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ABSTRACT 
Functional verification is widely acknowledged as the bottleneck 
in the hardware design cycle. This paper addresses one of the 
main challenges of simulation based verification (or dynamic veri- 
fication), by providing a new approach for Coverage Directed Test 
Generation (CDG). This approach is based on Bayesian networks 
and computer learning techniques. It provides an efficient way for 
closing a feedback loop from the coverage domain back to a gener- 
ator that produces new stimuli to the tested design. In this paper, we 
show how to apply Bayesian networks to the CDG problem. Ap- 
plying Bayesian networks to the CDG framework has been tested in 
several experiments, exhibiting encouraging results and indicating 
that the suggested approach can be used to achieve CDG goals. 
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1. INTRODUCTION 
Functional verification is widely acknowledged as the bottleneck 

in the hardware design cycle [l]. To date, up to 70% of the design 
development time and resources are spent on functional verifica- 
tion. The increasing complexity of hardware designs raises the 
need for the development of new techniques and methodologies 
that can provide the verification team with the means to achieve its 
goals quickly and with limited resources. 

The current practice for functional verification of complex de- 
signs starts with a definition of a test plan, comprised of a large 
set of events that the verification team would like to observe dur- 
ing the verification process. The test plan is usually implemented 
using random test generators that produce a large number of test- 
cases, and coverage tools that detect the occurrence of events in 
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the test plan, and provide information related to the progress of the 
test plan. Analysis of the coverage reports allows the verification 
team to modify the directives for the test generators and to better 
hit areas or specific tasks in the design that are not covered well [5] .  

The analysis of coverage reports, and their translation to a set 
of test generator directives to guide and enhance the implementa- 
tion of the test plan, result in major manual bottlenecks in the oth- 
erwise highly automated verification process. Considerable effort 
is invested in finding ways to close the loop of coverage analysis 
and test generation. Coverage directed test generation (CDG) is 
a technique to automate the feedback from coverage analysis to 
test generation. The main goals of CDG are to improve the cover- 
age progress rate, to help reaching uncovered tasks, and to provide 
many different ways to reach a given coverage task. Achieving 
these goals should increase the efficiency and quality of the verifi- 
cation process and reduce the time and effort needed to implement 
a test plan. 

In this paper, we propose a new approach for coverage directed 
test generation. Our approach is to cast CDG in a statistical infer- 
ence framework, and apply computer learning techniques to achieve 
the CDG goals. Specifically, our approach is based on modeling the 
relationship between the coverage information and the directives to 
the test generator using Bayesian networks [9]. A Bayesian net- 
work is a directed graph whose nodes are random variables and 
whose edges represent direct dependency between their sink and 
source nodes. Each node in the Bayesian network is associated with 
a set of parameters specifying its conditional probability given the 
state of its parents. 

Simply stated, the CDG process is performed in two main steps. 
In the first step, a training set is used to learn the parameters of 
a Bayesian network that models the relationship between the cov- 
erage information and the test directives. In the second step, the 
Bayesian network is used to provide the most probable directives 
that would lead to a given coverage task (or set of tasks). 

Bayesian networks are well suited to the kind of modeling re- 
quired for CDG, because they offer a natural and compact rep- 
resentation of the rather complex relationship between the CDG 
ingredients, together with the ability to encode essential domain 
knowledge. Moreover, adaptive tuning of the Bayesian network 
parameters provides a mean to focus on the rare coverage cases. 

We describe two experiments in which we tested the the abil- 
ity of Bayesian networks to handle aspects of the CDG problem 
in various settings. The goals of the experiments were to increase 
the hitting rates in hard-to-reach coverage cases; design directives 
aimed at reaching uncovered tasks; and provide many different di- 
rectives for a given coverage task. We used two settings for our 
experiments. In the first setting, we used a Bayesian network to 
generate instruction streams to an abstract model of the pipeline of 
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Figure 1: Verification process with automatic test generation 

an advanced super-scalar PowerPC processor. In the second set- 
ting, we used a Bayesian network to generate directives to an ex- 
isting test generator of a storage control unit of a mainframe with a 
goal to cover all possible transactions from the CPUs connected to 
this unit. In both experiments we reached our goals. The encour- 
aging results suggests that Bayesian networks may well be used to 
achieve the primary goals of CDG. 

