
TEST PROGRAMMING ENVIRONMENT IN A MODULAR, OPEN
ARCHITECTURE TEST SYSTEM

Ankan Pramanick, Ramachandran Krishnaswamy, Mark Elston, Toshiaki Adachi,
Harsanjeet Singh and Bruce Parnas
Advantest America R&D Center Inc.,

3201 Scott Blvd., Santa Clara, CA 95054, USA

Leon Chen
CPU Tech

5731 W. Las Positas Blvd., Pleasanton, CA 94588, USA

Abstract
This paper addresses two key concepe in device test pro-
gram development: test class programming and pattem
management. These are explored in the context of an open
architecture test system, where the primary requirement is
the flexibility to integrate extemally developed capabilities
into fhe system. Development against an open architecture
test system includes the integration of sofhare-based solu-
tions (such as user-developed test classes) and thirdparty
hardware modules, including the sofhare necessary to
support the modules. This paper focuses on the open
architecture facets of test programming and pattem mon-
agement, as embodied in the OPEN STAR^' specification.
The softwoe for Advantest Corporation's T2000 system is
used as a concrete example for highlighting these concepts.

1 Introduction
Several innovative approaches to cutting the cost of testing
have been presented over the last decade or so [l] - [5] ,
ranging from parallel device under tesf (DUT) operation
[I], which is now a standard feature of most high-end test-
ers, to a call for an open architecture (OA) test system [3].
It is in this last area that there has recently been a lot of
interest [6] - [13], both in the semiconductor manufactur-
ing community, and the ATE vendor space. The
OPENSTARTM test system [13], proposed by the Semicon-
ductor Test Consortium (STC), is such a system, whose
goal is to provide an architectural solution, under which
third party software and instruments can be developed,
certified individually, and integrated reliably into ATE.
This architecture is aimed at allowing deployment of ATE
by a customer in a "plug and play" manner.

' OPEN STAR^ is a trademark of the Semiconductor Test Consor-
tium (STC).

The essential hardware attributes of an open architecture
ATE have been discussed in [6] , [IO], [13]. To make fun-
damental improvements in cost, competitive capability,
platform support, and performance scaling, it is necessary
that ATE move from proprietary platform architectures to
modular solutions that scale and encourage multiple snp-
plier participation [6].

As mentioned in [SI, a key component in enabling such an
architecture is the system software, and its ability to sup-
port extensions with minimal required changes. Ideally,
there should be no need for re-compilation into executable
machine code for additional or new vendor-provided func-
tionality.

For the end user, two very desirable elements in a test sys-
tem are a test control programming environment, and a
software runtime measurement or test object. Such a sys-
tem should provide

1. a modular development environment, permitting users
to write individual components dealing with different
aspects of the test, and then mixing and matching them
in various ways;
an iterative development environment, with opportuni-
ties for minimizing recompilation efforts when only
parts of a test program, and not the entire test program,
change;
a way to separate test methodology from DUT-
specific data, thereby allowing code reuse in their test
objects;
a way to generalize test methodology providing ob-
jects; and
a degree of insulation from vendordependent charac-
teristics of the OA test system.

Equally important to the testing process is the management
of the test patterns used to exercise and evaluate the DUT.
While the Stondard Test Interjace Language (STIL) [141 is

2.

3.

4.

5.

ITC INTERNATIONAL TEST CONFERENCE

0-7803-8580-2/04 $20.00 Copyright 2004 IEEE

Paper 14.2

413

especially suited for representation of digital device pat-
terns, in the context of ai open architecture test system, the
pattem management scheme must allow for seamless inclu-
sion of user-defined pattern formats, even some that are not
intended for digital device testing. The pattern management
system must allow the integration of these user-defined
pattern formats in such a way that the specific contents of
these formats may remain unknown to the framework; only
the means to access these data are relevant.

Traditionally, a high-level language such as C, C-H or
Java, or a proprietary language fiom a particular vendor,
has been used for test programming. Currently, there are
testers fiom several vendors with disparate and incompati-
ble programming environments and proprietary data ma-
nipulation methods for DUI test implementation. These
offen require a major effort in coding and making new re-
leases to accommodate new functionality. Recently, the
approach of [I21 is one of the fmt that targets an OA para-
digm, and deals with some of the above goals.

In contrast to currently existing test systems, the
OPENsTARTM standard proposes a complete test program-
ming environment in support of all the above goals [13].
While using the ANSUISO C++ language for test pro-
gramming, it, at the same time, allows hiding of the com-
plexity of that language' kom the less sophisticated user
through a much simpler test programming language, the
OPENSTARm Test Programming Language (OTPL) [15],
and a compiler to transform programs written in that lan-
guage to C*. The standard also provides for a pattern
management framework designed to allow the incorpora-
tion of externallydefined pattern syntax in support of third
party vendor modules.

It must be clearly understood here that OTPL is neither
necessary nor recommended for test programming in the
OPEN STAR^ system, which can he accomplished perfectly
well through only the use of ANSI C H ; the intention was
not to create "yet another proprietary language", but to
provide a simpler programming tool for users who did not
want to be bothered with,using C-H directly.

