
ROC: DRAM-based Processing with Reduced Operation Cycles

Xin Xin
Electrical and Computer Engineering

Department
University of Pittsburgh

xix59@pitt.edu

Youtao Zhang
Computer Science Department

University of Pittsburgh
zhangyt@cs.pitt.edu

Jun Yang
Electrical and Computer Engineering

Department
University of Pittsburgh

juy9@pitt.edu

ABSTRACT

DRAM based memory-centric computing architectures are promis-

ing solutions to tackle the challenges of memory wall. In this paper,

we develop a novel design of DRAM-based processing-in-memory

(PIM) architecture which achieves lower cycles in every basic op-

eration than prior arts. Our small yet fast in-memory computing

units support basic logic operations including NOT, AND, and OR.

Using those operations, along with shift and propagation, bitwise

operations can be extended to word-wise operations, e.g. incre-

ment and comparison, with high efficiency. We also optimize the

designs to exploit parallelism and data reuse to further improve the

performance of compound operations. Compared with the most

powerful state-of-the-art PIM architecture, we can achieve compa-

rable or even better performance while consuming only 6% of its

area overhead.

1 INTRODUCTION

Modern system performance is hindered by memory subsystem,

known as "the memory wall", because of the high cost of data

movement [1, 2]. Particularly, for big-data application, the limited

bandwidth of the off-chip bus between memory and processor can-

not meet the increasing demand of data, exacerbating the memory

access latency. Even when the data is moved into the cache, the

inefficient reuse of cached data can also aggravate data movement.

In addition, a significant amount of power during data movement

is consumed, leading to system energy inefficiency.

To tackle this problem, near-data processing (NDP) and processing-

in-memory (PIM) based on DRAM technology have been proposed

as promising alternative solutions. In NDP, logic units (LU) are built

near DRAM cells, such as DRISA [3], Automata [4] and HMC [5, 6],

which can achieve high performance due to the extreme processing

speed in LU. However, LUs usually occupy large die area, which de-

creases the density of memory. For example, the adder LU in DRISA

takes 51% area, routing matrix in Automata occupies about 30% of

the chip [4]. Even HMC has an entire die for logic, the available

area is limited for additional LUs, as memory controllers, I/Os etc.

are already taking much die area. Besides, large area of LUs increase

the complexity for DRAM technology, as LUs and DRAM cells are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317900

usually not compatible in technology process [7]. In PIM, logic func-

tions are directly integrated into the DRAM arrays, hence the name

processing in memory. Examples of PIM include RowClone [8]

and Ambit [9]. RowClone performs bulk copy and initialization

by defining a back-to-back activation commands with negligible

area cost. Ambit implements basic logical operations based on the

charge sharing mechanism with only two additional access tran-

sistors per column of cells. However, the performance is impeded

by multi-commands in DRAM, as the latency of each command in

DRAM is usually much longer than CPU operations. For example,

an XOR operation requires 7 commands (or cycles), totaling ∼350ns

with a 49ns cycle time in Ambit. Meanwhile, RowClone and Ambit

are more suitable for specific applications, such as bulk copy and

bitwise logic operations, so they are not yet sufficiently general.

In summary, NDP and PIM are complementary approaches. PIM

embeds operations inside DRAM original structure, which saves

real estate for more logic design in NDP. DRISA is such an example

that takes advantage of Ambit’s basic logic operation to build more

functional DRAM-based accelerator.

To address the aforementioned latency challenges in PIM opera-

tions, a direct way is to down-size DRAM arrays. Previous work

showed that reducing the size of subarray or shorting the bitlines

can reduce DRAM access latency, but at a cost of memory den-

sity [3, 10] which is critical to DRAM vendors. Another approach is

to increase bank-level parallelism by activating more banks at the

same time. But this could exceed the maximal limit of current draw

from a single chip, as defined by tFAW parameter for DRAM. In this

paper, we propose another improvement method by minimizing

the cycles of a logic function, e.g. AND. We design bitwise logic

operations with reduced operation cycles, termed ROC, in each

DRAM subarray. Taking a further step, we enhance ROC to realize

more compound functions, while minimizing operation cycles and

area overhead. The contributions of this paper are summarized as

follows:
• We proposed a new method to construct logic operations by

using a diode-connected transistor inside a DRAM cell. This

method requires fewer cycles for implementing basic logic

functions, AND, OR and NOT than previous work.

