities are offset in the TSS through a mecha- 
nism that provides, in lieu of full introspection, a method 
that allows the test class developer to fully specify, in a 
single text-based source file @er test class), the public 
methoddattributes of the test class that the developer has 
designated as the ones required to parameterize the class. 

It is important to emphasize the need for a single source: 
one would not want to have the description of the parame- 
terization interface of a test class in one file, and the C++ 
interface description in another independent (header) file, 
and then be burdened with the need to keep both sources 
synchronized. Towards this end, the "text-based" descrip- 
tion is embedded in a pre-header file for the test class. 
This is used by the OTPL compiler for limited introspec- 
tion, and for generating the Ci+ header for the test class. 
The generated C+t header file is the one used to finally 
compile the test class C+t code. 

5.2 OTPL Pre-Headers Sub-Language 
Consider the following excerpt from an OTl'L test plan 
source file, which defmes an instance FunctionalTestl 
of a test of type MyFunctionalTest (the OTPL language 
keywords have been emboldened, and their precise mean- 
ings are not relevant in this discussion, except to note that a 
Testcondition is used to define a selector-resolved in- 
stance of  a condition parameter for a test, such as levels or 
timings): 

. . .  
Testcondition TCl 

# A previously defined group'for levels 
TestCOnditionGroup '= TCG1; 
Selector = min; 

( 

1 

{ 
Testcondition TC2 

# A previously defined group for timings 
TestConditionGrOup = TCG2; 
Selector =.min; 

1 

t 

. . .  
Test MyFunctionalTest FunctionalTestl 

# Previously defined patcern list 
PListParam = patlistl; 
TeStConditionParam = TC1; 
TestConditionParam = TC2; 

) 

Listing 1. Test Plan OTPL Code Example 

Assume that MyFunctionalTest is implemented as a 
C++ class having base classes Test 1 and TestZ, and hav- 
ing members which are a mist, and an array of Test- 
Conditions. The OTPL compiler needs to know about 
the types of the members of MyFunctionalTest in order 
to recognize that the above declaration of Functional- 
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Test1 is legal. Furthemore, in order to generate a Ctc 
object declaration for FunctionalTestl, a C+t header 
for the class MyFunctionalTest needs to be constructed. 
This requires OTPL to also h o w  about the base classes, if 
any, of the MyFunctionalTest class, the names of its 
members, and other such information. 

Rather than building in the howledge of a MyFunction- 
alTest into OTPL, the definition of what a MyFunction- 
alTest entails is specified through the pre-header sub- 
language of OTPL. This forms the hasis of generalizing 
the test class description process. The pre-header suh- 
language provides the OTPL compiler with the information 
it needs to both recognize the legality of OTPL declara- 
tions, and to generate Ctc headers and object declarations 
that correspond to an OTPL declaration. 

One could thus Write a pre-header, MyFunctional- 
Test. ph, that supports the above parameterization as fol- 
lows (assume that pre-headers are available for the base 
test classes Testl and Test2; note that the meanings of 
OTPL keywords, such as Testclass, and OTPL compiler 
variables, such as SClassName, will become clear as one 
progresses through the example exposition) : 

Import TeGtl.ph; , #  For base class Testl 
Import Test2.ph; ' #  For base class Test2 
TestClass = MyFunctionalTest; # The name 
hbliCBa8es = Testl, Test2; # Base test classes 

# The parameters list: 
Parameters 

# 
#.The following declaration specifies that 
U a MyhlnctionalTest has 
# - one parameter of OTPL type PList, 
# stored in a member named mqPatList; 
# - a function to set it, named 
# SetPatternTree; and 
# - a textual description for it. 
# 
PList PListParam 

f 

, 
Cardinality. = 1; 
Attribute .=, mgPatList; 
Sethnction = SetPatternTree; 
Description, = "The PList parameter I* 

for MyFUnC t ionalTes t (* ; 

) 
# 
# The following declaration specifies that a 
# MyFunctionalTest has 
# - one or more parameters of OTPL type 
# Testcondition, 
# - stored in,a member named 
# m-testcondnsarray; 
# - a function to set it, named 
# addTestCpndition; and 
# - a textual description for these. 
# 

Testcondition TestConditionParam 

Cardinality = 1-n; 
Attribute = m-testcondnslirray; 
SetFunction = addTestCondition; 
Description = "The TC parameter for" 

{ 

.MyFunctionalTest"; 
1 

1 

# 
# The section below is part of the pre-header 
# which is an escape into C++ code. 
# 
# Everything below is reproduced verbatim 
# in the generated header file, except the 
# compiler variables prefixed with $ S .  

