
Efficient Memory Partitioning for Parallel Data Access in
Multidimensional Arrays

Chenyue Meng, Shouyi Yin, Peng Ouyang, Leibo Liu, Shaojun Wei
Tsinghua National Laboratory for Information Science and Technology (TNList)

Institute of Microelectronics, Tsinghua University, Beijing, China
yinsy@tsinghua.edu.cn

ABSTRACT
Memory bandwidth bottlenecks severely restrict parallel ac-
cess of data from memory arrays. To increase bandwidth,
memory partitioning algorithms have been proposed to ac-
cess multiple memory banks simultaneously. However, pre-
vious partitioning schemes propose complex partitioning al-
gorithms, which leads to non-optimal memory bank space
utilization and unnecessary storage overhead. In this paper,
we develop an efficient memory partitioning strategy with
low time complexity and low storage overhead for data ac-
cess in multidimensional arrays. Experimental results show
that our memory partitioning algorithm saves up to 93.7%
in the amount of arithmetic operations, 96.9% in execution
time and 31.1% in storage overhead, compared to the state-
of-the-art approach.

Categories and Subject Descriptors
B.5.2 [Hardware]: Design Aids - automatic synthesis

General Terms
Algorithms, Design, Performance

Keywords
memory partitioning, parallel data access, storage overhead

1. INTRODUCTION
As the complexity in SoC designs increases exponential-

ly, hardware acceleration starts to play a significant role in
meeting the demanding performance requirements. While
the number of computational elements rises to enhance pro-
cessing speed, further performance improvement is limit-
ed by memory bandwidth bottleneck. Through increasing
memory bandwidth, multiple data can be accessed simulta-
neously in a single clock cycle. However, it is unrealistic to
simply add more physical memory ports due to the expensive
cost of power and area consumption [8] and its inapplicabil-
ity to devices like FPGA whose number of ports is fixed.
Duplicating the original memory array into multiple copies
[4] can increase the throughput of data access as well but it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’15, June 07 - 11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00
http://dx.doi.org/10.1145/2744769.2744831

has significant storage overhead. In comparison, partition-
ing the original memory array into multiple banks separately
can increase memory bandwidth significantly without bring-
ing in too much overhead.

Memory partitioning algorithms have been studied to im-
prove system throughput and reduce power consumption un-
der specific circumstances [7][10]. For general purposes, dif-
ferent partitioning schemes are proposed to realize automat-
ic multi-banking strategies [5][1]. For further optimization
of performance and power, memory partitioning techniques
are discussed together with scheduling [3][2]. And in [9], a
memory partitioning algorithm is developed for image and
video processing in multidimensional loop nests.

However, in order to guarantee that data are mapped to
distinctive addresses in memory banks, plenty of storage s-
pace is wasted in previous memory partitioning algorithms.
Besides former work provides partition algorithm of expo-
nential time complexity which requires too much time for
processing especially for multidimensional memory arrays.
Moreover, too many bank numbers can lead to unnecessary
hardware resource consumption, which has not been dis-
cussed as a constraint before. In this work, we propose an
efficient memory partitioning algorithm with limited bank
number constraint in multidimensional arrays to realize low
storage overhead.

The main contributions of our work are:
1. We formulate the memory partitioning as a multi-objective

optimization problem, which is flexible to different design
considerations such as minimal memory overhead, fast ac-
cessing speed or limited memory bank number.

2. We propose a general solution framework to resolve the
memory partitioning problem, which has fast speed and low
complexity.

3. The proposed approach can achieve minimal memory
overhead, compared to the state-of-the-art methods.

The remainder of this paper is organized as follows. In
Section 2, we provide a motivational example and specific
solutions for memory partitioning. Section 3 formulates def-
initions and problem. In Section 4, our proposed algorithm
and storage overhead analysis are discussed in detail. Sec-
tion 5 provides experimental results to compare our memory
partitioning algorithm with other work. Section 6 summa-
rizes our key results.

2. MOTIVATIONAL EXAMPLE
In the field of computer vision, edge detection can be op-

erated by Laplacian of Gaussian (LoG) operator proposed
in [6]. A typical 5× 5 image convolution kernel is described
as a coefficient matrix shown in Fig. 1(a). To detect edges
in a 640 × 480 gray-scale image, 2-dimensional loop nest is
required, where data elements with non-zero kernel coeffi-

cients should be accessed in each inner loop for processing.
The edge detection code is shown in Fig. 1(b).

