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Abstract—Cyber-Physical Production Systems (CPPS) will 
usher a new era of smart manufacturing. However, CPPS will 
be vulnerable to cross-domain attacks due to the interactions be­
tween the cyber and physical domains. To address the challenges 
of modeling cross-domain security in CPPS, we are proposing 
GAN-Sec, a novel conditional Generative Adversarial Network 
based modeling approach to abstract and estimate the relations 
between the cyber and physical domains. Using GAN-Sec, we 
are able to determine if various security requirements such as 
confidentiality, availability, and integrity are met. We provide 
a security analysis of an additive manufacturing system to 
demonstrate the applicability of GAN-Sec.

I. In t r o d u c t i o n

The fourth industrial revolution will encompass a large 
scale use of Cyber-Physical Systems (CPS) known as Cyber­
Physical Production Systems (CPPS) [1]. CPPS are an integra­
tion of sub-systems from multiple cyber and physical domains 
interconnected through communication networks. using CPPS 
will aid in making the factory units smarter and adaptive; 
however, due to the tight interactions between the cyber 
and physical domains, there may exist various cross-domain 
vulnerabilities in CPPS.

There are two types of exploits of cross-domain vulner­
abilities that we are primarily interested in: kinetic-cyber 
attacks [2] and side-channel attacks. Kinetic-cyber attacks 
refer to cyber-based attacks that directly impact the physical 
domain by breaching the integrity or availability of CPS [3]. 
Side-channel attacks refer to confidentiality attacks that steal 
critical information (from the cyber domain) by observing 
emissions from the physical domain [4], [5]. Both types of 
attacks may even be composed of smaller exploits that target 
confidentiality, integrity, or availability. Common examples 
of kinetic-cyber attacks include the notorious Stuxnet worm 
attack which caused physical damage to over 1,000 centrifuges 
in an Iranian nuclear plant [6], and a more recent cyber attack 
on a German Steel Mill, where attackers were able to cause 
massive damage to the blast furnace [7].

Existing CPPS modeling tools were created for the purpose 
of analyzing the system-level performance, reliability, energy 
efficiency, and quality of controls. Security is ignored by 
these tools and left as an afterthought of system design. 
However, most of the existing CPS security research work only 
target known vulnerabilities in specific domains. Afterward, 
they suggest an ad hoc repair such as patching software 
and/or replacing hardware components without showing that

the repaired system is free of further vulnerabilities [8]. Some 
of these CPS also end up being a part of the overall CPPS.

Since these solutions cannot analyze and explore all the 
potential vulnerabilities, they can not answer the questions 
such as, “How secure is this CPPS against a confidentiality 
attack by a specific attacker?” or “Can we detect an integrity 
or availability attack on a CPPS?” To address these questions 
and improve the CPPS security research, we hypothesize that 
it is necessary to have a new modeling approach that takes into 
consideration the signal and energy flows of a system. We pro­
pose a security model that abstracts the relationship between 
the energy flows and signals flows to answer questions like 
the aforementioned ones.

A. Problem and Research Challenges
Notice that since the attack models mostly describe the 

capability of attackers rather than the system, one might 
assume that the existing attack models may be directly applied 
in CPPS security analysis. However, there exist the following 
research challenges to create a system-level model for CPS 
security analysis:
• The existing security properties are mostly only proposed for 

analyzing attacks in the cyber domain [8]. Thus, analyzing 
the cross-domain attacks in CPPS requires new types of 
security properties applicable in both the cyber and physical 
domains.

• The existing system-level behavior models in CPPS require 
various Models of Computation (MoCs)1, for the cyber 
domain and physical domain (a MoC cannot be cross­
domain) [9]. In order to analyze cross-domain security, a 
unified system behavior of interest for CPPS is required.

• In the CPPS environment, there are multiple sub-systems 
interacting with each other; therefore, information leakage 
or attack detection needs to be performed across multiple 
sub-systems.
To address these challenges, researchers have proposed to 

use information flow as the basis of a unified behavior model 
of cyber and physical domains for security analysis in [10]. 
However, [10] only focused on the application related to 
commodity flows, and proposed a coarse-grained information 
flow that models the commodity flow changes as an event. It 
fails to provide the capability of a quantified analysis of the 
cross-domain attack and detection capability.