• For more compound logic operations such as XOR and XNOR

which are built up from basic functions by composition, we

exploit parallel operating opportunities to speed up comput-

ing.

• Wedesign two types of propagation operations, uni-directional

and bi-directional propagation, to serve more application

functions in enhanced ROC which can execute Shift, Substi-

tute, Compare, and Increment operations in multiple prop-

agating paths. Leveraging parallel operating opportunities,

we also reduce the number of cycles in these operations.

• We further optimize propagation-based operations by re-

ordering and combining commands sequence, which further

trim down the operation cycles. This optimization method

can be used to improve the execution of more complex

Boolean expressions.

2 BACKGROUND AND RELATEDWORK

ADRAM chip has hierarchical architecture from banks to subarrays.

Each bank can be operated by the memory controller independently.

Multiple subarrays are connected by the global bitlines in a bank.

Each subarray contains a matrix of DRAM cells which are built

by an access transistor and a capacitor (1T1C). Multiple cells are

connected by a local bitline with a sense amplifier, which also acts

as a row buffer [9, 11].

The DRAM data read process can be divided into two stages:

precharge and activate stage. In the precharge stage, bitlines and

sense amplifiers are set to 1/2Vdd . Once entering the activate stage,

bitlines are first released while the target cells are accessed. Then,

charge is shared between cell and bitline parasitic capacitance. After

the charge sharing phase, sense amplify (SA) is enabled to sense

the slight voltage variation caused by charge sharing. Finally, the

sensed voltage is amplified by SA and restored to the target cells,

known as the restore phase.

RowClone [8] implements data copy between different rows

via simultaneously opening the target row when restoring data to

the original row. This operation contains two back-to-back activa-

tions followed by the precharge stage, referred as Activate-Activate-

Precharge (AAP) primitive in [8].

Ambit, shown in Figure 1(a), modifies the charge sharing phase

by opening triple DRAM cells on the same bitline at the same

time [9]. If at least two of the three cells, termed A, B, and C, are 1s,

the voltage on the bitline will be above 1/2Vdd after charge sharing.

Otherwise, the voltage will drop below 1/2Vdd when only one or

none of them are 1s. The result after sensing in SA can be written

as: R = AB + BC + AC. If we define C = 1 in advance, the operation

will perform A OR B. Likewise, A AND B can be performed with C

= 0. For completeness, the NOT operation is implemented with the

help of one additional access transistor. Benefiting from the high

parallel actions of DRAM cells in a row, logic computation of large

bit-vectors could be significantly accelerated.

Figure 1: Subarray organization of Ambit (a) [9] and ROC (b)

The accuracy of charge sharing among triple cells is jeopardized

by the initial charges remained in cells [12, 13]. Thus, to implement

an accurate AND or OR logic, Ambit first copies two operands, A

and B, to bottom rows near SA to keep them nearly fully charged.

It also needs to write 1 or 0 to C as a preceding definition, followed

by calculating the result via the charge sharing mechanism. This

process involves four cycles in total. Although Ambit allocates 8

rows nearby SA for logic operations to reduce the preceding write

of 1s or 0s, it is still not efficient to deal with a complex Boolean

expression. For example, it carries out XOR and NXOR using 7

cycles.

Deng. etc. modified several subarray rows with extra transistors

to improve the performance of Ambit based accelerator in CNN

calculation [14]. However, the multiple cycles of an operation in

processing still hinders the speed. For example, it needs 13 cycles

to complete an addition operation, which amounts to ∼ 630ns with
49ns cycle time [9]. In addition, the additional transistors reduces

area efficiency, which also increases design complexity for DRAM

fabrication process.

3 DESIGN OF ROC

Instead of utilizing a charge sharing method, our proposed ROC,

as shown in Figure 1(b), implements logic functions based on a

proposed computing unit. This can achieve high speed and high area

efficiency, as well as avoiding the inaccuracy caused by triple-cell

charge sharing. Further, we improve our design with an enhanced

SA to support for more complex functions such as compare and

increment.

Figure 2: The design of ROC.