In this case, 13 out of 25 positions in LoG kernel have
non-zero weight coefficients. The access pattern of those 13
positions in memory array is shown in Fig. 2(a). Each dot,

whose two-dimensional coordinate is (x0, x1)T , represents a
data element, among which black dots represent the 13 data
elements in LoG kernel that need accessing in a single loop
iteration, and gray dots represent the left 12 data elements
that do not need to be accessed.

0 0 -1 0 0
0 -1 -2 -1 0
-1 -2 16 -2 -1
0 -1 -2 -1 0
0 0 -1 0 0

(a)

1: Define X[1 : 640][1 : 480]
2: for i = 3; i 6 638; i+ + do
3: for j = 3; j 6 478; j + + do
4: Y [i][j] = −X[i−2][j]−X[i−1][j−

1]−2X[i−1][j]−X[i−1][j+ 1]−X[i][j−
2]−2X[i][j−1]+16X[i][j]−2X[i][j+1]−
X[i][j+ 2]−X[i+ 1][j−1]−2X[i+ 1][j]−
X[i+ 1][j + 1]−X[i+ 2][j]

5: end for
6: end for (b)

Figure 1: (a) LoG kernel coefficients, (b) LoG edge
detection code

(a)

(b)

(c)

(e) (d)

Figure 2: (a) Access pattern of LoG kernel, (b) our
13-bank partitioning solution, (c) 7-bank partition-
ing solution, (d) storage reorganization, (e) data s-
torage in banks

For simplicity, we suppose the access bandwidth of memo-
ry array equals 1. To realize multiple simultaneous accesses,
the original memory array must be partitioned into at least
13 memory banks.

A heuristic memory partitioning strategy based on linear
transformation is proposed in [9]. It iterates over all the
possible linear transformation vectors to find the optimal
solution that partitions the original 640× 480 array into ex-
actly 13 banks in this case but comes with a huge calculation
cost of 1053 arithmetic operations and the storage overhead
caused by extra padding is 5450 data elements.

In comparison, for any pattern, our work can quickly gen-
erate a particular linear transformation based on the pattern
shape and guarantees all data elements in the pattern can
be mapped to different memory banks. Through our ap-
proach, the complexity of finding transformation is dropped
to constant from exponential by avoiding unnecessary global
search. For the access pattern in Fig. 2(a), a 13-bank (opti-
mal) solution based on our algorithm is provided with only
92 arithmetic operations (reduced by 91.3%) and 640 extra

storage positions for data elements (reduced by 88.3%). The
specific partitioning solution is presented in Fig. 2(b). The
number in each dot represents the bank index that elemen-
t is mapped to. For any 13 elements which LoG pattern
masks, like the highlighted dots in Fig. 2(b), bank indexes
are different. The details of this solution are illustrated as
case study in Section 5.

Besides, given the constraint that bank number is limit-
ed to be no greater than 10, this work can provide a 7-bank
same-bank-size solution that all 13 elements in the LoG pat-
tern can be accessed in two cycles, shown in Fig. 2(c). In
other words, given any 13 elements in LoG pattern, there
are at most 2 elements marked in the same bank index.

As for the strategy of mapping each data element to a
distinctive address in memory banks, we take the partition
solution in Fig. 2(c) as an instance. First we move each dot
column towards the positive x1-axis so that bank indexes
are the same in every row, shown in Fig. 2(d). For each
column, the moving distance is equal to the bank index of
the dot lying in x0-axis, i.e. 0, 5, 3, 1, 6, 4, 2, 0. Then ignor-
ing gray dots, we move those dots that are above the row of
mark-in-6 dots, highlighted in Fig. 2(d), back to empty po-
sitions. Then the memory array is well-organized and each
row represents data element storage in each bank, shown in
Fig. 2(e). Specific mapping strategy of those dots as well as
the left gray dots will be illustrated in Section 4.4.

3. PROBLEM FORMULATION
Parallel access to data elements in multiple memory arrays

implies accessing data from each memory array in parallel,
which can be realized by partitioning each memory array
into several banks according to its corresponding access pat-
tern. Towards this goal, we propose a universal and efficient
memory partitioning algorithm to realize parallel data ac-
cess. The bandwidth of each memory array is assumed to
be 1 and it’s easy to extend our algorithms to the situation
where bank bandwidth is B by combing B banks together.

Definition 1. (Data Domain) Given a finite n-dimensional
memory array X, the address of any data element ~x ∈ X can
be represented by ~x = (x0, x1, · · · , xn−1)T , where the inter-
val of xi is [0, wi − 1], which indicates that total memory
size is W =

∏n−1
i=0 wi.

