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ABSTRACT
Refinement is a key methodology for SoC design. The
proposed IPSIM design environment, based on a C++
modeling library developed on top of SystemC 3.0,
supports an object-oriented design methodology,
separates IP modules into behavior and communication
components and further establishes two inter-module
communication layers. The Message Box layer includes
generic and system-specific communication, while the
driver layer implements higher level user-defined
communications as illustrated in a design example.

1. Introduction

Due to steady downscaling in CMOS device dimensions,
manufacturers are increasing the functionality on a single
chip. By 2005 complex systems, called System-on-Chip
(SoC), will contain hundreds of million transistors. This
escalating gate count, desired heterogeneity in terms of
hardware and software, and trend towards increased
productivity and reduced time-to-market challenge
traditional RTL-to-gates design methodology based on
time-consuming HDL simulation. Electronic System Level
methodology (ESL) focuses on the functionality and
relationships of the primary system components,
separating system design from implementation. Low level
implementation details greatly increase the number of
parameters and constraints in the design space, thus,
complicating optimal design selection and verification.
Similar to near-optimal combinatorial algorithms, e.g.
travelling salesman heuristics, ESL models effectively
prune away poor design choices and focus on closely
examining feasible options. Most consortia address ESL
using object-oriented C/C++ libraries. Popular libraries (or
complete environments) used with C++ are classified into:

• open source approaches, such as SpecC [6], SystemC
[13] and Superlog [12], and

• proprietary licensed tools, such as CynLib by
CynApps [4] and N2C by Coware.

The Open SystemC Initiative (OSCI) has developed a
collection of C++ classes describing hardware concepts
and a simulation kernel implementing runtime semantics.
SystemC supports design abstraction at the RTL,
behavioral and system level, allows development and
exchange of system models and provides seamless tool
integration from a variety of vendors. SystemC
collaborates with SpecC on synthesis.

Increased demand for accuracy and consistency in
hardware modeling for SoC has led to development of
STMicroelectronics’ IPSIM design environment consisting
of a SystemC-based, C++ modeling library, together with a
simulation engine, runtime and test environment and
communication refinement methodology. IPSIM supports
real object-oriented methodology, a plethora of modeling
objects compared to SystemC, and a fully documented
design flow based on SystemC 3.0. IPSIM users may
manually decompose their final design to RTL abstraction
level, or use SystemC-based behavioral synthesis tools,
such as the Synopsys Co-Centric tools.

In Section 2, we focus on general refinement methodology,
also adopted by IPSIM, based on separation of system
functionality and communication. This separation enables
modeling at various abstraction levels, using appropriate
computation and communication models. In Section 3, we
introduce IPSIM’s public objects, data types, concurrency
and performance models. We also show how IPSIM
enhances SystemC communication refinement by
establishing inter-module communication layers. The
Message Box layer consists of the IPSIM Message Box
object that focuses on generic and system-specific inter-
module communication protocols. The communication
driver layer includes high-level communication routines
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invoking the Message Box layer. In Section 4, we also
explain IPSIM communication refinement and
performance modeling using a transmitter-receiver model.
In Section 5, we provide remarks and conclude with a list
of References.

2. General SoC Refinement

A virtual SoC prototype models SoC by hiding, modifying
or omitting system properties. Abstraction levels span
multiple levels of accuracy, ranging from functional to
transistor model. Each level introduces new model details.
In practice, we usually consider the following models.
• Functional models have no notion of resource sharing

or time, i.e. functionality is executed instantaneously
and the model may or may not be bit-accurate.

• Transactional behavioral models are functional
models mapped to a discrete time domain.
Transactions are atomic operations with their duration
stochastically determined.

• Except for asynchronous models, transactional clock
accurate models map transactions to a clock cycle;
thus, synchronous protocols, wire delays, and device
access times can be accurately modeled.