The remainder of this paper is as follows. In Section 2, we briefly 
present the CDG framework and review related work. In Section 3, 
we describe Bayesian networks and their application to CDG. Sec- 
tions 4 and 5 provide detailed descriptions of the experiments. We 
conclude with a few remarks and suggestions for future study. 

2. COVERAGE DIRECTED TEST GENER- 
ATION (CDG) 

In current industry practice, verification by simulation, or dy- 
namic verification, is the leading technique for functional venfica- 
tion. Coverage is used to ensure that the verification of the design is 
thorough, and the definition of coverage events or testing require- 
ments is a major part in the definition of the verification plan of the 
design. Often, a family of coverage events that share common prop- 
erties are grouped together to form a coverage model [7]. Members 
of the coverage model are called coverage tasks and are considered 
part of the test plan. Cross-product coverage models [7]  are of spe- 
cial interest. These models are defined by a basic event and a set of 
parameters or attributes, where the list of coverage tasks comprises 
all possible combinations of values for the attributes. 

Figure 1 illustrates the verification process with an automatic 
random test generation. A test plan is translated by the verifica- 
tion team to a set of directives for the random test generator. Based 
on these directives and embedded domain knowledge, the test gen- 
erator produces many test-cases. The design under test (DUT) is 
then simulated using the generated test-cases, and its behavior is 
monitored to make sure that it meets its specification. In addition, 
coverage tools are used to detect the occurrence of coverage tasks 
during simulation. Analysis of the reports provided by the cover- 
age tools allows the verification team to modify the directives to 
the test generator to overcome weaknesses in the implementation 
of the test plan. This process is repeated until the exit criteria in the 
test plan are met, 

The use of automatic test generators can dramatically reduce the 
amount of manual labor required to implement the test plan. Even 
so, the manual work needed for analyzing the coverage reports and 
translating them to directives for the test generator, canconstitute a 
bottleneck in the verification process. Therefore, considerable ef- 
fort is spent on finding ways to automate this procedure, and close 
the loop of coverage analysis and test generation. This automated 
feedback from coverage analysis to test generation, known as Cov- 
erage Directed test Generation (CDG), can reduce the manual work 
in the verification process and increase its efficiency. 

In general, the goal of CDG is to automatically provide directives 
that are based on coverage analysis to the test generator. This can 
be further divided into two sub-goals: First, to provide directives to 

the test generator that help in reaching hard cases, namely uncov- 
ered or rarely covered tasks. Achieving this sub-goal can shorten 
the time needed to fulfill the test plan and reduce the number of 
manually written directives. Second, to provide directives that al- 
low easier reach for any coverage task, using a different set of direc- 
tives when possible. Achieving this sub-goal makes the verification 
process more robust, because it increases the number of times a task 
has been covered during verification. Moreover, if a coverage task 
is reached via different directions, the chances to discover hidden 
bugs relatedto this task are increased [SI. 

In the past, two general approaches for CDG have been pro- 
posed: feedback-based CDG and CDG by construction. Feedback- 
based CDG relies on feedback from the coverage analysis to auto- 
matically modify the directives to the test generator. For example, 
in [ 2 ] ,  a genetic algorithm is used to select and modify test-cases to 
increase coverage. In [13], coverage analysis data is used to mod- 
ify the parameters of a Markov Chain that represents the DUT. The 
Markov Chain is then used to generate test-cases for the design. 
In [ 111, the coverage analysis results trigger a set of generation 
rules that modify the testing directives. In contrast, in CDG by 
construction, an external model of the DUT is used to generate test 
directives designed to accurately hit the coverage tasks. For exam- 
ple, in [ 141 an FSM model of pipelines is used to generate tests that 
cover instruction interdependencies in the pipes. 

3. COVERAGE DIRECTED TEST GENER- 
ATION USING BAYESIAN NETWORKS 

The random nature of automatic test-case generaiors imposes a 
considerable amount of uncertainty in the relationship between test 
directives and coverage tasks, e.g., the same set of directives can 
be used to generate many different test-cases, each leading to dif- 
ferent coverage tasks. This inherent uncertainty suggests to cast 
the CDG setup in a statistical inference framework. To this end, 
Bayesian networks offer an efficient modeling scheme by provid- 
ing a compact representation of the complex (possibly stochastic) 
relationships among the CDG ingredients, together with the pos- 
sibility to encode essential domain knowledge. It should be noted 
that we do not suggest modeling the behavior of the design, typi- 
cally a large and complicated (deterministic) finite state machine. 
Rather, we model the CDG process itself, namely the trial-and- 
error procedure govemed by the verification team, which controls 
the test generation at one end and traces the progress of covering 
the test plan at the other. 