3.1 Basic Bitwise Logic Operations

The key idea of ROC is to leverage the character of a diode in

implementing a logic operation. As shown in Figure 2(a), no matter

what the initial state of cell C is, it will be charged to 1 once the

transistor is connected to Vdd . Likewise, cell D will be 0 when

the transistor accesses ground. Cell C and D behave like OR and

AND logic respectively. That is, only 1 can be written into C, and

only 0 can be written into D. Based on this observation, we add

a diode-connected transistor between two DRAM cells, as shown

in Figure 2(b), to implement the logic operations. For example, to

perform logic X+Y, we first copy X to cell C, then copy Y to cell

D. If Y is 0, C will remain the value of X. Otherwise C will be 1.

Thus, C stores the OR result of X and Y. On the other hand, if X

is first copied to cell D, followed by copying Y to cell C, then D

could be 1 only if both X and Y are 1, which effectively performs as

an AND operation. Figure 2(d) shows the commands for OR and

AND. The first word in the command indicates the command type.

The "[]" part shows the operating source and destination, marked

by an arrow. The rest part denotes the result of the command. In

summary, for OR and AND operations, ROC takes only two copy

commands to compute the result. This design is also area efficient,

requiring only two cells during an operation

For completeness, we attach one access transistor (NotCtrl) at

the bottom of a column, same design as in Ambit. We term cell C, D

and NotCtrl as the computing unit (CU) in the following discussions.

All further computing functions are built upon this unit.

3.2 Parallelizing Computing

As SA in DRAM is shared by bitline and its complement (bitline), we

build the same CU in bitline (Figure 2(c)). Hence, one SA connects

to both CUs on the pair of bitlines. Because each CU can execute

basic logic independently, we can parallelize AND, OR, and NOT

operations in compound logic calculations, such as XOR and XNOR.

This significantly saves operations cycles for them. Specifically, we

can execute XOR in only 4 cycles, as shown in Figure 2(e). Note

that X is copied to D0 and via NotCtrl0 and NotCtrl1, so that D0 =

X, D1 = X. XNOR has the similar operation steps, except copying X

and X to D0 and D1 in the first cycle.

ROC is parallelizable due to the integration of a diode-connected

transistor. Charge sharing method in previous design, however,

occupies the bitline during the entire calculation of the logic, mak-

ing it unsuitable for parallel operations. Our design opens up the

potential to build more CUs per bitline to enhance parallelism. Due

to the constraint of area overhead, we only exploit the dual CU

design in this paper.

3.3 Enhanced ROC with Propagation and Shift

To extend bitwise Boolean operations into word-wise computing,

such as comparison and increment, we introduce another primitive

operation in ROC, bit propagation, which transmits a bit ‘1’ to

all bits to its left (or right) by changing their values into a ‘1’. We

design both uni-directional and bi-directional propagation, and

define that a word containing all ‘0’s remain all ‘0’s after any types

of propagation. These propagation operations are implemented by

connecting bitlines along the row direction and enhancing SAs

to receive a propagated logic ‘1’ in the restore phase. Figure 3(a)

shows the enhanced CU with a new transistor MS that connects

a cell to a neighbor bitline. It has two connection modes. One is

turning on MD and MS to build the uni-directional connection with

the help of diode-connected transistors, where logic ‘1’ could only

transmit in one direction, as shown in Figure 3(b). The direction

can be defined by different layout of MS. We build CU connected

to bitline with left-direction propagation, CU connected to bitline

with right-direction propagation. The second mode is to construct

a bi-directional connection by setting MC and MS on. Then logic ‘1’

could be transmitted to both directions as shown in Figure 3(c). In

addition, a new operation, shift, can also be done by activating MS

to enable a cell accessing its neighbour bitline during the restore

phase.

The enhanced SA is illustrated in Figure 3(d) in which two tran-

sistors, PsetL and PsetR, are added in p-latch pair. In a normal mode,

PsetL and PsetR are both enabled. In a propagation mode, only one

of them is enabled. Figure 3(e) shows the structure of SA when only

PsetL is enabled. It cannot drive bitline to 1 when bitline is changed

to 0. In other words, it holds a stable state when bitline is 1 and

bitline is 0. Under an opposite condition, it has a changeable state.

Therefore, logic 1 can be transmitted to a SA when its bitline is 0.

Figure 3: Structure of enhanced ROC

3.4 Compound Operations

With enhanced ROC, we develop new functions, such as compare

and increment built on propagations. In interest of space, we elab-

orate only comparison and increment here. More functions such as

substitute can be developed with proper operation sequences.

A comparison can be done by subtracting twowords and examine

the sign of the result. Another method is to make a comparison

bit by bit from MSB to LSB, until the first mismatched bit is found.

We adopt the second, more lightweight, way but avoid the bit by

bit comparison and use our uni-directional propagation instead.