Definition 2. (Pattern) A pattern consisting of m adja-

cent data elements is defined as P =
{
~∆(1), ~∆(2), · · · , ~∆(m)

}
where ~∆(i) = (∆

(i)
0 ,∆

(i)
1 , ...,∆

(i)
n−1)T and ∆

(i)
j is constant for

∀1 6 i 6 m, 0 6 j 6 n − 1. If the position offset of P from
origin is ~s = (s0, s1, · · · , sn−1)T , then the addresses of data

elements in P are P~s =
{
~s+ ~∆(1), ~s+ ~∆(2), · · · , ~s+ ~∆(m)

}
.

Definition 3. (Bank Mapping)[9] Any data element ~x
in the original memory is mapped to its unique address in
memory banks by function B (~x) and F (~x), where B (~x)
represents the bank index that ~x is mapped to, and F (~x)
represents the offset of ~x inside the bank. Assume the size
of bank i is wbi, then total bank size is Wb =

∑N−1
i=0 wbi.

Storage overhead can be expressed as ∆W = Wb−W .

Definition 4. (Additional Initiation Interval) δ(II) is
defined as the increase in original loop initiation interval (II)
due to delay in data accessing. For a position offset ~s, the ad-

dresses of data elements in P are P~s =
{
~x(1), ~x(2), · · · , ~x(m)

}
and B

(~s)
P =

{
B
(
~x(1)

)
, · · · , B

(
~x(m)

)}
represent the cor-

responding bank indexes. Assume n(~s) is the mode1 in
1Mode: most frequent value in a data set.

B
(~s)
P , then A

(~s)
P is defined as the the number of occurrences

of n(~s) in B
(~s)
P . Then δP (II) can be expressed as δP =

max
∀~s∈X

{A(~s)
P } − 1.

In other words, δP = 0 means all m data elements in pat-
tern P are accessed in one cycle. To avoid access conflicts,
all elements are supposed to be mapped to different banks.

Given any valid memory partitioning solution, any two
different data elements in the original memory array must
be mapped to different addresses in banks. (constraint 1)
Besides, too many memory banks can also cause unneces-
sary hardware cost, like area, routing and control logic. We
set the upper bound Nmax to limit the number of banks.
(constraint 2)

Problem 1. Given any P accessing m elements, find
B and F to minimize

1. δP towards 0 (additional II)
2. N towards m (bank number)
3. ∆W towards 0 (storage overhead)

subject to
1. ∀~x 6= ~y ∈ X, B (~x) 6= B (~y) or

B (~x) = B (~y) , F (~x) 6= F (~y)
2. N 6 Nmax

For this three-object optimization problem, we consider
each variable one by one to simplify their complicated re-
lationship. Apparently different optimizing orders lead to
solutions of different concerns. In Section 4, we first aim at
δP = 0, followed by minimizing N . ∆W will be discussed
generally because the storage overhead of our partitioning
strategy is only related to the bank number N .

4. PARTITIONING ALGORITHMS
To map a data element ~x to a new position in banks ac-

cording to its n-dimensional address vector (x0, x1, · · · , xn−1)T ,
a fast and low complexity method is linear transformation.
Suppose the memory is divided into N banks and the trans-
formation vector is defined as ~α = (α0, α1,, αn−1), then
the bank index B can be determined by

B (~x) = (~α · ~x) %N

Simultaneous access to all m data elements in P ⇒ δP = 0,
which satisfies that

∀~s ∈ X, ∀~x(i), ~x(j) ∈ P~s, i 6= j ⇒ B
(
~x(i)
)
6= B

(
~x(j)

)
which implies ~α · ~x(i) 6= ~α · ~x(j). So ~α must satisfy that each
data element in P is assigned with a distinctive number after
the linear transformation.

The overview of our partitioning strategy is to determine ~α
quickly, based on which, δP can be optimized to be 0, i.e. all
data elements in pattern can be mapped to different banks.
Then an algorithm is proposed to minimize the bank number
N under δP = 0 condition and with N 6 Nmax constraint,
followed by the analysis of storage overhead caused by multi-
banking.

4.1 Linear Transformation
The process of calculating ~α · ~x =

∑n−1
i=0 αixi is equal to

multiplying a weight coefficient αi to each component xi and
sum them up. In comparison of conversion from binary to
decimal, the kth digit multiplies its weight coefficient 2k−1.
Here 2 is equal to the maximum difference of digit numbers
(0 and 1) plus one. Based on the same idea, here are the
details of us determining ~α.

Assume P consisting of m elements is described as P ={
~∆(1), ~∆(2), · · · , ~∆(m)

}
, where ~∆(i) = (∆

(i)
0 ,∆

(i)
1 , ...,∆

(i)
n−1)T .