This paper uses the T2000 System Software (TSS) - in-
corporated in Advantest Corporation's T2000 next genera-
tion open architecture tester - as a concrete example of an
implementation of the OPENST." specifications. The
user should fist refer to a companion paper in these pro-
ceedings [16] for a discission of the overall software archi-
tecture of the OPEN STAR^ system, which is essential to the
proper understanding of; the material presented in this pa-
per, and which, for the sake of brevity, is not repeated here.

The rest of this paper is organized as follows. Section 2
provides a short overview of the software programming
environment in the TSS. Section 3 provides a brief de-
scription of how the TSS test development environment
supports modularity, and an iterative development envi-

Paper 14.2
414

ronment for user test programs. Sections 4 and 5 introduce
and describe the techniques used in the TSS to realize the
goal of generalizing a user measurement (test) object, while
section 6 describes pattern management in an open archi-
tecture framework. Finally, section 7 provides a summary.
Note that a discussion of providing insulation from vendor-
specific elements and enhancements in an open architecture
environment, being an entire topic in itself, is beyond the
scope of this paper; it is discussed in detail in [131.

2 The Programming Environment
The native operating system platform for the TSS is Micro-
soft Windows, chosen in order to leverage the large number
of development tools available, as well as for its low cost.
This also has benefits in program and support portability
(e.g., a field service engineer could connect his laptop
which runs the tester operating system to perform advanced
diagnostics). However, for large compute-intensive opera-
tions (such as test pattern compiles), the relevant software
is unbundled, and capable of running independently to al-
low job scheduling across distributed platform.

2.1 Native Interface Language
ANSVISO standard C+t is the native interface language of
the OPENST" system, and hence, of the TSS platform.
There are performance and platform issues associated with
the choice of any approach for providing a system inter-
face. C t c was chosen as the best candidate for addressing
both these concerns. Other popular system interface mod-
els, such as Microsoft's Component Object Model (COM),
have an adverse impact on both these fronts as far as
OPENSTAFP requirements are concerned, and yet other
choices such as the Application Binary Interface (-1) on
Sun Microsystems' Solaris OS are obviously not suited for
the Windows platform. Another popular language with
abstract interface support, Java, though very suitable for
components such as graphical user interfaces (GUS), is
demonstrably slower than C++ when it comes to systems
programming. Since it was judged that a source-level
compatibility, in terms of a widely-applicable and effi-
ciently implemented language, was essential, C+t was the
best choice. Of course, there are a multitude of options
available (to provide a layer over the OPENSTARTM C++
interfaces) that allows a third party to integrate into any
OPWSTARTM system with a language of their choice, but
this is a responsibility of the third party.

3 Test Programming in TSS
The principal user component of the TSS programming
environment is the test plan. A test plan is a test program
written by the test engineer. The test plan uses measure-

menf or test classes, which realize the separation of test
data and code (and hence, the reusability of code) for par-
ticular types of tests.

The test plan may be written directly as a Ci+ test pro-
gram, or described in a set of test plan description files,
using the OPENSTAR~ Test Programming Language
(OTPL) [13], [15]. These files are processed by the OTPL
compiler to produce C++ code. The generated C* code is
then compiled into the executable test program, which is in
the form of a dynamic link library (DLL). The data re-
quired for populating a test class instance are parameterized
by the user in the test plan description files.

3.1 OTPL Support for Modularity
The OTPL defines the syntax and semantics of files that
provide the input for a test program. One of the objectives
to be met in the design of this language was modulari’ry. A
test programming language supports modular development
if it permits users to write individual components dealing
with different aspects of the test, and then permits these
components to be mixed and matched in various ways to
yield a complete test program. To this end, the OTPL al-
lows for the information needed for a test program to be
assembled together fiom several files. These files are in
support of several OTPL sub-languages, which include,
among many, a user-variables sub-language, a levels sub-
language, a timings sub-language, a bin definition snb-
language, a test plan (flow) sub-language, a pre-headers
sub-language (for test classes), and so on.

A single test program comprises a single testplan file, and
the files it imports. An “import” refers to another file with
data that is either directly referenced by the importer (the
file that specifies the import), or is imported by some other
file directly referenced by the importer. The test plan file
could define OTPL objects within it, or it could import this
information fiom other files. The OTPL allows any of the
above language components to be either in their own indi-
vidual files, or directly in-lined into a test plan file. Note
that the test plan is similar in concept to a C/Ct+-language
main () function.

’ 3.2 Building an OTPL Test Program
The OTPL test program description files specify the objects
used in a user test plan, and their relationships to one an-
other. These files are translated to C+t code by the OTPL
compiler, and are meant to be executed on a T2000 Site
Controller (cf. [16]) in the form of an implementation of
the standard OPEN STAR^ interface ITestPlan. This code
is packaged into a Windows dynamic link library (DLL),
which can be loaded onto a Site Controller. This DLL is
known as the testprogram. The test program DLL is gen-
erated to have standard known entry points that the Site

Controller software can use to generate and retnrn the
TeStPlan object it contains.