As shown in the COMPARE part of Figure 4, we first calculate XY

and YX in parallel. Then, we right propagate (PrgR) them to create

blocks of ‘1’s in each word. The larger or smaller value of X and

Y is now indicated by the length of the ‘1’-block, represented by

Tmp1 and Tmp2. If the ‘1’-block in Tmp1 is shorter, X is smaller

and vice versa. Next, we compute Tmp3=Tmp1×Tmp2. If X≥Y,

Tmp3 contains all ‘0’s. Otherwise, Tmp3 contains some ‘1’s. By a

bi-directional propagation (PrgD) on Tmp3, the result S contains

either all ‘0’s (Y is smaller) or all ‘1’s (X is smaller). To restore the

original value of X (or Y), we simply perform XS+YS.

The comparison function above is completed in 6 cycles includ-

ing 3 regular cycles and 3 propagation cycles, as shown in the

“original command list” in the COMPARE part of Figure 4. The 6-

command operation have already offered better performance than

previous designs such as Drisa [3] and Dracc [14], but it can be

further optimized to 4 commands, as discussed in section 3.5.

To design an increment function, we first make an observation

that every increment just modifies the continuous 1s in LSBs of

a word. For example, a word of · · ·0111 is turned into · · ·1000 after

one increment. All leading bits remain unchanged. If the LSB is 0,

the increment operation just changes it to 1. Based on this obser-

vation, we implement the increment function by identifying the

Figure 4: Compare and increment operation mechanism, original command list, and optimized commands. The up and down

side is respectively the COMPARE and INCREMENT part with two examples.

ending block of ‘1’s, termed Last_1s_Sequence. In the INCREMENT

part of Figure 4, X is the number will be added with 1. We first

use uni-directional propagation to extend the last logic ‘1’ in X to

MSB, obtaining Tmp1. The ending ‘0’s in Tmp1 is the location of

Last_1s_Sequence in X. In second step, we left shift Tmp1 by one

bit (indicated by Shf(Tmp1)), which acts as inverting the Last_0 in

X to 1. The third step is to merge the leading unchanged bits by

executing an OR operation between Shf(Tmp1) and X, obtaining

Tmp3. In the final step, we implement an AND operation between

Tmp3 and Tmp1 to turn the Last_1s_Sequence into 0s. However, in

the case that LSB of X is 0, the shift operation cannot change the

Last_0 to 1, as shown in the first example of INCREMENT. Hence,

we perform another OR operation with Y in the third step to help

change the LSB to 1.

The increment function above is completed in 6 commands,

including 4 regular cycles, 1 shift cycle, and 1 propagation cycle,

as shown in the INCREMENT part of Figure 4. The 6-command

operation can be further optimized to 4 commands, as discussed

next.

3.5 Optimizing Compound Operations

The compound operations can be further optimized in three ways.

We already parallelized as many commands as possible in the initial

design above. We further reduce the number of commands and trim

down the total operation cycles as follows. First, we identify and

remove redundant operations. As discussed above, the comparison

operation requires 2 PrgR’s to compute Tmp1 and Tmp2. However,

if Tmp2 is replaced with XY, the final comparison result is still the

same. As shown in the COMPARE part of Figure 4, the original

commands 3-6 is reduced to a-c.

Second, we rearrange the commands sequence to optimize them

for our hardware. Here, we first explain how to reuse data in ROC

to minimize commands. Referring to Figure 2, if we calculate ex-

pression X+Y+Z, only three commands are necessary (copy X to

C, copy Y to D, copy Z to D) and the result is in cell C. The in-

termediate result, X+Y, is naturally calculated and stored in C to

facilitate the ORwith Z. However, if we calculate expression (X+Y)Z

with same number of logic operations, four commands are needed

(copy X to C, copy Y to D, copy C to D, copy Z to C). The rea-

son for the additional copy to move intermediate result X+Y from

C to D is to calculate the AND in the last command. In INCRE-

MENT, there is a (Shf(Tmp1)+X+Y)Tmp3 operation. To avoid ex-

tra move of intermediate result, we transform the expression into

(Shf(Tmp1) X Y)Tmp3 with all AND operations to maximize data

reuse in CU. As shown in the INCREMENT part of Figure 4, the

original commands 1-5 is reduced to a-d.

Third, we merge different type of commands to reduce the com-

mand number. For example, command a, b in COMPARE can be

merged to A. This is because the intermediate result is already in

SA after the PrgR operation. The value can be restored to cell C0

directly. For the same reason, command b, c in INCREMENT can

be merged to command B, as shown in Figure 4.