1A MoC is a set of allowable operations used in computation and their 
respective costs (e.g., timing, performance, and memory overhead)
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Modeling the information flows requires a statistical 
method. However, there is no guarantee that collected data 
during both design time and run-time is sufficient to create 
an accurate security model. In this work, we use generative 
adversarial networks (see Section I-B) to acquire a better 
estimate of the distribution (conditional in this paper) of the 
data. One hand if there is a large amount of data available, the 
discriminator of the generative adversarial network is able to 
estimate the data distribution, on the other, the generator, since 
it never sees the real data estimates the distribution without 
overfitting on the currently limited data, thus providing better 
distribution estimation. For security analysis, we consider 
abstracting a CPPS by its signal and energy flows and deriving 
the conditional densities among flow pairs using Conditional 
Generative Adversarial Network (CGAN).

B. Preliminaries

First, let us present some preliminary definitions about the 
energy and signal flows as well as GANs before explaining 
the details about our proposed CGAN-based security model 
of the CPPS.
Signal Flow: A signal flow is modeled as a discrete signal may 
be defined as a random variable Fs which have n  number of 
possible values, Fs € { /i , / 2, fn}- We define a set of n  
events E  =  {E±, E 2, ..., E n }, where Ei = 1 when Fs = fi, 
and Ei — 0 otherwise. We assume the probabilities for E, are 
known as P r(E i).
Energy Flow: We define energy flow as a continuous-domain 
time dependent variable Ff . Given a feature construction 
function / x ( p)’ we may construct a set of feature vectors 
X  =  f x (FE). Next, given a feature extraction and selection 
function /y (-), we may extract a set of more relevant feature 
vectors Y  = fy ( X ) .  Assume Y  = { Y 1 , Y 2, ...Y m}, where 
each feature vector Y l may have n, number of possible values 
Y l G {y \ , ..., yhi}- We define a set of n* events Ej =  {E \, E 2 , 
...,E n i}, where any event E ,:i is true if Y 1 =  y* is met. We 
assume the probability for E ^  is known as P r{E i .). 
Generative Adversarial Network: A Generative Adversarial 
Network (GAN) consists of a generative model G that captures 
the probability distribution of the flow’s data P r(F i), and a 
discriminator model D  that estimates the probability that a 
sample of data x came from the training data rather than the 
generative model, P r(x  G F \) [11], GAN is a form of a 
maximum likelihood estimator that is trained to estimate the 
true probability distribution of a random variable by utilizing 
the empirical distribution derived from the training data. It 
achieves this by minimizing the Kullback-Leibler divergence 
between the empirical distribution and the generator’s distri­
bution, as follows [11]:

8* = arg min D KL(P rdata(Fi) || P rG(Fy,6)) (1) 
e

where 0 are the model parameters. The models used in these 
networks are generally deep convolutional neural networks. 
Some advantages of using GAN over other methods is that 
it does not require Markov chains (where the chance of 
state explosion is high) and they can generate samples in 
parallel [11]. A Conditional Generative Adversarial Network 
(CGAN) is a variation of the GAN, where the generator and

the discriminator both receive a conditional variable E2 (see 
Figure 2). The primary objective of the generative model G is 
to learn the conditional probability distribution P r(F i\F 2). In 
order to do this, it will require the labeled data (J \l . / 2, ). ( / i 2, 
/22), - • - ( / i„ , /2 n). Here { / i i; / i 2, - - -, /i„} , {/2i; h ? ,- - - ,  
f 2n } are the values taken by the random variable F\ and F2, 
respectively. G and D  have a common objective function based 
on the two-player minimax game, as follows [12]: 

nun max V (D , G) = EFl^ Prdata{Fl) [log(D(F1 |F2))] +

Ez ^ P rz{z)[log(l -  D (G (Z\F2)))} (
where Z  is a noise random variable that is provided along 

with F\ and F> to G for training.
In Equation 2, the model G is trained to minimize log( 1 — 