• RTL models are mapped to a continuous time domain,
including currents, voltages, noise, rise and fall times.
Data types are bit-accurate, interfaces are pin-
accurate, register transfer is accurate, and last but not
least models are synthesizable. Propagation delay is
back annotated from gate and transistor models.

• Gate models are RTL models with additional
information, e.g. layout configuration.

A crucial part in the stepwise transformation of a high
level behavioral model into actual implementation is
refinement. Protocol refinement allows the designer to
explore model functionality at different level of
abstractions, thus trading between model accuracy with
simulation speed. This continuous rearrangement of
existing IP in ever-new composites is also a key process to
new marketing ideas.

Object-oriented system design is based on virtual
components (called IP), interacting with each other in a
specific system environment. Thus, refinement is naturally
based on separating each IP module into two components.
• A behavior component describes module

functionality.  It usually has an associated identity,

state and an algorithmic process consuming or
producing communication cells, synchronizing or
processing data objects. Access to a behavior
component is provided via a communication interface
and explicit communication protocols.

• A communication interface consists of I/O ports
transferring messages between one or more concurrent
behavior components. The interface may support
various communication protocols and is the only way
to interact with the behavior. Thus, we fully de-couple
behavior from inter-module communication.

Behavior and communication interfaces can be expressed
at various levels of abstraction. Static, time-independent
behavior is specified with untimed functional models,
while dynamic, time-dependent behavior is based on
complex control, e.g. hierarchical Finite State Machines
(FSMs) or Threads. Similarly, communication can be
abstract or close to implementation, i.e. using generic
interfaces, VCI [14], or proprietary interconnects [10,11].

Furthermore, each communication port is connected using
an interface to a communication channel object. The
channel implements different communication protocols
and must support an optimal design methodology based
on top-down and bottom-up refinement.
• In top-down refinement, we focus on capturing

desired system requirements by refining the
abstraction level down to implementation, filling
details and constraints.

• In bottom-up IP-reuse oriented refinement, we focus
on the evaluation, composition and deployment of
prefabricated IP.

Using refinement, behavior and communication interfaces
are eventually mapped to hardware/software resources of a
particular architecture. This categorization, known as
system partitioning, is an essential element of co-design.
Behaviors mapped to hardware logic are either
synthesized, or selected from existing IPs, e.g. a processor
core. Behaviors mapped to software are assigned to a
software process or device driver. Similarly,
communication protocols are mapped to hardware, or
software depending on available semantics, e.g. shared
memory, message passing, Ada-like rendezvous, or
queuing structure. When the optimal mapping of behavior
and communication components to architecture is reached,
the designer may either manually decompose hardware
components to the RTL level of abstraction, or use
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available behavioral synthesis tools. Much of the hardware
implementation can be reused from previous designs,
including processor cores, bus interfaces and protocols,
and large blocks, such as MPEG decoders. Similarly, on
the software side, RTOS, device drivers and large blocks
of code-like protocol stacks can also be reused.

3. IPSIM Refinement Methodology

3.1 The IPSIM Design Environment

IPSIM is a design environment consisting of a SystemC-
based extensive C++ modeling library, together with a
simulation engine, runtime and test environment [8] and
communication refinement which further extends the
general refinement methodology described in Section 2.

The IPSIM library provides basic building blocks (many
not existing in SystemC) that support and simplify SoC
modeling. IPSIM provides a fully documented design flow
based on SystemC 3.0 methodology. The IPSIM library
provides public access to the following objects.
• module container,
• intra-module data type objects allowing system-

independent bit-accurate modeling,
• intra-module memory objects: Register, FIFO, LIFO,

circular FIFO, Memory, Cache and IntMem (collection
of memory objects),

• intra-module communication and synchronization
objects: Mutex, Semaphore, Mailbox, Monitor, Event
Flag, Timer and Watchdog Timer,

• intra-module control objects: hierarchical FSM, Thread
(clocked Thread or asynchronous Thread),

• intra-module simulation clock (InClock),
• inter-module communication object: Message Box,
• inter-module communication channel and interfaces

supporting both generic protocols, such as Message
Channel, Standard Channel, Request Acknowledge
(RA), Request Valid and Interrupt Request, and
proprietary protocols, such as Amba Bus and STbus.