After these optimization, the final command sequence of COM-

PARE now is {1, 2, A, c}, which is of length 4, consisting of 2 regular

cycles and 2 propagation cycles. The final command sequence of

INCREMENT is {a, B, d, 6}, consisting of 3 regular cycles and 1

propagation cycle.

4 DISCUSSION

4.1 Latency of Different Command

For all the operations discussed above, ROC has 3 types of primitive

commands: copy, propagation, and shift. The copy command has

about the same latency as a regular command [9]. The shift com-

mand, based on the same mechanism (AAP) as copy command, also

shares the same latency. The propagation command has an extra la-

tency for transmitting bit ‘1’. From our Spice model evaluation, the

average latency is ∼0.72ns per bit, which is slightly higher than [14].

For 8, 16, and 32 bit word, the propagation latency increases by 12%,

23%, and 47% compared to the latency of regular command. Hence,

the corresponding cycle can be regard as 1.12×, 1.23×, and 1.47× of

a regular cycle. Here, we conservatively used 1.5× for 8 and 16 bit

words, and 2× regular cycle for 32 bit words.

4.2 Latency Optimization

ROC is compatible with previous latency optimization methods.

For example, to take advantage of the isolation method in [10], we

can arrange isolation transistors in folded bitline DRAM as shown

in Figure 1(a), to isolate our computing structure from the subarray

cells. This can greatly reduce parasitic capacitance on bitlines and

reduce the latency of CU. Other optimization strategies such as

trading subarray size for more banks [3, 14], can also be adopted

in ROC. Note that our main contribution is to reduce computing

cycles, and hence can directly benefit other compatible DRAM

latency reduction techniques.

4.3 Efficiency of the Computing Unit

Unlike Ambit, ROC does not require extra empty cells to serve

as buffers to assist computing. The executions of all optimized

commands are carried inside the CUs. We remark that cells in a CU

can also store data when they are not used for computing. To this

end, both cells store identical data as they are connected by a diode.

Hence, both wordlines are activated when the cells are storing data

instead of computing.

5 EVALUATION

We use Design Compiler and H-spice for circuit-level simulation.

The parameters are from CACTI-3DD [15] which provides power,

delay, area, and cycle time for commodity DRAMs. Then we build

an in-house simulator to calculate the latency and throughput of

ROC on certain applications. We configure a regular DRAMmodule

with 8 banks. The baselines are Ambit, Dracc, Drisa, and KabyLake

CPU [16]. Here, we first discuss the area cost of ROC, then com-

pare basic operation cycles with baselines, and finally show the

performance improvement in two applications.

5.1 Area Overhead

ROC has two changes on the microarchitecture of DRAM. The

first is the addition of dual CUs, which modifies the cell C and

D with 3 transistors (Figure 2). The diode-connected transistor

can be placed in the isolation region in substrate-plate DRAM.

Its area overhead is thus negligible. The additional MS and MN

transistors will occupy two rows, based on estimates from [9, 17].

Therefore, including MC and MD, the dual CU costs roughly 8

DRAM rows. This is comparable to Ambit, which also allocates 8

rows for computing. The second source of cost is the enhanced SA

with 2 enable transistors in p-latch pair, which increases 14% area

in SA. Including the area overhead of dual CU and taking the area

ratio of SA (∼ 15%), the overall area overhead of the enhanced ROC

is around 3%, which is less than half of area overhead of Dracc with

6 additional transistors per side and 4 extra transistors in SA.

5.2 Basic Operation Cycles

Figure 5 compares the total cycles of basic operations in Ambit,

Dracc, Drisa, and ROC. That is, how many regular cycles an opera-

tion takes until the result is available in DRAM. As Dracc’s logic

operation is built on Ambit, they have the same performance on

bitwise operation. Drisa executes logic operations via extra latches

and logic gates circuit. For Drisa_nor, only NOR gate is attached.

For Drisa_adder, four types of logic gates and an adder are attached.

Figure 5(a) shows cycles of 7 kinds of basic logic operations.

Cycles of ROC and Ambit depend on the complexity of a logic

operation. For example, NOT is the simplest which takes only one

cycle, while XOR takes more cycles because it is calculated from

combination of NOT, AND and OR. Cycles of Drisa depend on

whether it has the type of logic gate for the operation it executes.