D (G (Z\F2))) so  that it may generate samples more similar 
to the training data. D  is trained to maximize log(D(F\\F2)) 
so that it may accurately differentiate between the real data 
and the generated data. Given enough time and capacity, the 
end result will be that G is trained to accurately estimate 
the P r(F i\F 2) and D  cannot differentiate G ’s output from 
real or generated data. This is an important concept for our 
security model because using P r(F i\F 2), one can estimate a 
(signal/energy) flow based on another flow.

A typical CPPS model (see Figure 1) includes multiple 
sub-systems ( 1 ,2 , . . . ,  n). In each sub-system, there are cyber 
and physical domain components with energy and signal 
flows connecting them. Moreover, the energy and signal flows 
may occur among sub-systems as well. In this section, we 
propose to abstract the relationship between the various flows 
(1energy-energy, signal-energy, and signal-signal), either in a 
single sub-system, or across various sub-systems. This will 
be achieved by using the Conditional Generative Adversarial
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we can acquire all the signal and energy flows during design 
time. One can then construct a graph where the various nodes 
represent the cyber and physical domain components, and the 
edges represent the signal and energy flow between them (see 
Figure 3).

; n~rwr~B . Fs

m

V C 9yp_2lNodes_ P -> Physical Nodes;
Fig. 3. Decomposition o f CPPS in terms o f components and flows.

The graph created in Figure 3 is then used to list all the 
flows F  = {F i ,F 2 , . . .  ,F n } with F  € {F s , F e } that are 
available in the CPPS system. From this, we extract the flow 
pairs (F i,F j). Each pair is then supplied to the CGAN to 
model Pr{Fi\Fj =  f j )  or P r(F j\F i =  /.¿). We can infer 
that a high value of conditional probability indicates a strong 
relationship between two flows (given knowledge of one of 
the flows). Based on these distributions, we can therefore 
analyze the relationship between various flows from a security 
perspective. For example, using Pr{F \ Fg) (see Figure 3), one 
can answer questions similar to the following: Is data in F\ 
(cyber domain) being leaked from Fg (physical domain)? Can 
Fg be used to monitor any attacks in the integrity of the flow 
path from node C\ to P5? Various other metrics may also be 
created using the conditional probability values (e.g., mutual 
information metrics of side channel attacks).

In summary, the proposed CGAN-based security model 
provides a theoretical foundation to enable a system-level 
methodology for the design and analysis of CPPS against 
cross-domain attacks. To the best of our knowledge, this 
is the first effort towards building a security analysis 
methodology for CPPS based on CGAN.

III. CGAN M o d e l  G e n e r a t io n  

To address the need for a design-time security analysis 
tool for CPPS, we propose to use a two-step method which 
generates the proposed CGAN-based security model from a 
given CPPS model, as shown in Figure 4. The two steps 
include 1) Graph Generation and 2) CGAN-based Security 
Model Generation. In order to develop the graph from the 
existing CPPS, the graph generation algorithm takes the design

Store Model
Fig. 4. Automatic model generation method.

Step 1: CPPS graph generation based on signal and energy 
flows. First, it is necessary to have a list of all the signal and 
energy flows between cyber and physical components and also 
between sub-systems.

Algorithm 1: CPPS graph and flow pairs generation.
Input: CPPS Architecture Data: Sub,C , FP, Fs, Fe 
Input: Historical Data: Data 
Output: Flow Pair List: FPt

1 Initialize Gc p p s  with V  nodes and its adjacency list, E
2 Initialize F P f and FP t  as flow pairs (F i,F j) list
3 Remove feedback loops to make signal/energy flows directed
4 foreach Subsystem S  G Sub  do
s |_ Node list Q=(Add all Pi €  S  and Q  G S)
6 foreach Node v G Q do
7 Add v  in G c p p s
8 foreach Node u G Q \  v do
9 if  Fs or F e  exists between v  and u then