The process of conversion fiom a test plan OTPL descrip-
tion to an implementation of ITeStPlan is accomplished
by the OTPL compiler in two phases: translation and com-
pilation, as follows:

In the translation phase, the OTPL compiler processes
a test plan file (and the various other OTPL files it im-
ports), as well as the OTPLpre-headers for all the test
types used in the test plan (cf. $5.2). In this phase, it
creates the Ct+ code for the TestPlan object and the
C+t headers for the test types encountered, along with
all other supporting files, such as project makefiles,
DLL “boilerplate” code, etc.
In the compilation phase, which occurs after the OTPL
compiler has created the necessaq files, a native Ci+
compiler is invoked to compile the files and link them
into a DLL.

3.2.1 Iterative Development Support

Consider the conversion and compilation of a test plan de-
scription file MyTeStPlan. tpl that uses (i.e., imports) a
levels definition OTPL file MyLevels . lvl. If, after build-
ing the MyTestPlan DLL, the user made a change to the
defmitions of levels (i.e., operating parameters) in
MyLevels. lvl, he would then invoke the OTPL compiler
again, passing it the main test plan description file
MyTestPlan. tpl. The OTPL compiler would recognize
that the main test plan file is unchanged, so that MyTest-
Plan. h/ . cpp would not be recreated. However, while
processing the main test plan file, it would see that the
MyLevels . lvl file has changed. Therefore, it would rec-
reate the MyLevelS . cpp file. The native Ctt. compiler
would then be invoked to rebuild the test plan DLL. This
avoids recompiling MyTeStPlan. cpp, and Ody compiles
MyLevels . cpp and re-links the DLL.

Thus, the modular, separate file-based approach in OTPL
programming, together with the OTPL compiler support for
regenerating C* output files only if the generated source
is different fiom the present source, is especially useful in
cutting down re-compile and re-link times for large test
plans that take a significant amount of time to compile.

3.3 Running a Test Program
The Site Controller software loads the test program DLL -
and test class DLLs - into its process space and calls a
“factory” function [I71 within the DLL to create an in-
stance of the TestPlan object. The TestPlan object in
tum uses “factory” functions to create test class instances
for the test types it contains fiom the corresponding test
class DLLs. Once the TeStPlan object and its subordinate
test class objects have been created, the Site Controller

Paper 14.2

415

sofhvare can then execute the test plan or interact with it in
any other way.

4 Test Objects in TSS
If a test program is written for a DUT, in general more than
ninety percent of the program code is datu for device test,
and the rest is the “real” code which realizes the test meth-
odology. The data is DUT-dependent (e.g., power supply
conditions, signal voltage conditions, timing conditions,
etc.). The test code consists of methods to load the speci-
fied device conditions onlto ATE hardware, and also those
needed to realize the use! specified objectives (such data-
logging, etc). The TSS framework provides a hardware-
independent test and tester object model that allows the
user to perform the task of DUT test programming.

Since test methodology is a significant component in de-
vice test quality and tester productivity, a limited number
of persons are generally permitted to create and modify test
programs, which should thus be encapsulated and bidden
from the end users. This separation results in the safer op-
eration of the system. Moreover, to increase the reusability
of test code, such code should be independent of any de-
vice-specific data (e.g., pin name, stimulus data, etc.), or
device-test-specific data, (e.g., conditions for DC tests,
measwement pins, number of target pins, name of pattern
file, addresses of pattern programs, etc.). If code for a test
is compiled with data of these types, the reusability of the
test code would decrease. Therefore, any device-specific
data or device-test-speciqc data should he made available
to the test code ezrernally, as inputs during code execution
time.

In the TSS, a test class, which is an implementation of the
standard OPENSTARTM ITeSt interface, realizes the separa-
tion of test data and code (and hence, the reusability of
code) for a particular type of test. Such a test class could
he regarded as a “template” for separate instances of it,
which differ from each other only on the basis of device-
specific andor device-test-specific data. Instances of test
classes are specified in the test plan file.

Each test class typically implements a specific type of de-
vice test or setup for device test. For example, functional,
AC and DC paramefric tests could be implemented by
separate test classes. While the system might implicitly
h o w about the interfaces for certain basic and often-used
test classes (for which the system itself provides implemen-
tations), custom test classes can also be freely used in test
plans. The use of these custom test classes do not require a
recompilation of system code that deals with the classes,
and the making of any new release. This is because OTPL
supports a generalization mechanism whereby all test
classes are required to derive from the standard
OPENSTARm ITest intkrface, and that is all the system

deals with in its interaction with any test object. Customi-
zation is made possible through the capabilities in OTPL to
describe a custom test (with its own parameters) as a spe-
cialization of the ITeSt interface.