For Drisa_nor, a NOR just needs two cycles, but other operations

need many more cycles. On average, Drisa_add and ROC use lowest

number of cycles, 2.3 and 2.4 respectively. But Drisa_add has a full

adder so ROC is more area efficient. Its area overhead is only 6% of

Drisa_add.

Figure 5: Total cycles of basic operations.

Figure 5(b) shows total cycles for several examples of word-

wise operations. Substitution (sub) replaces a specific symbol in

database with a new one, which is a common operation in data

management. Pop counter (cnt) and comparator (comp) are based

on the increment and compare functions discussed in section 3.4

and 3.5. The propagation cycles are transformed to regular cycles

as discussed in section 4.1. In substitution and comparator, ROC

achieves 32% and 50% improvement over Dracc, 44% and 47% over

Drisa_add. Drisa_add only wins in pop counter applications, indi-

cating the logic design in DRAM is quite application-specific. Base

on the cycles of substitution, pop counter, and comparator, the raw

throughput of ROC is 9.3×, 12.3× and 10.1× respectively above

our baselined CPU. Operation cycles of Drisa_nor are much larger

(much more than 30), because it only has the shift function to assist

executing word-based operation bit by bit. Hence, in the following

applications, we do not take Drisa_nor into account.

5.3 Case Study: Hamming Distance

Hamming distance is to calculate the number of different sym-

bols between two strings. It can be used in wide range of applica-

tions, such as DNA recognition [18] and hyperdimensional com-

puting [19]. For simplicity, we just calculate Hamming distance

between binary vectors, which requires bitwise XOR operation and

pop count operation. We perform Hamming distance calculation

on the three accelerators, Dracc, Drisa_add, and ROC, with add or

increment function.

Figure 6: Throughput improvement offered by three DRAM

accelerators for Hamming distance over our baseline CPU

In Figure 6(a), the performance improvement of the three accel-

erators decreases with increasing the bit width of counter, because

the counter needs to increment each bit sequentially. As shown in

Figure 6(b), the data is organized in vertical direction. Calculating a

16-bit vector with an 8-bit counter requires 2 XOR and 16 increment

operations, thereby the throughput reduces with wider words. For

32-bit counter, the speed of Dracc and ROC is even lower than CPU.

In three accelerators, Drisa_add has the best performance, which

benefits from the specific adder design but at a cost of 51% area

overhead. On the other hand, ROC can achieve a high improvement

close to Drisa (3.6× vs 4.6×, 1.8× vs 2.4× and 0.8× vs 1.2×) with

only 3% area overhead. For Dracc, it has a larger area but lower

throughput than ROC. Therefore, ROC achieves the best speedup

over area.

5.4 Cast Study: Table Scan

Table scan is a common operation in a memory-based database

management system. It sequentially reads the database and checks

the columns for the validity of a predicate of a query. It usually

takes many cycles to evaluate simple predicates. For example, a

database query Q1 can be written as the following:

Q1 : SELECT COUNT (∗) FROM R WHERE R.a < C1
where R.a < C1 is a simple LESS THAN predicate. It involves a signif-

icant number of comparison and increment operations. Those oper-

ations will be done sequentially with in-memory processing. Creat-

ing parallelism among bulk operations will improve the throughput

of queries. [20] proposes the BitWeaving method to parallelize

comparisons for multiple words. It permutes each word to store it

in a memory column. Hence, the same bit in multiple words can

be compared in parallel. We found that BitWeaving can achieve

better utilization of incrementers/counters in memory arrays and

achieve higher throughput of operations. We evaluate the predi-

cates in three ways for Dracc, Drisa_add and ROC, as reported in

Figure 7. The first method is BitWeaving with increment performed

in CPU (‘BitWeaving’). Using CPU instead of in-memory incre-

ment/counting is because some designs incur too high latency in

counting to be worthwhile. The second method is BitWeaving with

in-memory increment/counting (‘BitWeaving with inner cnt’). The

third method is directly performing word-wise operations without

BitWeaving (‘Word-wise’ Operation).