10 |_ Add u into adjacency list of v, E[v\

11 foreach Flow F ii G E  do
12 foreach Flow Fi;j G (E  \  F\ i ) do
13 if head of F-2j is reachable from tail o f F \i using DFS 

then
L F P ij = (F i,F a), F P f  = FP f  U FPi:j

15 foreach I 'P .j =  (F ii ,F 2j) G F P f  do
16 if FP,,.j G Data then
17 |_ FP t  = FP t  U (FPitj)

18 return FPT

The design-time CPPS architecture specifications will consist 
of this information and we will convert it into a graph-based 
model. A graph would allow us to select the energy and signal 
flow pairs necessary to create the CGAN model in the next 
step. We will denote the corresponding graph generated in 
this step as G c p p s  consisting of nodes made of cyber and 
physical components. Building the graph, G c p p s , given the 
design-time architecture of the CPPS, is straightforward and 
presented in Algorithm 1. After building G c p p s , in Lines 
11 to 17 we reduce the graph to find only relevant pairs 
that can be modeled using CGAN. Step 2: CGAN model 
generation. We assume that the given G c p p s  is a black box 
with only input/output flows. There may exist historical data of
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the CPPS that we can directly use (e.g., testing/runtime data of 
a system). The P r(F \\F 2 ) learned by the CGAN relies on the 
training data. In CPPS, this training data is bound by either 
the architecture or the production capability. Hence, during 
design-time security analysis, a large amount of training data 
is required. This may be a drawback of the CGAN-based 
modeling, but this problem persists in other data collection 
methods as well. In CPPS, there are some limitations to the 
access of the high-level data which needs to be protected, such 
as product specification, due to the mechanical structure of the 
sub-systems. This allows us to gather training data within the 
specified bound, and estimate P r(F i\F 2 ) using our model. 
The amount of data given for training can also be modified 
according to the attacker capability or attack detection model’s 
resources, such as sub-system type, money or time. Algorithm 
2 is used to train the CGAN. The algorithm takes the flow pair 
list F P t  generated in Algorithm 1 and the data corresponding 
to the flows in the CPPS.

Algorithm 2: CGAN Model Generation and Storage
Input: Flow Pairs: F P t , Historical Data: Data 
Input: CGAN Training Parameters: Batch Size n, Step Size k, 

Number of Iterations Iter  
Output: Generator, Discriminator: G, D

1 foreach FPj e  FPt  do
2 Extract flows corresponding to (F\,F2) of FPj g Data
3 for Iter  steps do
4 for k steps do
5 Acquire n  mini-batch noise samples

{21, 22, zn} from Pr(Z)
6 Acquire n mini-batch noise samples

from Prdata{Fl)
7 Corresponding to { / i , , / i 2, . . . ,  / i „  }, acquire

{/21, / 22, • • •, / 2„ } from P rdata{F2) 
s Update D, by ascending its stochastic gradient:

^ T ^ i [ l o g D ( f u \fai) + l o g ( l -  
L D(G(Zi\f2i))}

9

10

Acquire n  mini-batch noise samples { z i ,z 2, ■ ■ . ,  zn } 
from P r(Z )  and the { /2 l, / 22, . . . ,  f 2n} used in the 
line 17

Update G, by descending its stochastic gradient:

ii return G that estimates Pr(Fi\Fj), and D

For each of the flow pairs available in F P t , Lines 1 to 10, 
which are based on [11], [12], iteratively take sample flows 
from Fi and Fj, and train D by stochastic gradient ascent 
(Line 8), and train G by stochastic gradient descent (Line 
10). The number of steps and the iterations to be performed 
depends on the assumptions about the attacker and can be 
easily modified accordingly. At the end, G learned for each 
flow pair is returned and stored. This model effectively will 
learn the conditional probability Pr(Fi\Fj) [11], [12],

The convergence of G to the historical data has been 
extensively proven in [11], [12]. Then based on the assumption 
of how much actual data an attacker can acquire, or how much 
data an attack detection model can acquire, Pr(Fi\Fj) can be 
estimated accordingly by adjusting D in the training phase.