Test classes allow the user to configure class behavior by
providing parameters that are used to specify the options
for a particular instance of that test. For example, a func-
tional test may take parameters called PLis t : and Test-
Conditions, to specify the list of pattems to execute, and
the levels and timing conditions for the test, respectively.
Specifymg different values for these parameters (through
the use of different “Test” blocks in the test plan descrip-
tion file) allows the user to create different instances of a
Functional Test. Figure 1 shows how different test in-
stances would be arrived at from a single test class. These
instances would be specified in the test plan, and in gen-
eral, can obtain their specific data either from defmitions of
test parameter objects in the test plan, or algorithmically at
rnntime, or even interactively at runtime through applica-
tions that are able to manipulate their interfaces.

I I

U

Figure 1. Test Class Use in TSS

As mentioned above, test classes derive from ITest. That
is, these are C-K classes that implement the standard
OPENSTARTM ITest interface. In addition to the methods
specified for the ITeSt interface, these classes provide the
test-specific intelligence and logic required to perform spe-
cific classes of device test. Test classes also implement the
standard OPENST“ IFlowable interface. As a conse-
quence of this, instances of test classes can be used in test
flows - i.e., as flow items - in the test plan, to create a
complex execution sequence of device tests.

From the user’s perspective, these classes should be de-
signed to allow the OTPL compiler to take the description
of the tests and their parameters from the test plan file and
generate correct C-H code, which can be compiled and
linked to generate the test program. The next section
shows how generalization of test class descriptions, allow-
ing flexible customization of test classes, is made possible
in OTPL.

Paper 14.2

416 I

5 Generalization of Test Classes
OTPL provides a generic mechanism for defining any test
class in the system. Thus, test class creators can use this
mechanism to create custom test classes that can be loaded
and used by the system without any additional facilities
being necessary. Test class creators can develop their own
classes implementing the ITeSt standard interface. While
it is possible for them to do so entirely in native C+t,
OTPL provides a mechanism that allows the customization
of user test classes in a much simpler manner. This section
presents the pre-header sub-language of OTPL that en-
ables this. First, we discuss the requirements for an intro-
spection capability on the part of the system to make this
possible.

5.1 Introspection Capability
If an object of a test class could be interrogated regarding
its methods and signatwes, then it could be verified that the
appropriate parameters are available for inclusion in the
generated source code. Such a feature would be very use-
ful for error checking and validation during the translation
phase. If the test engineer made a mistake in the names of
parameters, or the number (or possibly the types) of argu-
ments to these parameters, the translation phase could catch
it and provide a meaningful error message at translation
time instead of waiting for a compile-time error message
fiom the C+t compiler. This would be more useful, and
probably more understandable, to the test engineer.

Introspection refers to the ability to ask an object to look
within itself and retnrn information regarding its attributes
and methods. Some languages, such as Java, provide this
ability as a part of the language. Other languages, such as
Visual Basic, impose such a requirement on objects in-
tended to be used with it. C++ makes no provisions for this
feahue.

This method also lends well to providing for default pa-
rameter values, as well as indications of optional parame-
ters. In addition, if this capability is provided as a part of
the implementation of all test classes, then GUI applica-
tions could also use this information to dynamically build
up dialogs and other user interface elements to help engi-
neers make effective use of these classes.

However, the disadvantage of providing this type of a fea-
ture is that it adds a level of complexity to the implementa-
tion of both the OTPL compiler and the test classes. This
is due to the fact, as mentioned above, that C-H does not
provide language support for this feature'.

As we have seen in $2.1, languages that do have native support
for inirospection were not deemed efficient enough for the
OPENST" requirements.

These complexities are offset in the TSS through a mecha-
nism that provides, in lieu of full introspection, a method
that allows the test class developer to fully specify, in a
single text-based source file @er test class), the public
methoddattributes of the test class that the developer has
designated as the ones required to parameterize the class.

It is important to emphasize the need for a single source:
one would not want to have the description of the parame-
terization interface of a test class in one file, and the C++
interface description in another independent (header) file,
and then be burdened with the need to keep both sources
synchronized. Towards this end, the "text-based" descrip-
tion is embedded in a pre-header file for the test class.
This is used by the OTPL compiler for limited introspec-
tion, and for generating the Ci+ header for the test class.
The generated C+t header file is the one used to finally
compile the test class C+t code.