• simulation clock  (Clock), and
• simulation event scheduling environment.

IPSIM abstraction levels range from functional to clock
cycle bit-accurate models. Signal and gate models are
supported by general design flow, as seen in Section 2.
Simulation can be performed using either the standard
SystemC 3.0, or the IPSIM engine for faster simulation.

The IPSIM runtime and test environment includes support
for compilation, debugging, simulation execution, model
testing, FSM analysis and performance modeling.

3.2 IPSIM Performance Modeling

IPSIM supports performance modeling based on delay
statistics for consecutive read/write operations, throughput
for memory read/write access and possibly power
(switching activity) estimates. In addition IPSIM provides
average and instance size metrics for FIFO objects, and hit
ratios for read and write access to Cache. The IPSIM
statistical API is based on the enable_stat_()
primitive. Furthermore, public IPSIM statistical classes,
such as stat_instant and stat_duration, may be
used either for advanced user-defined statistics, e.g. cell
loss probability, or for creating new joint statistic classes.

3.3 IPSIM Communication Refinement

Message Box  Layer
(IPSIM Library)

Communication Driver Layer
(implemented by user)

RG Channel

   Output signals

Input signals

Interface RGMasterIf

  MSOut

  MSIn

User Application

Figure 1. IPSIM Communication Interface

Layering is a common way to capture abstraction in
communication systems. The advantage of layering is that
methods of passing information from one layer to another
are abstracted, thus changes within a protocol layer do not
affect other layers. This simplifies design and maintenance
of communication systems. As shown in Figure 1, IPSIM
extends general SoC refinement by establishing distinct
inter-module communication layers.
• The bottom layer, called IPSIM Message Box layer is

based on two IPSIM objects: Message Box, and
communication channel. The Message Box object,
defined with a particular module, supports an
extended message passing paradigm for implementing
inter-module communication and synchronization,
provides a generic API for mapping into various
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communication channels, and provides the required
buffers for inter-module data transfer. The
communication channel establishes the transfer of
module interface signals and data among Message
Boxes according to a specific protocol (channel
interface) chosen from the IPSIM channel library.

• The top layer, called communication driver layer, is a
user-defined C++ class that translates inter-module
transaction requests to the Message Box layer. The
driver object simplifies specification and allows
refinement when embedding communication protocols
onto IP blocks or SoC. The driver layer may further
be refined with additional communication layers.

IPSIM’s two-level approach is similar to application- and
system-level transactions in Cosy [2], which was based on
concepts from VCC framework [1,3,5,7,9]. The system-
level layer was responsible for selecting communication
parameters and resolving latency-throughput tradeoffs,
adopting eventually physical bus protocols. Similarly,
drivers for multiprocessor SoC partition functionality into
non re-entrant low-level drivers providing basic
functionality and complex re-entrant high-level device
drivers interacting with the application.

IPSIM refinement based on inter-module communication
layers yields several important benefits:
• orthogonalizes behavior and communication, thus

enabling plug-and-play system design by providing
appropriate communication interface blocks,
encapsulating and protecting IP cores,

• separates communication from architectural
implementation, thus enabling co-design, and

• reduces ambiguity in writing communication drivers.

3.4 Implementation of IPSIM Refinement

Before we proceed with a detailed description of the
layers, we define the IPSIM module and communication
channel objects that are based on SystemC 3.0 elements.

The IPSIM Module, inherits from sc_module, and
embeds a concurrent process modeled by one or more
execution threads. In IPSIM methodology, we distinguish
communication and synchronization into:
• intra-module operations based on a concurrent shared

memory model supported by IPSIM Mutex,
Semaphore, Event Flag and Mailbox objects, and

• inter-module operations based on an extended
message passing paradigm supported by IPSIM
Message Box.