# 
CPlUsPlUsBegin 

SImportDeclarations 

namespace OFC 

class SClassName : SPublicBasea 

// Array types for parameters storage: 
SParamArrayTypes 

public: 

{ 

( 

$Enumerations 

virtual void preExec0; # ITeSt method 
virtual void exec(); # ITeSt method 
virtual void postExec0; # ITeSt method 

SParamRmctionneclarationa 
... 

private: 
double m-somevar; 
SParmttributes 
. . .  

1; 
. .. 
SParamRmctionImplentations 

. . .  
) / /  End namespace OPC 
CPluaPlusEnd 

Listing 2. OTPL Test Class Pre-Header Example 

The above will result in the generation of a C+t  header file 
with a declaration for the MyFunctionalTest class (im- 
plementing the ITeSt interface) as shown below. 

5.2.1 C++ for Parameterized Test Classes 

As the OTPL compiler processes the above pre-header file, 
it builds up the values of the OTPL compiler variables such 
as SImportDeclarations (for Test1 and Test2), 
SClassName (i.e., MyFunctionalTest), SParamAr- 
rayrypes (a C+t typedef necessitated by the declaration 
Of "Cardinality=l-n" for the TestConditionParam 
parameter), and others. 
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This enables it to then create the following Ct+ header by 
reproducing the C* code (between CPlusPlusBegin and 
CPlusPlusEnd) verbatim while expanding in the values 
(shown in italics) ofthe OTPL compiler variables $Im- 
PortDeclarations, SClassName, etc., at the indicated 
places. From MyFUnCtionalTest .ph, it thus creates the 
following C-H header file MyFunctionalTest . h for the 
MyFunc t iona 1 Test test class: 

#include cITest.h, # System header 
#include <Testl.hr # SImportDeclarations 
#include cTest2.h> # SImportDeclarations 
#include <vector> # Ctt STL header 
#include cLevels.hz U System header 
#include <TestCondnGrp.h> # System header 
. . .  
namespace OFC 

class MyFmctionalTest : public ITest, 
public Testl. 
public Test2 

{ 

{ 
/ /  Array types for parameters storage: 
public: 

typedef std;:vector<OFC::TestCondition * z  
TeStCOndi tionPtrsdry- t; 

public: 
virtual void preExec0; # ITest method 
virtual void exec(); # ITest method 
virtual void postExec0; # ITeSt method 

public: 
void setPatternTree10FC::PatternTree * ) ;  
void addTeStConditionlOFC: :Testcondition *I ; 

private: 
double m-somevar; 

private: 
OFC: :PatternTree 'mgPatList; 
Test Condi tionPtrsdry- t m- tes tcondnsdrray; 
. . .  

) ;  
. .. 
inline 0FC::String MyFunctionalTest:: 

getXMLDescription0 
{ 

. . .  
I 

} / /  End namespace OFC 

Listing 3. Generated C++ Code for Listing 2. 

The meanings of the keywords and the resulting constructs 
will become clearer when one reads 55.3 below. Note that 
the OTPL compiler would also generate the following code 
(in the test plan CCC source) for the MyFunctionalTest 
construct shown in Listing 1: 

MyFunctionalTeSt FunctionalTestl; 
FunctionalTestl.setNamel"FunctionalTeStl"1: 
FunctionalTestl.setPatternTree(&patListl); 
FUnctionalTestl.addTestCondition(&TCl); 
FunctionalTe~tl.addTestCondition~hTC2); 

5.3 Pre-Header Contents 
A test class pre-header has, among others, the following 
declarations: 

Optional Imports, as in other OTPL files. 
The mandotory name of the test class. 
The optional list of public base classes 
The optional Parameters section specifying the pa- 
rameters of this test class (this is described in greater 
detail in 55.3.1 below). 
The mandatory C-H section providing a template for 
the test class. This template allows the test class au- 
thor direct control over the C-H header generated for 
this test class, and should be between the keywords 
CPlusPlusBegin and CPlusPlueEnd. It Uses Vari- 
ous replacement indicators (such as SImportDe- 
clarationa, SClaasName, SParamASrayTypes, 
SParWunctionDeclarations, SParamAttrib- 
Utes, SPardunctionImplementations, etc.) 
which specify the locations for various declarations. 

5.3.1 Pre-Header Parameters Section 

The Parameters section of an OTPL pre-header is used 
by the test class author to specify parameters for the test 
class. These are basically members of the test class that the 
test class user can specify in instances, providing fmer con- 
trol of the operation of the test. For instance, a test class 
author could declare a parameter TraceLeveL, which can 
be specified by a test class user in order to coulrol the level 
of tracing when the test executes. 

There are three types of entities that can he declared within 
the Parameters section of a test class: 

1. 

2. 

Enumerations using the mum keyword. 

Parameters using keywords such as Integer, PList, 
etc. specifying the parameter type, where the type is a 
valid OTPL type. 