Define the maximum difference of each component number
to be

Dj = max
16i6m

{∆(i)
j } − min

16i6m
{∆(i)

j }+ 1

Apparently ∀j satisfying 0 6 j 6 n − 1 ⇒ Dj > 1. Then
each component of ~α = (α0, α1,, αn−1) can be defined as

αj =

n−1∏
k=j+1

Dk

Specially, αn−1 =
∏n−1
k=nDk = 1.

4.2 Additional Initiation Interval
First, we prove that for any pattern P , δP can be opti-

mized to be 0 with ~α determined in Section 4.1.
Given ∀~s ∈ X, P~s =

{
~s+ ~∆(1), ~s+ ~∆(2), · · · , ~s+ ~∆(m)

}
.

Then we define the numbers after linear transformation,{
~α ·
(
~s+ ~∆(1)

)
, ~α ·

(
~s+ ~∆(2)

)
, · · · , ~α ·

(
~s+ ~∆(m)

)}
to be{

y(1), y(2), · · · , y(m)
}

.

Theorem 1. Given ~α defined above, we have

∀ 1 6 i < j 6 m, y(i) 6= y(j)

Proof. First we remove the uncertainty from ~s. Define{
z(1), z(2), · · · , z(m)

}
=
{
~α · ~∆(1), ~α · ~∆(2), · · · , ~α · ~∆(m)

}
.

Then y(i) = z(i) + ~α · ~s, where ~α · ~s is the same part for
every y(i) and won’t affect the difference between y(i) and
y(j). So if z(i) is proofed to be different from each other,
then Theorem 1 will be justified. For 1 6 i 6 m, we have

z(i) = ~α · ~∆(i) =
∑n−1
j=0 αj∆

(i)
j =

∑n−1
j=0

(∏n−1
k=j+1Dk

)
∆

(i)
j =

∆
(i)
n−1 + ∆

(i)
n−2Dn−1 + ∆

(i)
n−3Dn−2Dn−1 + · · ·+ ∆

(i)
0

∏n−1
k=1 Dk

Given ∀ 1 6 i < j 6 m, ~∆(i) 6= ~∆(j). Then we have

z(i) = ∆
(i)
n−1 +Dn−1

(
∆

(i)
n−2 +Dn−2

(
∆

(i)
n−3 + · · ·

))
(1)

z(j) = ∆
(j)
n−1 +Dn−1

(
∆

(j)
n−2 +Dn−2

(
∆

(j)
n−3 + · · ·

))
(2)

The converse-negative proposition of theorem is proved as
follows: Suppose z(i) = z(j) then Eqn.1 minus Eqn.2 is

0 = ∆
(δ)
n−1 +Dn−1

(
∆

(δ)
n−2 +Dn−2

(
∆

(δ)
n−3 + · · ·

))
(3)

where ∆
(δ)
k = ∆

(i)
k −∆

(j)
k . Given the definition that

Dj = max
16i6m

{∆(i)
j } − min

16i6m
{∆(i)

j }+ 1⇒
∣∣∣∆(δ)

k

∣∣∣ 6 Dk − 1,

we have Dk - ∆
(δ)
k . Unless Dk = 1 which is equivalent to

∆
(i)
k = ∆

(j)
k . Given ~∆(i) 6= ~∆(j) ⇒ ∃ l satisfying 0 6 l 6

n− 1 s.t. ∆
(δ)
l 6= 0 and ∆

(δ)
n−1 = ∆

(δ)
n−2 = · · · = ∆

(δ)
l+1 = 0.

Then Eqn.3 can be simplified as

0 =

n−1∏
k=l+1

Dk
(

∆
(δ)
l +Dl

(
∆

(δ)
l−1 +Dl−1

(
∆

(δ)
l−2 + · · ·

)))
0 = ∆

(δ)
l +Dl

(
∆

(δ)
l−1 +Dl−1

(
∆

(δ)
l−2 + · · ·

))
∆

(i)
l 6= ∆

(j)
l ⇒ Dl - ∆

(δ)
l . Then to satisfy the above equa-

tion ⇒ ∆
(δ)
l = 0, which is contradictory to our previous

assumption.

According to Thm.1, ∀N > max
16i6m

{y(i)}− min
16j6m

{y(j)}+1

satisfies that all m data elements in P can be mapped into

different banks because the bank index B
(
~x(k)

)
= y(k)%N

are different from each other. Feasible partitioning solutions
must exist such that δP = 0, i.e. realizing simultaneous
access to m data elements, regardless of Nmax. The detailed
discussion of minimizing N under the condition of Nmax is
in Section 4.3.