The IPSIM communication channel is a template object of
a pair of user-defined and/or protocol-specific C++
classes. Thus, in a point-to-point bus, it is parameterized
through user-defined Master signals and data coming out
of the Master (and going to the Slave), and Slave signals
coming out of the Slave (and going to the Master). These
signals define the Module interface, and may include for
example address, operation code and data. In general, a
channel may model both point-to-point communication, as
well as multi-access channels, such as multicast switches,
or bus systems. Thus, IPSIM supports a large variety of
generic, as well as system-specific, channels.

3.4.1 The IPSIM Message Box Layer

The IPSIM Message Box Layer is based on the IPSIM
Message box that generalizes the sc_port and (user-
defined) channel elements in SystemC 3.0. The Message
Box defines a C++ object API for implementing data
transfer among modules that use compatible channel
interfaces. Thus, it provides the required buffers for data
transfer, as well as control for interface activation.

The channel interface is fixed at the declaration of a
Message Box. The Message Box object is a template
object with three parameters that build an appropriate
IPSIM channel interface. The first parameter refers to the
protocol, while the next two parameters associate the
channel interface to a pair of user-defined or protocol-
dependent C++ classes describing incoming and outgoing
attributes (signals and data). For example, when using the
RA protocol, we provide in the Master module:
Msgbox_Type(RaMas,MSOut,MSIn) MbxName;

Then, a Message Box MbxName for the Master
component connected to an RA channel is created as:
Msgbox(MbxName, clk, len),

where MbxName is the name, Message Box clk defines
the clock domain under which Message Box functions
operate (clk=0 refers to an asynchronous Message Box),
and len specifies the data size, i.e. maximum number of
bits, that we can send or receive through the channel in
one clock cycle. For the RA protocol, MSOut and MSIn
are user-defined attributes (signals and data) for inter-
module communication, i.e. they are defined as follows.

struct MSOut {
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N_uint sequence;
IPSIM_memory_addr address; };

struct MSIn {
N_uint ack; };

3.4.2 The IPSIM Driver Layer

The IPSIM Communication Driver Layer implemented using
IPSIM tasks, i.e. hierarchical FSM and Thread, allows the
user to specialize the Message Box Layer in order to
closely match communication requirements. Thus,
Message Box functions are invoked by high-level
communication drivers, e.g. for reception/transmission.
While initially a high-level interaction between behaviors
is implemented using driver and channel stubs, later
detailed protocols use complex communication channels.

4. Case Study: Receiver-Transmitter

The code block (see transmitter_drv.cc) illustrates IPSIM driver
implementation when the basic Msg channel is used. The driver
API, i.e. the tx_driver and rx_driver functions, is based
on the user-defined attributes: address, seq (sequence number),
data (sequence of bytes) and ack (acknowledgment). The
Message Box set_tx and get_rx functions set or get these
Message Box attributes, while read and write transfer application
data (sequence of bytes) to/from the Message Box object.

Figure 2. Throughput graph for Message Box

In order to generate statistics for IPSIM components,
enable_stat_ function calls are made from within the
module constructors. The highlighted code explains IPSIM
methodology for collecting statistics from the
communication driver Message Box. Figure 2 illustrates
cumulative average throughput for read access to the
Transmitter Message Box “mbox_tr”.

Workstation IPSIM Model
(sim. cycles/sec)

SystemC Model
(sim. cycles/sec)

Sun Ultra 60 253,000 84,000
Blade 1000 451,000 160,000

Table 1. Simulation efficiency for Case Study

We have simulated the Transmitter/Receiver model for
over 4 million cycles with the communication driver based
on the message channel (Msg) on two stand-alone
workstations: Ultra 60 and Blade 1000. We compiled all
models with the highest optimization level, compiler
switch –O3, observing similar IPSIM and SystemC
compilation time and slightly (20%) larger SystemC
executable binary size.  In Table 1 we compare IPSIM and
SystemC simulation efficiency metrics obtained by
dividing the actual simulated cycles by CPU time. IPSIM
simulation is approximately 3 times faster than SystemC
simulation. Similar results have been obtained for the
Transmitter-Receiver model with complex communication
channels (with a speedup of ~6). Current analysis of large-
scale network models yields similar performance gains.
IPSIM’s simulation efficiency is due to its superior