3.1 A Brief Introduction to Bayesian Networks 
A Bayesian network is a graphical representation of the joint 

probability distribution for a set of variables. This representation 
was originally designed to encode the uncertain knowledge of an 
expert and can be dated back to the geneticist Sewall Wright [15]. 
Their initial development in the late 1970s was motivated by the 
need to model the top-down (semantic) and bottom-up (perceptual) 
combinations of evidence (observations/findings). Their capability 
for bidirectional inferences, combined with a rigorous probabilistic 
foundation, led to the rapid emergence of Bayesian networks as the 
method of choice for uncertain reasoning in AI and expert systems, 
replacing ad hoc rule-based schemes. Bayesian networks also play 
a crucial role in diagnosis and decision support systems [lo]. 

Obviously, there’s a computational problem in dealing with many 
sources of uncertainty, i.e. the ability to perform probabilistic ma- 
nipulations in high dimensions (the “curse of dimensionality”). The 
main breakthrough emerged in the late 1980s and can be attributed 
to Judea Pearl [12], who introduced ’modularity’, thus enabling 
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large and complex models and theirs associated calculations, to be 
split up into small manageable pieces. The best way to do this is 
via the imposition of meaningfully simplified conditional indepen- 
dence assumptions. These, in turn, can be expressed by means of a 
powerful and appealing graphical representation. 

A Bayesian network consists of two components. The first is a 
directed acyclic graph in which each vertex corresponds to a ran- 
dom variable. This graph represents a set of conditional indepen- 
dence properties of the represented distribution: each variable is 
probabilistically independent of its non-descendants in the graph 
given the state of its parents. The graph captures the qualitative 
structure of the probability distribution, and is exploited for effi- 
cient inference and decision making. The second component is a 
collection of local interaction models that describe the conditional 
probability p(Xi1Pui) of each variable Xi given its parents Pai. To- 
gether, these two components represent a unique joint probability 
distribution over the complete set of variables X [12]. The joint 
probability distribution is given by the following equation: 

It can be shown that this equation actually implies the conditional 
independence semantics of the graphical structure given earlier. 
Eq. 1 shows that the joint distribution specified by a Bayesian net- 
work has a factored representation as the product of individual local 
interaction models. Thus, while Bayesian networks can represent 
arbitrary probability distributions, they provide a computational ad- 
vantage for those distributions that can be represented with a simple 
structure. 

The characterization given by Eq. 1 is a purely formal charac- 
terization in terms of probabilities and conditional independence. 
An informal connection can be made between this characterization 
and the intuitive notion of direct causal influence. It has been noted 
that if the edges in the network structure correspond to causal re- 
lationships, where a variable's parents represent the direct causal 
influences on that variable, then resulting networks are often very 
concise and accurate descriptions of the domain. Thus it appears 
that in many practical situations, a Bayesian network provides a 
natural way to encode causal information. Nonetheless, it is often 
difficult and time consuming to construct Bayesian networks from 
expert knowledge alone, particularly because of the need to provide 
numerical parameters. This observation, together with the fact that 
data is becoming increasingly available and cheaper to acquire, has 
led to a growing interest in using data to learn both the structure 
and probabilities of a Bayesian network (cf. [3,9, 121). 

Typical types of queries that can be efficiently answered by the 
Bayesian network model are derived from applying the Bayes rule 
to yield posterior probabilities for the values of a node (or set of 
nodes), X, given some evidence, E ,  i.e. assignment of specific val- 
ues to other nodes: 

Thus, a statistical inference can be made in the form of either select- 
ing the Maximal A Posteriori (MAP) probability, maxp(XIE), or 
obtaining the Most Probable Explanation (MPE), argmaxp(X1E). 

The sophisticated yet efficient methods that have been developed 
for using Bayesian networks provide the means for predictive and 
diagnostic inference1. A diagnostic query is such that the evidence 

'This is in contrast to standard regression and classification meth- 
ods (e.g., feed forward neural networks and decision trees) that 
encode only the probability distribution of a target variable given 
several input variables. 
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Figure 2: Bayesian Network of CDG 

nodes E represent a cause, while the queried nodes, X, represent 
an effect. The reversed direction, i.e. evidence on the effect nodes 
which serves to determine the possible cause, is called abductive. 
These methods also allow Bayesian networks to reason efficiently 
with missing values, by computing the marginal probability of the 
query given the observed values. 