4.3 Bank Number
With ~α defined in Section 4.1, there exists infinite δP =

0 solutions partitioning the original memory array into N
banks without the constraint of Nmax. We define Nf as the
bank number with no Nmax constraint, and Nc as the bank
number satisfying Nc 6 Nmax.

4.3.1 Minimize Nf
Algorithm 1 Minimize Nf

1: for i = 1; i 6 m; i+ + do
2: z(i) = ~α ·∆(i)

3: end for
4: Define Q = ∅
5: for i = 1; i < m; i+ + do
6: for j = i+ 1; j 6 m; j + + do

7: Q = Q ∪
∣∣∣z(i) − z(j)∣∣∣

8: end for
9: end for

10: Define M = max {Q} //M = max
16i6m

{z(i)}− min
16j6m

{z(j)}

11: Define E [1 : M] = [0, 0, · · · , 0]
12: while Q 6= ∅ do
13: q ← Q //Choose any element q from Q
14: Q = Q \ q
15: E [q] = E [q] + 1
16: end while
17: Define Nf = m, k = 1
18: while kNf 6M do
19: if E [kNf] 6= 0 then //E [d] 6= 0⇒ d ∈ Q
20: Nf = Nf + 1
21: k = 1
22: else
23: k = k + 1
24: end if
25: end while

Here is the main idea of Algorithm 1. Set Q consists
of all the absolute values of subtractions of z(i) and z(j).
Nf needs to satisfy that all the integral multiples of Nf ,

like kNf , don’t belong in Q. Then b(i) = z(i)%Nf will be
different from each other, which means all m data elements
are partitioned into different memory banks.

Starting from Nf = m, we assume Nf = m + C meets
our demands after executing line 17 to 25 in pseudo code for
C times. Then together with a constant time complexity of
determining ~α, the time complexity of our algorithm can be

estimated as O
(
m2 +

∑C
i=0

⌈
M
m+i

⌉)
≈ O

(
m2
)
.

In comparison, the proposed algorithm in [9] iterates over
all Nn linear transformation vectors for each N in the n-
dimensional memory, and for each vector, it takes O

(
m2
)

times to justify the solution. Similarly, starting from N = m
and after C cycles it finds a valid partitioning solution. Then

the time complexity isO
(
m2∑C

i=0(N + i)n
)
≈ O

(
CNnm2

)
.

4.3.2 Determine Nc
A fast approach is determining Nc based on Nf . If Nf 6

Nmax, then Nc = Nf . Otherwise, we define F =
⌈

Nf

Nmax

⌉
.

Apparently we only need to access Nmax memory banks F
times at most to get all m data elements. And Nc can be

determined by Nc =
⌈
Nf

F

⌉
. Then we can define

B (~x) = ((~α · ~x) %Nf) %Nc

Using this fast approach, however, memory array might
be partitioned into multiple banks of different sizes because
Nf might not be divisible by Nc. To partition memory into
same-size banks, we propose an alternative approach satis-
fying minimum δP and Nc 6 Nmax < Nf .

Given ~α defined in Section 4.1, A
(~s)
P in Definition 4 is

not related to ~s any more because every y(i) = ~α · ~x(i) in

B
(
~x(i)
)

= y(i)%N has the same part ~α · ~s. Then for each

N , we have BP |N =
{
B
(
~∆(1)

)
, · · · , B

(
~∆(m)

)}
, where

B
(
~∆(i)

)
=
(
~α · ~∆(i)

)
%N . δP + 1 = AP represents the

number of occurrences of the mode of BP . For each N from
1 to Nmax, we calculate δP |N . The minimum number repre-
sents the optimal solution, and the corresponding N is Nc.

4.4 Storage Overhead
As long as linear transformation ~α is determined as be-

fore, our data mapping strategy is valid for any given bank
number N . For a data element whose address is ~x, the bank
index it is mapped to is B (~x) = (~α · ~x) %N , and the offset
inside the bank is F (~x).

Similar to the approach demonstrated in Fig. 2(d)(e) in
Section 2, given ~x = (x0, x1, · · · , xn−1)T , the coordinate af-
ter moving is (x0, x1, · · · , xmove)T , where xmove = xn−1 +(
~α · (x0, x1, · · · , xn−2, 0)T

)
%N = xn−1+(~α · ~x− xn−1) %N

because αn−1 = 1. Then we move those elements that ex-
ceed boundaries back to empty positions. Notice the fact
that our mapping strategy can be extended to any mov-
ing distance md (Here md = (~α · ~x− xn−1) %N) as long as
md%N = (~α · ~x− xn−1) %N , we can set md = ~α · ~x− xn−1

to simplify xmove = xn−1 + ~α · ~x− xn−1 = ~α · ~x.