Groups of parameters using the ParamGroup key- 
word. 

The Enum keyword is used to define a test class enumerated 
type. The test class can then have parameters of this enu- 
merated type. This can also be used by a GUI to construct 
a drop-down list of the allowed values for the parameter. 

Individual parameters of the test class can be declared 
within the Parameters section. Parameter declarations 
have a syntax which declares the type of the parameter, its 

3. 
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name, and then various properties of the parameter. 
Among the most important ones are the following: 

Card ina l i ty :  This indicates the number of parame- 
ters of this trpe that will be supported. The details of 
the allowable values are given in [ 151. 

At t r ibu te :  The name of the C-H variable to use as 
the store for parameter value(s) of this type. 
SetPunction: The name of the function to use for 
setting a value for this parameter. An optional key- 
word ‘‘ [implement]” following the function name 
would indicate that a trivial implementation for this 
function will be made available as an inline method in 
the class header (inserted at the point indicated by 
$Parami?unctionImpleentations). Otherwise, 
the user is responsible for providing an implementation 
of the function. 
Description: A string that can be used by a GUI to 
provide a tool-tip in a window that displays the pa- 
rameter and its value. This description, along with 
other information ‘about each parameter (such as its 
type, cardinality, and value), are made available to a 
GUI via a get iMLDescript ion0 method (cf. 
Listing 3), which is described in greater detail below. 

Finally, the ParamGroup keyword is useful to collect a 
number of different parameters as a group, similar to a C++ 
class. 

5.4 XML Export of Test Class Parameters 
Since test classes support class-specific parameters, no 
application will be able to know a priori all the parameters 
of all test classes. Therefore, to support all test classes in a 
generic fashion, the OTPL compiler generates the method 
“OFC: : S t r i n g  getXMLDescriptionO”(See the exam- 
ple given in Listing 3).: This function retums an XML de- 
scription string. The description of the parameters for an 
instance of a class comprise information about each of the 
parameters of the class, and all classes of which it is di- 
rectly or indirectly a subclass. This information includes 
name, data type, current value, application hints (e.g. multi- 
select), etc. The TSS tools application programming inter- 
face (MI) allows for automatic parsing of this string using 
an XML parser, and for providing the resulting data to re- 
questing applications. 

The principal benefit of this approach to the TSS is that it 
provides selfdescribing data that is simple to generate us- 
ing an open standard (=). The data may be parsed by a 
number of standard tools available in several programming 
languages or using an easily written parser. XML allows 
existing applications to.be fiee fiom side effects due to the 
addition of new attributes or elements in the description 
strings. 

This concludes our discussion of the test programming en- 
vironment in the TSS. In the next section, we describe the 
approach taken in the TSS for pattem management in an 
OA environment. 

6 Pattern Data Management 
In an open architecture system, in general, a single DUT 
might be connected to tester modules fiom different ven- 
dors. A module in this discussion refers to a subsystem in 
an ATE product, and can include both hardware and soft- 
ware components. This module participates in the h m e -  
work provided by the TSS. 

The user of the system writes a puf fem focusing on the 
DUT, possibly without regard for the fact that this pattem 
may be compiled for multiple tester modules developed by 
different hardware vendors. This assumes, of course, that 
each of these modules is capable of providing the features 
specified in the pattem. This also includes the possibility 
that vendor-specific pattern formats can be included within 
the pattem file. This has implications for the entire pattem 
compile-load-execute chain. The various issues and how 
the TSS deals with them are described in this section. 

6.1 Open Architecture Issues for Patterns 
In the cnrrent generation ATE, patterns are described using 
a pattern language. There have been efforts to standardize 
this language so that pattems can be shared among different 
ATE systems. One example is the STIL eEort [14]. How- 
ever, there has not been much effort made in the direction 
of also standardizing the compiled object file. One of the 
main reasons for this has been that the generated object 
files are very closely tied to the vendor specific hardware 
and no standard has existed for this hardware. Another 
reason is that various vendors do not want to publicly share 
their proprietary formats. Enforcing a common format 
would also lead to compromises in the efficiency of pattem 
use. 

6.2 The Concept of the Pattern Meta-File 
In ATE systems, as the contents of a pattern object file are 
very closely tied to propriety hardware it is very difficult to 
come up with a general format. However, instead of regu- 
lating the lowest layer of the format, the TSS has promoted 
a mefa-file concept. Traditionally, meta-files have been 
used in graphics to store and transport various formats of 
data that are interpreted by specific end-user applications. 
In a similar fashion, the TSS framework uses meta-files to 
store pattem data. 

The TSS pattem object meta-file has provisions for storing 
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common header information, 
module-specific header information, and 
module-specific pattern data, organized as required by 
tbe module vendor, and capable of being interpreted by 
the module vendor. 