5.2 OTPL Pre-Headers Sub-Language
Consider the following excerpt from an OTl'L test plan
source file, which defmes an instance FunctionalTestl
of a test of type MyFunctionalTest (the OTPL language
keywords have been emboldened, and their precise mean-
ings are not relevant in this discussion, except to note that a
Testcondition is used to define a selector-resolved in-
stance of a condition parameter for a test, such as levels or
timings):

. . .
Testcondition TCl

A previously defined group'for levels
TestCOnditionGroup '= TCG1;
Selector = min;

(

1

{
Testcondition TC2

A previously defined group for timings
TestConditionGrOup = TCG2;
Selector =.min;

1

t

. . .
Test MyFunctionalTest FunctionalTestl

Previously defined patcern list
PListParam = patlistl;
TeStConditionParam = TC1;
TestConditionParam = TC2;

)

Listing 1. Test Plan OTPL Code Example

Assume that MyFunctionalTest is implemented as a
C++ class having base classes Test 1 and TestZ, and hav-
ing members which are a mist, and an array of Test-
Conditions. The OTPL compiler needs to know about
the types of the members of MyFunctionalTest in order
to recognize that the above declaration of Functional-

Paper 14.2

417

Test1 is legal. Furthemore, in order to generate a Ctc
object declaration for FunctionalTestl, a C+t header
for the class MyFunctionalTest needs to be constructed.
This requires OTPL to also h o w about the base classes, if
any, of the MyFunctionalTest class, the names of its
members, and other such information.

Rather than building in the howledge of a MyFunction-
alTest into OTPL, the definition of what a MyFunction-
alTest entails is specified through the pre-header sub-
language of OTPL. This forms the hasis of generalizing
the test class description process. The pre-header suh-
language provides the OTPL compiler with the information
it needs to both recognize the legality of OTPL declara-
tions, and to generate Ctc headers and object declarations
that correspond to an OTPL declaration.

One could thus Write a pre-header, MyFunctional-
Test. ph, that supports the above parameterization as fol-
lows (assume that pre-headers are available for the base
test classes Testl and Test2; note that the meanings of
OTPL keywords, such as Testclass, and OTPL compiler
variables, such as SClassName, will become clear as one
progresses through the example exposition) :

Import TeGtl.ph; , # For base class Testl
Import Test2.ph; ' # For base class Test2
TestClass = MyFunctionalTest; # The name
hbliCBa8es = Testl, Test2; # Base test classes

The parameters list:
Parameters

#.The following declaration specifies that
U a MyhlnctionalTest has
- one parameter of OTPL type PList,
stored in a member named mqPatList;
- a function to set it, named
SetPatternTree; and
- a textual description for it.

PList PListParam

f

,
Cardinality. = 1;
Attribute .=, mgPatList;
Sethnction = SetPatternTree;
Description, = "The PList parameter I*

for MyFUnC t ionalTes t (* ;

)

The following declaration specifies that a
MyFunctionalTest has
- one or more parameters of OTPL type
Testcondition,
- stored in,a member named
m-testcondnsarray;
- a function to set it, named
addTestCpndition; and
- a textual description for these.

Testcondition TestConditionParam

Cardinality = 1-n;
Attribute = m-testcondnslirray;
SetFunction = addTestCondition;
Description = "The TC parameter for"

{

.MyFunctionalTest";
1

1

The section below is part of the pre-header
which is an escape into C++ code.

Everything below is reproduced verbatim
in the generated header file, except the
compiler variables prefixed with $ S .

CPlUsPlUsBegin

SImportDeclarations

namespace OFC

class SClassName : SPublicBasea

// Array types for parameters storage:
SParamArrayTypes

public:

{

(

$Enumerations

virtual void preExec0; # ITeSt method
virtual void exec(); # ITeSt method
virtual void postExec0; # ITeSt method

SParamRmctionneclarationa
...

private:
double m-somevar;
SParmttributes
. . .

1;
. ..
SParamRmctionImplentations

. . .
) / / End namespace OPC
CPluaPlusEnd

Listing 2. OTPL Test Class Pre-Header Example

The above will result in the generation of a C+t header file
with a declaration for the MyFunctionalTest class (im-
plementing the ITeSt interface) as shown below.

5.2.1 C++ for Parameterized Test Classes

As the OTPL compiler processes the above pre-header file,
it builds up the values of the OTPL compiler variables such
as SImportDeclarations (for Test1 and Test2),
SClassName (i.e., MyFunctionalTest), SParamAr-
rayrypes (a C+t typedef necessitated by the declaration
Of "Cardinality=l-n" for the TestConditionParam
parameter), and others.

Paper 14.2

41 8

This enables it to then create the following Ct+ header by
reproducing the C* code (between CPlusPlusBegin and
CPlusPlusEnd) verbatim while expanding in the values
(shown in italics) ofthe OTPL compiler variables $Im-
PortDeclarations, SClassName, etc., at the indicated
places. From MyFUnCtionalTest .ph, it thus creates the
following C-H header file MyFunctionalTest . h for the
MyFunc t iona 1 Test test class:

#include cITest.h, # System header
#include <Testl.hr # SImportDeclarations
#include cTest2.h> # SImportDeclarations
#include <vector> # Ctt STL header
#include cLevels.hz U System header
#include <TestCondnGrp.h> # System header
. . .
namespace OFC

class MyFmctionalTest : public ITest,
public Testl.
public Test2

{

{
/ / Array types for parameters storage:
public:

typedef std;:vector<OFC::TestCondition * z
TeStCOndi tionPtrsdry- t;

public:
virtual void preExec0; # ITest method
virtual void exec(); # ITest method
virtual void postExec0; # ITeSt method

public:
void setPatternTree10FC::PatternTree *) ;
void addTeStConditionlOFC: :Testcondition *I ;

private:
double m-somevar;

private:
OFC: :PatternTree 'mgPatList;
Test Condi tionPtrsdry- t m- tes tcondnsdrray;
. . .