4.4.1 Data Mapping Strategy
Here are the details of determining function F (~x) which

guarantees that different data elements are mapped to dif-
ferent addresses in memory banks.

Given ∀~x ∈ X, ~x = (x0, x1, · · · , xn−1)T , where the inter-
val of xi is [0, wi − 1]. Define K =

⌊wn−1

N

⌋
and we suppose

banks are n-dimensional, the same as the original memory
array. First we define F (~x) for ~x whose xn−1 ∈ [0,KN − 1]
as follows: F (~x) = (x0, x1, · · · , xn−2, xnew)T where

xnew =

⌊
(~α · ~x) %(KN)

N

⌋
Comparing F (~x) to ~x, only the (n − 1)th-dimensional co-
ordinate is different. For the original memory array where
xn−1 ∈ [0,KN − 1], the storage size is KN

∏n−2
i=0 wi. And

for each memory bank, since the range of (~α · ~x) %(KN) is
[0,KN − 1] ⇒ 0 6 xnew 6 K − 1. So the bank size is
K
∏n−2
i=0 wi. Then the total bank size is the same as the

original memory. So the mapping function B and F causes
no storage overhead.

Through this approach, every data element is guaranteed
to have a unique address in memory banks. Proof is omitted
due to page limit.

4.4.2 Storage Overhead
As for the left data elements xn−1 ∈ [KN,wn−1], we can

access them one by one and map them into banks according

to their bank index, which causes no storage overhead but
high complexity. We prefer using the above approach as
well, which might cause extra storage space.

The storage overhead is
(⌈wn−1

N

⌉
N − wn−1

)
×
∏n−2
k=0 wk.

And the maximum overhead is (N − 1)×
∏n−2
k=0 wk, which is

1
n

of the overhead in [9] on average.

5. EXPERIMENTAL RESULTS

5.1 Case Study
To illustrate our algorithm, we take the pattern (m = 13)

in 2-dimensional memory array (n = 2) shown in Fig. 2(a),

also in Fig. 3(a) as an example. P =
{
~∆(1), ~∆(2), · · · , ~∆(m)

}
can de described in (x0, x1)T as

P =

{(
2
4

)(
3
3

)(
3
4

)
· · ·
(

5
4

)(
5
5

)(
6
4

)}
D0 = 5, D1 = 5 ⇒ ~α = (D1, 1) = (5, 1). Then we have{
z(1), z(2), · · · , z(m)

}
= {14, 18, 19, · · · , 29, 30, 34}. Accord-

ing to Algorithm 1, Q = {1, 2, · · · , 11, 12, 14, 15, 16, 20}. For
Nf = 13, kNf 6∈ Q (k = 1, 2, 3 · · ·) is satisfied. So we can
define that B (~x) = (~α · ~x) %Nf , then the bank indexes of all
the 13 data elements are mapped to are {1, 5, 6, 7, 9, 10, 11, 12,
0, 2, 3, 4, 8}, highlighted in Fig. 2(b). The number in each
dot represents the bank index of the element mapped to.

Considering a Nmax = 10 constraint, we take the fast
approach to calculate F =

⌈
13
10

⌉
= 2 ⇒ Nc =

⌈
13
2

⌉
= 7,

which means bank 0 and 7, 1 and 8, · · · , 5 and 12 should
be combined together. To access all the 13 data elements, 7
memory banks need to be accessed twice. Each bank index
is marked in different colors, shown in Fig. 2(b). Also, if the
bandwidth of memory bank is 2, i.e. 2 data elements can
be accessed simultaneously, we can also use this method to
combine two banks together into one to reduce bank number
from 13 to 7.

However, based on the fast approach, bank sizes are not
the same because 7 - 13. For instance, new bank 0 consists
of previous banks 0 and 7, while new bank 6 is the previous
bank 6. Then an alternative strategy is proposed and we

have
{
~α · ~∆(1), · · · , ~α · ~∆(m)

}
= {14, 18, 19, · · · , 29, 30, 34}.

For each N , bank index set BP is determined and the num-
ber of occurrences of the mode in BP is shown as follows

N 1 2 3 4 5 6 7 8 9 10
δP |N +1 13 9 5 6 5 3 2 3 2 3

The minimum δP |N is 1, meaning banks need to be accessed
twice to acquire all m data elements, and accordingly Nc = 7
or 9. We partition the original memory array into 7 same-
size banks, shown in Fig. 2(c).