Figure 7: Throughput improvement over our baseline CPU

and latency of a single operation in query offered by three

DRAM accelerators for table scan

In Figure 7, bars are for throughput over our baseline CPU, and

curves are single operation latency of Dracc, Drisa_add, and ROC

normalized ROC in Word-wise operation. We draw several conclu-

sions. First, BitWeaving can achieve higher throughput than word-

wise operation, as the former can take full utilization of hardware

inside CU, especially in incrementers/counters. Second, performing

in-memory instead of in-CPU incrementing/counting is beneficial

except for Dracc because its long-latency in-memory counters be-

come an overkill. Third, the throughput of BitWeaving increases

with word width because the proportion of time spent on sequen-

tial increment is reduced. Fourth, ROC outperforms Dracc and

Drisa_add in almost all cases because of the low latency designs for

every primitive and compound operation. Although Drisa_add also

has low-latency operations, as indicated in Figure 5, our optimiza-

tion on data reuse further greatly reduces latency in each operation

while such optimization is hard to implement in Drisa_add.

6 CONCLUSIONS

In this paper, we develop a new PIM architecture to achieve higher

performance in basic logic operations and frequent compound op-

erations with lower area overhead than state-of-the-art. We found

that it is critical to reduce the number of cycles in each operation

in order to achieve high performance. Otherwise, in-memory oper-

ations may become even more expensive than in-CPU operations.

Moreover, PIM operations should be well designed to maximize

parallelism, data reuse, and hardware utilization to achieve opera-

tion throughput from the memory. Those will be essential to the

overall performance of an application.

7 ACKNOWLEDGMENTS

This work is supported in part by US National Science Foundation

#1422331, #1535755, #1617071, #1718080, #1725657, The authors

thank the anonymous reviewers for their constructive comments.

REFERENCES
[1] O. Villa, et al., “Scaling the Power Wall: A Path to Exascale,” in SC, 2014
[2] S. McKee, et al., “Reflections on the Memory Wall,” in CF, 2004
[3] S. Li, et al., “DRISA: A DRAM-based Reconfigurable In-Situ Accelerator,” in

MICRO, 2017
[4] A. Subramaniyan, et al., “Parallel Automata Processor,” in ISCA, 2017
[5] B. Akin, et al., “Data Reorganization in Memory Using 3D-stacked DRAM,” in

ISCA, 2015.
[6] H. Asghari-Moghaddam, et al., “Chameleon: Versatile and Practical near-DRAM

Acceleration Architecture for Large Memory Systems,” in MICRO, 2016
[7] Y. Kim, et al., “Assessing merged DRAM/logic technology,” in INTEGRATION, the

VLSI journal, 27, 2, 179-194, 1999
[8] V. Seshadri, et al., “RowClone: Fast and Energy-efficient in-DRAM Bulk Data

Copy and Initialization,” in MICRO, 2013
[9] V. Seshadri, et al., “Ambit: In-memory Accelerator for Bulk Bitwise Operations

Using Commodity DRAM Technology,” in MICRO, 2017
[10] D. Lee, et al., “Tiered-latency DRAM: A Low Latency and Low Cost DRAM

Architecture,” in HPCA, 2013
[11] T. Zhang, et al., “Half-DRAM: A High-bandwidth and Low-power DRAM Archi-

tecture from the Rethinking of Fine-grained Activation,” in ISCA, 2014
[12] X. Zhang, et al., “Restore truncation for performance improvement in future

DRAM systems,” in HPCA, 2016
[13] P. Nair, et al., “ArchShield: Architectural Framework for Assisting DRAM Scaling

by Tolerating High Error Rates,” in ISCA, 2013
[14] Q. Deng, et al., “DrAcc: A DRAM Based Accelerator for Accurate CNN Inference,”

in DAC, 2018
[15] K. Chen, et al., “CACTI-3DD: Architecture-level Modeling for 3D Die-stacked

DRAM Main Memory,” in DATE, 2012
[16] 7th Generation Intel Core Processor Family for S Platforms, Vol. 1, Datasheet.

https://www.intel.com/content/www/us/en/processors/core/
7th-gen-core-family-desktop-s-processor-lines-datasheet-vol-1.html

[17] S. Lu, et al., “Improving DRAM Latency with Dynamic Asymmetric Subarray,” in
MICRO, 2015

[18] M. Mohammadi-Kambs, et al., “Hamming Distance as a Concept in DNA Molecu-
lar Recognition,” in ACS omega, 2, 4, 1302-1308, 2017

[19] A. Rahimi, et al., “A Robust and Energy-Efficient Classifier Using Brain-Inspired
Hyperdimensional Computing,” in ISLPED, 2016

[20] Y. Li, et al., “BitWeaving: Fast Scans for Main Memory Data Processing,” in
SIGMOD, 2013