IV. C a s e  S t u d y  a n d  A n a l y s is  

As a case study, we provide the CGAN-based modeling 
for security analysis of a sub-system of a CPPS. The CPPS

sub-system selected is a fused modeling deposition-based 
additive manufacturing system, also known as a 3D printer. 
Additive manufacturing has been predicted to be one of the 
enabling technologies for the next generation of CPPS due to 
its rapid prototyping and distributed manufacturing capability. 
However, many emerging threats to this CPPS subsystem has 
also been highlighted [13], [14]. Hence, we will demonstrate 
how some security analysis may be performed in this sub­
system using the proposed CGAN-based modeling.

(a) Ultìmaker 3D Printer (b) Acoustic Sensor
Fig. 5. Additive manufacturing as a sub-system for security analysis.

The state-of-the-art cartesian 3D printer model consists of 
four stepper motors as shown in Figure 5. Three of them are 
used to provide printer nozzle movement in the X, Y, and 
Z directions, while the fourth motor is used to extrude the 
filament while printing. The speed and direction of all the 
stepper motors are controlled by cyber domain instructions 
written with G-code, a programming language widely used in 
industrial systems to tell a tool what to do and how to do 
it, along with M-code, auxiliary commands for miscellaneous 
machine functions. Our experimental setup is enclosed in a 
makeshift anechoic chamber to isolate the noise from the 
environment and other components in the lab. A contact 
microphone (C411 L) is attached to the back of the 3D 
printer to acquire the acoustic energy flow dissipated to the 
environment.

Fig. 6. (Gc p p s ) Graph generation for additive manufacturing system based 
on signal and energy flows.

A. G c p p s  Generation

Using Algorithm 1, the additive manufacturing CPPS can 
be decomposed to its corresponding energy and signal flows in 
the form of a graph, G c p p s  (see Figure 6). One may notice 
that vertices C4 and P, are not components of the 3D printer. 
C'/| represents the external signal flows from other sub-systems 
into the 3D printer. The node Pg, on the other hand, represents 
the physical environment. Various energy flows that are either 
intentional or unintentional passing to the environment are 
encompassed by the edges going towards the node Pg. From 
this graph, flow pairs Pp is extracted using Algorithm 1.
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B. Experimental Data Collection
In our experiment, we have only selected cross-domain 

flow pairs for security analysis. Specifically, we analyze the 
acoustic/vibradon energy in the physical domain and the G/M- 
code instructions passed to the 3D printer subsystem from an 
external node. The G/M-code instructions are the signal flows 
entering the sub-system from node G4. In our analysis, we 
have monitored the energy flows between nodes P2, P3, P4, 
P5, Pg and the node P g. For ease of training the CGAN, 
we convert the time-domain acoustic energy flows values into 
frequency domain values using continuous-wavelet transforms, 
which preserves the high-frequency resolution in time-domain 
as well. We obtain a non-uniformly distributed 100 bins 
Freq  =  [ freq i,fre q 2 , . . . , fr e q io o \  between 50 and 5000 
Hz (this range may be changed for further security analysis 
purposes). In this case-study analysis, for simplicity, we extract 
G/M-codes from 3D objects that only move one stepper motor 
at a time. The G/M code is one-hot encoded based on presence 
of instructions that run stepper motors X ([1,0, 0]), Y([0,1, 0]) 
and Z([0,0,1]), respectively. This encoding is done based on 
G/M-codes Gt and Gt~\. For example, if Gt~ 1 is [Gi P1200 
X 5 Y 5 Z 5] and Gt is [Gi P1200 X 10 Y 5 Z 5] then encoding 
for Gt will be Cond = [1,0,0] as only stepper motor X 
will run. For a more thorough security analysis, the one- 
hot encoding can be extended to consider the combination 
of signal and energy flows. For example, for three physical 
components and their combination, the one-hot encoding can 
be of size 23 =  8.