#include "transmitter_drv.h"
// Driver constructor
tdrv::tdrv(InClock* clk, N_uint len)
:Msgbox_type(MsgMas, MSIn, MSOut)::
Msgbox(clk, 32, "mbox_tr")

{ // Message Box throughput for reads
// in [0, 50000ns] with time window=1

enable_stat_throughput_read(0, 50000, 1,

"Simulation Time","Average Throughput for Reads");
}
//Transmitting thread for driver
void tdrv::tx_driver(IPSIM_memory_addr addr,

N_uint seq, Bytes& data)
{ set_tx_attr(address) = addr;
set_tx_attr(sequence) = seq;
read(data); // data to send
set_tx_start();
IPSIM_printf("tdrv:tx_dr receives seq_no:%u

to store at addr:%u", seq, addr);}
// Receiving thread for driver
void tdrv::rx_driver(N_uint *ack)
{ *ack = get_rx_attr(ack);
//no data sent, i.e. no write(Bytes &tmp);
set_rx_start();
IPSIM_printf("t_driver: RX_proc sends

ack no:%d", *ack);}

transmitter_drv.cc
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simulation kernel based on an optimized calendar queue-
based dynamic event scheduler and efficient
implementations of IPSIM library objects.

The following code block (see transmitter_drv_STbus.cc)
illustrates refinement for tx_driver, (rx_driver is
omitted), if the proprietary STbus channel is used
instead of the Msg channel. Notice that the Message Box
type (line 5 in transmitter_drv.cc) must be changed to
STBusMas, i.e. the Master interface for STbus.  Observe
that we do not modify Transmitter or Receiver modules, or
test benches. Thus, IPSIM extends the state-of-the-art in
communication refinement by presenting the user with a
powerful, simple, flexible and compositional approach that
enables rapid IP design and system level reuse.

5. Conclusion

IPSIM refinement separates IP modules into behavior and
communication interfaces and establishes two inter-
module communication layers. The bottom layer, called
Message Box layer, establishes inter-module transfer of
interface signals and data according to a generic or system-
specific protocol The top layer, called communication
driver layer translates inter-module transaction requests to
the Message Box layer. Layering simplifies specification
and allows further refinement by introducing application-
based abstractions.

In the case study, we have shown how IPSIM driver
models exploit design abstraction, thus having the benefit

of efficient simulation. Due to an extensive computation,
control, communication and synchronization library, a fast
simulation kernel and an efficient performance modeling
methodology for collecting statistics from system
components, we argue that IPSIM can achieve a higher
degree of productivity than other SystemC-based C++
libraries present in the market.

IPSIM design methodology is being applied to large-scale
design projects in application domains, such as high speed
networks. IPSIM extensions  towards asynchronous
systems, efficient hardware/software partitioning via
distributed simulation, and interoperability of tools will be
promoted as potential standards for system design.
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//Transmitting thread for driver
void tdrv::TX_driver(IPSIM_memory_addr addr,

N_uint seq, Bytes& data)
{
set_tx_attr(address) = addr;
set_tx_attr(source_id) = 0;
set_tx_attr(tid) =0;
set_tx_attr(lock)=0;
set_tx_attr(be)=0xF;
switch(data.get_size_in_bytes()) {
case 1: set_tx_attr(opcode)= STBUS::STORE1;

break;
case 2: set_tx_attr(opcode)= STBUS::STORE2;

break; // ... omitted
}
read(data);
set_tx_attr(sequence) = seq;
set_tx_start();

}

transmitter_drv_STbus.cc
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