This approach satisfies the need for allowing various ven- 
dors to continue to use their propriety formats as well as 
being able to co-exist in an open hnework. The vendor 
specific sections of the meta-file are treated as opaque bi- 
nary data, about which the framework itself has no internal 
howledge. 

6.3 The Object File Manager 
A vendor's compiler will not directly create the pattem 
object meta-file described in $6.2. Instead, the TSS pro- 
vides an Object File Munuger (OFM) b e w o r k  that is 
instrumental in the creation of pattem object meta-files. 
The OFM framework manages the storing of common pat- 
tern data into tbe meta-file, but relies on plug-ins kom 
various module vendors to invoke the compilation of ven- 
dor specific data. The model for the TSS pattern compila- 
tion process can thus be conceptualized as shown in Figure 
2 below. 

I .  

Figure 2. TSS Pattem Compilation 

Each module vendor is responsible for providing their own 
pattem compiler, in the form of a dynamically loadable- 
shared library. This library is required to provide, at the 
very least, a complete implementation of the required 
OPEN STAR^ interfaces, so that it can function as part of 
the OFM framework. 

The OFM framework also provides a set of interfaces de- 
signed to provide vendor compilers access to common data 
that are required to be able complete the task of pattem 
compilation. This includes access to run-time objects that 
encapsulate the description of DUT pins, DUT sockets and 
DUT timings, for example. It also provides the capability 
for accessing other referenced pattem meta-files, such as 
pattem subroutines. 

The higher-level TSS pattern compiler tool is thus actually 
a composite pattern compiler. It orchestrates the compila- 
tion of pattems by itself reading various system configura- 
tion files, but depends on the various module compiler 
plug-ins to actually compile the vendor specific pattem 
data. 

6.4 OFM and Vendor Compiler Interactions 
The user invokes the compilation of a TSS pattem by sup- 
plying the filename of the pattem source file. The compiler 
instantiates a sohare entity (say, PatternObjMeta- 
File), representing the pattern object meta-file, with this 
name. If the user has specified an overwrite mode, the 
original contents of the meta-file, if any, are destroyed. 
Otherwise, when the OFM calls the open0 method of 
PatternObjMetaFile, the common contents are up- 
loaded from the meta-file on disk. The OFM then queries 
the system configuration files and addshemoves the appro- 
priate vendor module sections in the meta-file. 

After this, the OFM instantiates an object derived from the 
standard OPENSTARm interface IVendorParCompiler 
for each vendor module, after loading that module's com- 
piler library. An implementation of this interface is thus 
required to be provided by the vendor in a DLL. 

The OFM then updates data in the common section by ex- 
plicitly calling the respective methods in the IVendorPat - 
Compiler interface. It makes use of these methods only 
for the fust module's compiler. Vendor compilers need to 
provide support for these methods, and should be able to 
parse the source file and provide the queried data to the 
OFM. Subsequent module compilers can query the OFM 
to get access to the common data shared by the various 
modules. 

The actual compilation of a module's pattem is accom- 
plished by a call to the compile ( method on the vendor's 
implementation of the IVendorPatCompiler interface. 
Vendor module compilers then use another standard inter- 
face (passed in with the compile ( )  call) to access runtime 
information (such as pin information and timing data), as 
well as write their own specific pattem data to disk. 

Note that the TSS pattern compiler tool coordinates access 
to common data such as pin definitions, socket definitions, 
timing data, etc., in such a way as to maximize efficiency, 
not requiring each vendor to re-generate the same data. 

6.5 Pattern Loading for a Module 
In the TSS, each module vendor is responsible for provid- 
ing its own pattem loading mechanism. As seen in $6.2, 
the pattem object meta-file stores module-specific data in 
different sections. The vendor pattem loader implementa- 
tion uses the TSS OFM MIS for accessing the relevant 
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sections fiom the pattern object metafile. The TSS frame- 
work is responsible for calling each module’s load method 
in turn. 

7 Summary 
This paper described the support provided by the TSS for 

a modular, iterative development of user test programs, 
generalized user test object creation, where the system 
allows exactly the same methods to he used to create a 
plethora of parameterized, custom test classes that can 
be treated with exactly the same facility by the system, 
and 
pattern data management in a multi-module, multi- 
vendor open environment. 

These are important, factors in establishing the 
OPENSTARTM system as a versatile open architecture plat- 
form for ATE. 

Due to the very nature ,of the problems it addresses, the 
OPEN STAR^ system is vast, and a complete description of 
it is beyond the scope of this paper, which concentrated 
instead on a few particularly useful factors that contribute 
towards its goals of providing a flexible, modular, scalable 
and open test system. Work is currently in progress in 
making available a detailed specification of the entire 
OPEN STAR^ system. The interested reader is referred to 
[13] for full details. ~ 
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