^ — Discriminator Loss —— Generator Loss

■4r........Initial High Loss fo r
Generator

Iteration (*1 0 0 0 )
Fig. 7. Training results for the CGAN.

C. CGAN Modeling
Using the one-hot encoding obtained in Section IV-B 

as conditions Cond, we have trained CGAN to estimate 
Pr(Freq\Cond). In doing so, we can derive a trained condi­
tional density function to find the probability of a particular 
value of frequency component f req given which stepper motor 
is running. These conditions are generated from the signal 
flows coming from node C4, and frequencies extracted from 
the acoustic energy flows going to the environment node 
Pg from the various nodes. Hence, the conditional density 
function estimates the relation between the signal flow from 
node C4 to C\ and energy flows from nodes P2, P3, P4, P5, 
Ps to the node Pg.

Figure 7 shows the training results for the CGAN. On the 
X-axis, the iteration number is increasing. With the increasing 
iteration, however, the more signal and energy pair data are 
also incorporated. We can observe that initially, G ’s loss is 
high, whereas P ’s loss is low. However, over more iterations 
and data, the G ’s loss decreases, making it difficult for D  to

know whether the data generated is real or fake, and hence 
increasing the loss of D.

D. Security Analysis Results
In our experiment we will demonstrate how the CGAN 

modeling may be used for security analysis concerned with 
confidentiality breach through the side-channels, and design 
of integrity and availability attack detection on the physical 
components of the 3D printer sub-system using the physical 
domain (or the same side-channels).

A lg o rith m  3 : Security analysis methodology

Input: D,G, Z,Cond, G Size, Xtest £ IRLxM 
Input: Frequency Feature Indices: F tlnd ices  €  1RK
Input: Parzen Window Width: h
Output: Likelihood Metrics: AvgCorLike, AvglncLike

1 Initialize AvgCorLike and AvglncLike as IRN*K matrix
2 foreach C, E Cond do
3 Cor L ike =  0, C orN um  =  0
4 IncL ike  =  0, In cN u m  =  0
5 foreach F tld x  E F tlnd ices  do
6 X g = generated G Size  samples from G(Z\Ci)
7 foreach X ,tf ( Idx, where l E [1 , ,L] do
8 FtDistr = ParzenDensity(X<3 , ’Gaussian’, h)
9 LogLike =  FtDistr.score(A']^ii/d!E)

10 Like = exp(LogLike) * h
11 if Label(Xltf j Idx) = =  Condi then
12 |_ CorLike += Like, CorNum += 1

13 else
14 |_ IncLike + =  Like, IncNum += 1

15 CurrAvgCorLike-CurrAvgCorLike U {CorLike /
CorNum}

16 CurrAvgIncLike=CurrAvglncLike U {IncLike / IncNum}
17 AvgCorLike} i] = CuriAvgCorLike
18 AvgIncLike[ i] = CurrAvglncLike
19 Reset Curr AvgCorLike and Curr AvglncLike
20 return AvgCorLike, AvglncLike

Both of this analysis have one thing common, the condi­
tional relationship between the energy flows given the signal 
flows. In this section, we will show how the CGAN model 
(Discriminator D, Generator G, and Noise Z) can be used 
to check this conditional relation for security analysis. The 
preliminary algorithm used for security analysis shown in 
Algorithm 3 (this may be changed for more complex signal 
flow analysis but can still use the same CGAN). Algorithm 
3 computes security metrics based on the average likelihood 
of test samples. If a test sample x  has a high likelihood for 
a specific conditional distribution Pr(x\C ondi) and its actual 
label is Condi then it means that there is a strong relationship 
between Condi and the x. This type of metric can be used 
to evaluate the system’s confidentiality vulnerability level or 
perhaps to detect an integrity or availability attack.

For each condition label Condi, we first generate samples 
X q with G{Z\Condi). Then for a given Parzen window size 
h, and current feature index F tld x ,  we create an estimated 
conditional distribution F tD is tr  =  P r(X Q tIdx\Condi) via 
the Parzen Gaussian Window method (Line 8). For each 
frequency feature, we derive the corresponding test samples 
from our test batch X test (Line 7), and for each test sample, 
we update two metrics based on the likelihood.
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The first metric C orLike  is the total likeliness that this test 
sample belongs to F tD is tr  and the other IncorL ike  refers 
to the total likeliness that it does not belong to F tD istr . We 
then average the two metrics according to the number of test 
samples per feature (Lines 15-16).