) ;
. ..
inline 0FC::String MyFunctionalTest::

getXMLDescription0
{

. . .
I

} / / End namespace OFC

Listing 3. Generated C++ Code for Listing 2.

The meanings of the keywords and the resulting constructs
will become clearer when one reads 55.3 below. Note that
the OTPL compiler would also generate the following code
(in the test plan CCC source) for the MyFunctionalTest
construct shown in Listing 1:

MyFunctionalTeSt FunctionalTestl;
FunctionalTestl.setNamel"FunctionalTeStl"1:
FunctionalTestl.setPatternTree(&patListl);
FUnctionalTestl.addTestCondition(&TCl);
FunctionalTe~tl.addTestCondition~hTC2);

5.3 Pre-Header Contents
A test class pre-header has, among others, the following
declarations:

Optional Imports, as in other OTPL files.
The mandotory name of the test class.
The optional list of public base classes
The optional Parameters section specifying the pa-
rameters of this test class (this is described in greater
detail in 55.3.1 below).
The mandatory C-H section providing a template for
the test class. This template allows the test class au-
thor direct control over the C-H header generated for
this test class, and should be between the keywords
CPlusPlusBegin and CPlusPlueEnd. It Uses Vari-
ous replacement indicators (such as SImportDe-
clarationa, SClaasName, SParamASrayTypes,
SParWunctionDeclarations, SParamAttrib-
Utes, SPardunctionImplementations, etc.)
which specify the locations for various declarations.

5.3.1 Pre-Header Parameters Section

The Parameters section of an OTPL pre-header is used
by the test class author to specify parameters for the test
class. These are basically members of the test class that the
test class user can specify in instances, providing fmer con-
trol of the operation of the test. For instance, a test class
author could declare a parameter TraceLeveL, which can
be specified by a test class user in order to coulrol the level
of tracing when the test executes.

There are three types of entities that can he declared within
the Parameters section of a test class:

1.

2.

Enumerations using the mum keyword.

Parameters using keywords such as Integer, PList,
etc. specifying the parameter type, where the type is a
valid OTPL type.

Groups of parameters using the ParamGroup key-
word.

The Enum keyword is used to define a test class enumerated
type. The test class can then have parameters of this enu-
merated type. This can also be used by a GUI to construct
a drop-down list of the allowed values for the parameter.

Individual parameters of the test class can be declared
within the Parameters section. Parameter declarations
have a syntax which declares the type of the parameter, its

3.

Paper 14.2

419

name, and then various properties of the parameter.
Among the most important ones are the following:

Card ina l i ty : This indicates the number of parame-
ters of this trpe that will be supported. The details of
the allowable values are given in [151.

At t r ibu te : The name of the C-H variable to use as
the store for parameter value(s) of this type.
SetPunction: The name of the function to use for
setting a value for this parameter. An optional key-
word ‘‘ [implement]” following the function name
would indicate that a trivial implementation for this
function will be made available as an inline method in
the class header (inserted at the point indicated by
$Parami?unctionImpleentations). Otherwise,
the user is responsible for providing an implementation
of the function.
Description: A string that can be used by a GUI to
provide a tool-tip in a window that displays the pa-
rameter and its value. This description, along with
other information ‘about each parameter (such as its
type, cardinality, and value), are made available to a
GUI via a get iMLDescript ion0 method (cf.
Listing 3), which is described in greater detail below.

Finally, the ParamGroup keyword is useful to collect a
number of different parameters as a group, similar to a C++
class.

5.4 XML Export of Test Class Parameters
Since test classes support class-specific parameters, no
application will be able to know a priori all the parameters
of all test classes. Therefore, to support all test classes in a
generic fashion, the OTPL compiler generates the method
“OFC: : S t r i n g getXMLDescriptionO”(See the exam-
ple given in Listing 3).: This function retums an XML de-
scription string. The description of the parameters for an
instance of a class comprise information about each of the
parameters of the class, and all classes of which it is di-
rectly or indirectly a subclass. This information includes
name, data type, current value, application hints (e.g. multi-
select), etc. The TSS tools application programming inter-
face (MI) allows for automatic parsing of this string using
an XML parser, and for providing the resulting data to re-
questing applications.

The principal benefit of this approach to the TSS is that it
provides selfdescribing data that is simple to generate us-
ing an open standard (=). The data may be parsed by a
number of standard tools available in several programming
languages or using an easily written parser. XML allows
existing applications to.be fiee fiom side effects due to the
addition of new attributes or elements in the description
strings.

This concludes our discussion of the test programming en-
vironment in the TSS. In the next section, we describe the
approach taken in the TSS for pattem management in an
OA environment.