5.2 Experimental Setup
The experiments of comparing our work to the state-of-art

linear transformation based (LTB) memory partitioning al-
gorithm proposed in [9] are divided into two steps. First we
apply the solutions provided by our and LTB algorithms to
several benchmarks on Cyclone DE2-115 FPGA platform to
compare the minimum bank numbers for parallel data access
with no bank number limit and the storage overhead caused
by partitioning the memory array to multiple banks. The
storage overhead is measured in the number of 9kb memory
blocks. Second we assess the performance of ours and LTB
algorithm by the amount of arithmetic operations (addition,
subtraction, multiplication, division, etc) and the execution

time it takes to find that solution. The experimental plat-
form is a 4-core 2.9GHz PC and we run the two algorithms
on the same benchmarks for 10000 times to average.

The selected benchmarks are 5 common access patterns
for edge detection in computer vision [11], shown in Fig. 3
and the following numbers in brackets represent the number
of data elements in each pattern. Specially, Prewitt opera-
tor includes both vertical and horizontal kernels, which form
the pattern as Fig. 3(c). Structure element (SE) in Fig. 3(d)
is a detection operator proposed in [11]. Fig. 3(e) is a So-
bel operator for 3D edge detection, and the 3rd-dimension
components are shown beside (e).

Figure 3: Access patterns (a) LoG (13), (b) Canny
(25), (c) Prewitt (8), (d) SE (5), (e) Sobel(3D) (26)

For hardware experiments, the original memory size of da-
ta elements is set to be common image resolutions SD(640×
480), HD(1280×720), FullHD(1920×1080), WQXGA(2560×
1600) and 4K(3840×2160) to illustrate the practical storage
cost for our and Wang’s solutions. Specially for Sobel (3D)
the 3rd-dimension has 400 samples for all memory sizes.

5.3 Experimental Results
The experimental results are shown in Table 1 and the

storage overhead is measured in memory blocks. For the 5
selected edge detection patterns, the bank numbers calculat-
ed by our algorithm are exactly the same as LTB. However
LTB iterates over all the possible linear transform vectors to
find the minimum/optimal bank number so our bank num-
ber must be greater or at most equal to LTB’s. To illustrate
this point, we select two more access patterns for our ex-
periments, where Median filter pattern has 7 elements and
Gaussian filter pattern has 9 elements. Our algorithm needs
to partition 8 and 13 banks respectively to realize parallel
data access while LTB only needs 7 and 10. With bearable
increase in bank numbers, our work can reduce the amoun-
t of arithmetic operations by 93.7% and execution time by
96.9% on average compared to LTB.

As for the storage overhead, both our and LTB solution-
s are related to the division relationship between the bank
number and memory array size. Take LoG as an exam-
ple, the remainder of wn−1 divided by 13 changes with the
memory array size, where wn−1 = 480, 720, 1080, 1600 and
2160. For SD memory size,

⌈
480
13

⌉
13− 480 = 1 gives a quite

low overhead, leading to a relatively high improvement. For
WQXGA memory size, however,

⌈
1600
13

⌉
13 − 1600 = 12

means lots of memory in banks are wasted so the storage
overhead improvement is relatively low. Nevertheless, when
our algorithm and LTB provide solutions of the same bank
number, like the first 5 patterns, the storage overhead of ours
is guaranteed to be no more than LTB’s, and the average
reduction is 43.0%. The storage overhead of our and LT-
B solutions to Sobel (3D) are both large compared to other
patterns because the original memory size is 400 times larger
caused by 3rd-dimension. When the bank numbers are dif-
ferent, like the last 2 patterns, the situation is complicated.
Taking Median pattern as an example, our bank number is
8, which can divide all array length so the storage overhead
is 0 for all memory sizes; LTB offers a solution of 7-bank,
where any array length is not divisible by 7, so the storage

Table 1: Experimental results

Bank
number

Storage overhead /(memory block) Arithmetic
operations

Execution
time /(ms)SD HD FullHD WQXGA 4K

LoG
LTB 13 10 28 49 58 106 1053 0.575
ours 13 2 19 41 55 76 92 0.024

improvement(%) - 80.0% 32.1% 16.3% 5.2% 28.3% 91.3% 95.8%

Canny
LTB 25 32 38 79 43 142 5575 1.451
ours 25 23 12 69 0 103 325 0.024

improvement(%) - 28.1% 68.4% 12.7% 100% 27.5% 94.2% 98.3%

Prewitt
LTB 9 14 9 12 24 12 2784 2.472
ours 9 7 0 0 10 0 37 0.018

improvement(%) - 50.0% 100% 100% 58.3% 100% 98.7% 99.3%

SE
LTB 5 0 0 0 0 0 120 0.188
ours 5 0 0 0 0 0 16 0.015

improvement(%) - 0% 0% 0% 0% 0% 86.7% 92.0%

Sobel
3D

LTB 27 8193 24578 36864 78508 105984 4564742 1108
ours 27 2731 8192 18432 36409 73728 352 0.025