(c) Conditional Probability for Acoustic 
Emissions for Stepper Motor Z

Fig. 8. Conditional probability distribution for the acoustic signal (h=0.2).
In the outermost loop, based on the conditions, we update 

two sets AvgC orLikes  and A vglncL ikes, with the corre­
sponding sets of averaged metric values created in the inner 
loops. Higher values in the first set mean that our model 
has learned a better relationship between data (e.g., features) 
and their correct conditions (e.g., running motors). However, 
higher values in the second set mean that our model has 
learned unexpected and potentially unrealistic relationships 
between data and other conditions.

Fig. 9. Average correct and incorrect likelihood values for Cond=[ 1, 0 ,0 ],

The conditional density functions estimated by the CGAN 
is shown in Figure 8. The frequency magnitudes for the 
Freq  =  [ freq\ , freq2 , . . . ,  freqioo] are scaled between 0 and 
1. The parzen window width h  value used for the Gaussian 
kernel density estimation is 0.2. Hence, the actual probability 
of the frequency values is obtained by multiplying it by 0.2. In 
Figure 9, the average correct and incorrect likelihood values 
are presented for the condition ( [1, 0, 0]).  As it can be seen, 
over increasing iterations, the positive likelihood averages 
improve. This shows that the generator is able to accurately 
learn the conditional distribution of the acoustic emissions 
according to the signal flows.

Based on the density function estimated using the generator 
of the CGAN, we have used the security analysis algorithm 
3 to calculated the average correct and incorrect likelihoods 
of the emissions given the three conditions (presence of X, Y 
or Z motor movement in the G/M-code). Using this, a CPPS 
designer can estimate if an attacker is able to estimate the 
G/M-code based on the acoustic emissions. For example, in 
table I, we have presented the average correct and incorrect 
likelihoods of a single feature in the frequency domain based 
on the G/M-code related to the X, Y, or stepper motor. The

table shows that an attacker can estimate condition 3, which 
is the presence of the Z-motor movement in the G/M-code, 
better than the other conditions (presence of X or Y motor 
movement). Moreover, if a designer needs to create an integrity 

TABLE I
Av e r a g e  c o r r e c t  (C o r ) a n d  in c o r r e c t  ( I n c ) l ik e l ih o o d  o f

ACOUSTIC ENERGY FLOWS GIVEN VARIOUS CONDITIONS FOR A SINGLE 
FEATURE (H=PARZEN WINDOW).

H U  h=0.2 h= >.4 h=0.6 h=0.8 h==i
J  Cor Inc Cor Inc Cor Inc Cor Inc Cor Inc

jfl a6000 0.2245 0.6000 0.3247 0.6069 0.3634 0.6293 0.3783 0.6437 0.3856

\ "-37511 0.3887 0.5750 0.3961 0.5750 0.3974 0.5750 0.3982 0.5532 0.3978

9 u-6556 0.3876 0.6556 0.3956 0.6556 0.3979 0.6601 0.3983 0.6556 0.3985

and availability attack detection model to detect attacks on 
individual components (X, Y or Z motor) using the side- 
channels, he/she will be able to estimate the performance of 
such a model using the CGAN model.

V. C o n c l u s io n

We have presented GAN-Sec, a Conditional Generative Ad­
versarial Network (CGAN) based modeling approach for secu­
rity analysis of Cyber-Physical Production Systems (CPPS). To 
do this, GAN-Sec abstracts the system in terms of its flows and 
estimates the conditional distribution between them using a 
CGAN model. We have used GAN-Sec to analyze the security 
of an additive manufacturing CPPS sub-system. The promising 
results indicate that GAN-Sec is applicable in analyzing the 
cross-domain security of CPPS.
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