6 Pattern Data Management
In an open architecture system, in general, a single DUT
might be connected to tester modules fiom different ven-
dors. A module in this discussion refers to a subsystem in
an ATE product, and can include both hardware and soft-
ware components. This module participates in the h m e -
work provided by the TSS.

The user of the system writes a puf fem focusing on the
DUT, possibly without regard for the fact that this pattem
may be compiled for multiple tester modules developed by
different hardware vendors. This assumes, of course, that
each of these modules is capable of providing the features
specified in the pattem. This also includes the possibility
that vendor-specific pattern formats can be included within
the pattem file. This has implications for the entire pattem
compile-load-execute chain. The various issues and how
the TSS deals with them are described in this section.

6.1 Open Architecture Issues for Patterns
In the cnrrent generation ATE, patterns are described using
a pattern language. There have been efforts to standardize
this language so that pattems can be shared among different
ATE systems. One example is the STIL eEort [14]. How-
ever, there has not been much effort made in the direction
of also standardizing the compiled object file. One of the
main reasons for this has been that the generated object
files are very closely tied to the vendor specific hardware
and no standard has existed for this hardware. Another
reason is that various vendors do not want to publicly share
their proprietary formats. Enforcing a common format
would also lead to compromises in the efficiency of pattem
use.

6.2 The Concept of the Pattern Meta-File
In ATE systems, as the contents of a pattern object file are
very closely tied to propriety hardware it is very difficult to
come up with a general format. However, instead of regu-
lating the lowest layer of the format, the TSS has promoted
a mefa-file concept. Traditionally, meta-files have been
used in graphics to store and transport various formats of
data that are interpreted by specific end-user applications.
In a similar fashion, the TSS framework uses meta-files to
store pattem data.

The TSS pattem object meta-file has provisions for storing

Paper 14.2
420

common header information,
module-specific header information, and
module-specific pattern data, organized as required by
tbe module vendor, and capable of being interpreted by
the module vendor.

This approach satisfies the need for allowing various ven-
dors to continue to use their propriety formats as well as
being able to co-exist in an open hnework. The vendor
specific sections of the meta-file are treated as opaque bi-
nary data, about which the framework itself has no internal
howledge.

6.3 The Object File Manager
A vendor's compiler will not directly create the pattem
object meta-file described in $6.2. Instead, the TSS pro-
vides an Object File Munuger (OFM) b e w o r k that is
instrumental in the creation of pattem object meta-files.
The OFM framework manages the storing of common pat-
tern data into tbe meta-file, but relies on plug-ins kom
various module vendors to invoke the compilation of ven-
dor specific data. The model for the TSS pattern compila-
tion process can thus be conceptualized as shown in Figure
2 below.

I .

Figure 2. TSS Pattem Compilation

Each module vendor is responsible for providing their own
pattem compiler, in the form of a dynamically loadable-
shared library. This library is required to provide, at the
very least, a complete implementation of the required
OPEN STAR^ interfaces, so that it can function as part of
the OFM framework.

The OFM framework also provides a set of interfaces de-
signed to provide vendor compilers access to common data
that are required to be able complete the task of pattem
compilation. This includes access to run-time objects that
encapsulate the description of DUT pins, DUT sockets and
DUT timings, for example. It also provides the capability
for accessing other referenced pattem meta-files, such as
pattem subroutines.

The higher-level TSS pattern compiler tool is thus actually
a composite pattern compiler. It orchestrates the compila-
tion of pattems by itself reading various system configura-
tion files, but depends on the various module compiler
plug-ins to actually compile the vendor specific pattem
data.

6.4 OFM and Vendor Compiler Interactions
The user invokes the compilation of a TSS pattem by sup-
plying the filename of the pattem source file. The compiler
instantiates a sohare entity (say, PatternObjMeta-
File), representing the pattern object meta-file, with this
name. If the user has specified an overwrite mode, the
original contents of the meta-file, if any, are destroyed.
Otherwise, when the OFM calls the open0 method of
PatternObjMetaFile, the common contents are up-
loaded from the meta-file on disk. The OFM then queries
the system configuration files and addshemoves the appro-
priate vendor module sections in the meta-file.

After this, the OFM instantiates an object derived from the
standard OPENSTARm interface IVendorParCompiler
for each vendor module, after loading that module's com-
piler library. An implementation of this interface is thus
required to be provided by the vendor in a DLL.

The OFM then updates data in the common section by ex-
plicitly calling the respective methods in the IVendorPat -
Compiler interface. It makes use of these methods only
for the fust module's compiler. Vendor compilers need to
provide support for these methods, and should be able to
parse the source file and provide the queried data to the
OFM. Subsequent module compilers can query the OFM
to get access to the common data shared by the various
modules.

The actual compilation of a module's pattem is accom-
plished by a call to the compile (method on the vendor's
implementation of the IVendorPatCompiler interface.
Vendor module compilers then use another standard inter-
face (passed in with the compile () call) to access runtime
information (such as pin information and timing data), as
well as write their own specific pattem data to disk.