improvement(%) - 66.7% 66.7% 50.0% 53.6% 30.4% 100.0% 100.0%

Median
LTB 7 7 4 27 20 33 217 0.241
ours 8 0 0 0 0 0 30 0.015

improvement(%) - 100% 100% 100% 100% 100% 86.2% 93.8%

Gaussian
LTB 10 0 0 0 0 0 3996 3.038
ours 13 2 19 41 55 76 50 0.017

improvement(%) - -100% -100% -100% -100% -100% 98.7% 99.4%

Average improvement(%) - 31.1% 93.7% 96.9%

overhead is inevitable. Nevertheless, for general comparison,
our work can reduce the storage overhead for 31.1%.

6. CONCLUSIONS
Memory partition can increase memory bandwidth signif-

icantly and enable parallel data access, which is formulated
as a multi-object optimization problem in this work. An ef-
ficient partitioning algorithm that has low complexity and
low storage overhead is proposed, which can be extended to
limited bank number situation and even zero storage over-
head demand by adjusting the optimizing order. Compared
to the state-of-art memory partitioning strategy, our work
reduces the arithmetic operation amount and execution time
by 93.7% and 96.9%, respectively, and the storage overhead
can be saved up to 31.1%.

7. ACKNOWLEDGEMENT
This work is supported in part by the China Major S&T

Project (No.2013ZX01033001-001-003), the International S&T
Cooperation Project of China grant (No.2012DFA11170),
the Tsinghua Indigenous Research Project (No.20111080997),
the NNSF of China grant (No.61274131) and the China 863
Program (No.2012AA012701).

8. REFERENCES
[1] Y. Ben-Asher and N. Rotem. Automatic memory

partitioning: increasing memory parallelism via data
structure partitioning. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis,
pages 155–162. ACM, 2010.

[2] J. Cong, W. Jiang, B. Liu, and Y. Zou. Automatic
memory partitioning and scheduling for throughput
and power optimization. ACM Transactions on Design
Automation of Electronic Systems (TODAES),
16(2):15, 2011.

[3] P. Li, Y. Wang, P. Zhang, G. Luo, T. Wang, and
J. Cong. Memory partitioning and scheduling

co-optimization in behavioral synthesis. In Proceedings
of the International Conference on Computer-Aided
Design, pages 488–495. ACM, 2012.

[4] Q. Liu, T. Todman, and W. Luk. Combining
optimizations in automated low power design. In
Proceedings of the Conference on Design, Automation
and Test in Europe, pages 1791–1796. European
Design and Automation Association, 2010.

[5] A. Macii, E. Macii, and M. Poncino. Improving the
efficiency of memory partitioning by address
clustering. In DATE, pages 10018–10023, 2003.

[6] D. Marr and E. Hildreth. Theory of edge detection.
Proceedings of the Royal Society of London. Series B.
Biological Sciences, 207(1167):187–217, 1980.

[7] S. Ramprasad, N. R. Shanbhag, and I. N. Hajj.
Low-power distributed arithmetic architectures using
nonuniform memory partitioning. In Circuits and
Systems, 1999. ISCAS’99. Proceedings of the 1999
IEEE International Symposium on, volume 3, pages
470–473. IEEE, 1999.

[8] Y. Tatsumi and H. Mattausch. Fast quadratic increase
of multiport-storage-cell area with port number.
Electronics Letters, 35(25):2185–2187, 1999.

[9] Y. Wang, P. Li, P. Zhang, C. Zhang, and J. Cong.
Memory partitioning for multidimensional arrays in
high-level synthesis. In Proceedings of the 50th Annual
Design Automation Conference, page 12. ACM, 2013.

[10] M. Xie, D. Tong, K. Huang, and X. Cheng. Improving
system throughput and fairness simultaneously in
shared memory cmp systems via dynamic bank
partitioning. In High Performance Computer
Architecture (HPCA), 2014 IEEE 20th International
Symposium on, pages 344–355. IEEE, 2014.

[11] Y. Zhao, W. Gui, and Z. Chen. Edge detection based
on multi-structure elements morphology. In Intelligent
Control and Automation, 2006. WCICA 2006. The
Sixth World Congress on, volume 2, pages 9795–9798.
IEEE, 2006.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