Note that the TSS pattern compiler tool coordinates access
to common data such as pin definitions, socket definitions,
timing data, etc., in such a way as to maximize efficiency,
not requiring each vendor to re-generate the same data.

6.5 Pattern Loading for a Module
In the TSS, each module vendor is responsible for provid-
ing its own pattem loading mechanism. As seen in $6.2,
the pattem object meta-file stores module-specific data in
different sections. The vendor pattem loader implementa-
tion uses the TSS OFM MIS for accessing the relevant

Paper 14.2

421

sections fiom the pattern object metafile. The TSS frame-
work is responsible for calling each module’s load method
in turn.

7 Summary
This paper described the support provided by the TSS for

a modular, iterative development of user test programs,
generalized user test object creation, where the system
allows exactly the same methods to he used to create a
plethora of parameterized, custom test classes that can
be treated with exactly the same facility by the system,
and
pattern data management in a multi-module, multi-
vendor open environment.

These are important, factors in establishing the
OPENSTARTM system as a versatile open architecture plat-
form for ATE.

Due to the very nature ,of the problems it addresses, the
OPEN STAR^ system is vast, and a complete description of
it is beyond the scope of this paper, which concentrated
instead on a few particularly useful factors that contribute
towards its goals of providing a flexible, modular, scalable
and open test system. Work is currently in progress in
making available a detailed specification of the entire
OPEN STAR^ system. The interested reader is referred to
[13] for full details. ~

Acknowledgements
The authors are grateful to the engineers and management
at Advantest America R&D Center in the USA, and at Ad-
vantest Corporation Gunma R&D Center in Japan, for
making the T2000 system a reality (Leon Chen did this
work while he was with the Advantest America R&D Cen-
ter in Santa Clara).

OPEN STAR^ itself is being supported by an industry group
of semiconductor and ATE manufacturers, united under the
auspices of the Semiconductor Test Consortium, the STC.
The authors wish to thank the STC members for the nu-
merous discussions that have led to the development of the
OPENST” specifications.

References

[I] D. Mirizi et al., “Implementation of Parallelsite Test on an
&bit Configurable Microcontroller”, Proc. of the IEEE In-
temafional Test Conference, October 1993, pp. 226 - 235.
U. Schoettmer and T. M i n d , “Challenging the High Per-
formance - High Cost Paradigm in Test”, Proc. of the

[2]

IEEE Inlernafional Test Conference, October 1995, pp. 870
- 879.
W. R. Simpson, ‘%utling the Cost of Test: The Value-
Added Way“, Proc. ofthe IEEE Infemafional Tesf Confer-
ence, October 1995, pg. 921.

E. Chang et al., “A Scalable Architecture for VLSl Test”,
Proc. of the IEEE Intemational Test Confirence, October
1998, pp. 500 - 513.
A. Evans, “Application of Semiconductor Test Economics
and Multisite Testing to Lower Cost of Test”, Proc. ofthe
IEEE Infemafional Test Conference, September 1999, pp.
113- 123.
1. Johnson, “ATE Open Arclutecture Initiative”, Intel Cor-
poration white paper, February 2002.

[7] D. Conti, “Mission Impossible? Open Architecture ATE”,
Proc. of the IEEE Intemafional Test Conference, October
2002, pg. 1207.
B. G. West, “Open ATE Architecture: Key Challenges”,
Proc. of the IEEE Intemational Test Conference, October

S. Perez, “The Consequences of an Open ATE Architec-
ture”, Proc. of the IEEE Intemationnl Test Conference, Oc-
tober20l2, pg. 1210.

[IO] R Garcia and B. G. West, “Hardware Essentials for an
Open Architecture”, EE-Evaluation Engineering, October
2003.

[Ill M. Gavardoni, “Data Flow Witbin an Open Architecture
Tester”, Proc. of the IEEE Inlemafional Test Conference,
October 2003, pp. 185-190.

[I21 A. T. Sivaram er al., “XML and Java for Open ATE Pro-
gramming Environment”, Proc. of fhe IEEE Inlemofional
Test Conference, October 2003, pp. 793 - 800.

[13] The Semiconductor Test Consortium (STCI, ‘‘OPENSTAnTM
Specifications”, through htfp://w.semitest.org.

[I41 IEEE Standards Association, “Standard Test Interface Lan-
guage for Digital Test Vectors”, IEEE Standard 1450.0-
1999,1999.

[I51 R. Krishnaswamy et al., “The OPENSTAR” Test Program-
ming Language”, Research Report, Advantest R&D Center,
November 2002.

[I61 R. Rajsuman el al., “Open Architecture Test System: Sys-
tem Architecture and Design”, fo bepresented at the IEEE
Intemationol Tesf Conference, October 20M.

[I71 Ericb Gamma et al., “Design Patterns”, Addison-Weslqv
Publishing Company, 1995.

[3]

[4]

[5]

[6]

[SI

2002,pg. 1212.

[9]

Paper 14.2

422

http://htfp://w.semitest.org