There are two important extensions of Bayesian networks: Dy- 
namic Bayesian networks and influence diagrams. The first exten- 
sion (see [6]) enables the incorporation of time, thus modeling tem- 
poral dependencies in a stochastic process. The second extension 
(see [3]) enriches the Bayesian network paradigm with decision 
making and utility considerations which create a powerful mecha- 
nism for dealing with decisions under uncertainty constraints. 

3.2 A Bayesian Network for CDG 
The CDG process begins with the construction of a Bayesian net- 

work model that describes the relations between the test directives 
and the coverage space. Figure 2 illustrates a simple, yet typical, 
Bayesian network, which models a small excerpt of the CDG setup. 
The network describes the relationship between the directives that 
influence the type of command that is generated (cp-cmd-type) 
and the active cores inside a CPU (cp-core-enable), and the 
coverage attributes of a generated command (cmd), its response 
(resp), and the core that generated it (core). The network is 
comprised of input nodes (the white circles on the left) that re- 
late to test directives that appear to their left and coverage nodes 
(the white squares on the right) that define the coverage space. In 
addition to these nodes, for which we have physical observations, 
the network may also contain hidden nodes, namely variables for 
which we don't have any physical evidence (observations) for their 
interactions. These variables are represented as shaded ovals in 
the figure. Hidden nodes are added to the Bayesian network struc- 
ture primarily to reflect expert domain knowledge regarding hidden 
causes and functionalities which impose some structure on the in- 
teraction between the interface (observed) nodes2. 

The Bayesian network at Fig. 2 describes the causal relationships 
from the test generation directives (causes) to the coverage model 
space (effects). For example, it encodes the expert knowledge that 
indicates that there is an intemal mode of operation for which we 
do not have any direct physical observation, yet it is determined 
by the combined values of the test generation attributes. On the 
other hand, the (hidden) mode of operation directly influences the 
choice of the resulting command and core, which are attributes of 

*Introducing hidden nodes to the network structure has the sec- 
ondary impact of reducing the computational complexity by dimen- 
sionality reduction, and as a means for capturing non-trivial (higher 
order) correlations between observed events. 
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the coverage model. Note the absence of a direct link between the 
requested core (via the directive cp-core-enable) and the ob- 
served one (at Core), which captures our understanding that there 
is no direct influence between the directives and the coverage at- 
tribute. Another assumption encoded in the CDG Bayesian net- 
work structure at Fig. 2, is that the only information that governs 
the response for the command is the generated command itself, and 
this is encoded via the direct link from Cmd to Resp. 

In a nutshell, the design of the Bayesian network starts with iden- 
tifying the ingredients (attributes) that will constitute the directives 
to the test generator on one hand, and to the coverage model on the 
other. These attributes are dictated by the interface to the simulation 
environment, to the coverage analysis tool, and by the specification 
of the coverage model in the test plan. These ingredients are used 
as the first guess about the nodes in the graph structure. Connect- 
ing these nodes with edges is our technique for expert knowledge 
encoding, as demonstrated in Fig. 2. Obviously, using a fully con- 
nected graph, i.e. with an edge between every pair of nodes, rep- 
resents absolutely no knowledge about the possible dependencies 
and functionalities within the model. Hence, as the graph structure 
becomes sparser, it represents deeper domain knowledge. We dis- 
covered that a good practice in specifying a dependency graph is 
to remove edges for which we have strong belief that the detached 
nodes are not directly influencing one another. At this point, hid- 
den nodes can be added to the structure, either to represent hidden 
causes, which contribute to a better description of the functional- 
ities of the model, or to take on a role from the complexity stand 
point, by breaking the barges cliques in the graph (see [4]). 

After the Bayesian network structure is specified, it is trained 
using a sample of directives and the respective coverage tasks. To 
this end, we activate the simulation environment and construct a 
training set out of the directives used and the resulting coverage 
tasks. We then use one of the many known learning algorithms (cf. 
[3]) to estimate the Bayesian network’s parameters (i.e. the set of 
conditional probability distributions). This completes the design 
and training of the Bayesian network model. 

In the evaluation phase, the trained Bayesian network can be 
used to determine directives for a desired coverage task, via pos- 
terior probabilities, MAP and MPE queries, which use the cov- 
erage task attributes as evidence. For example, in a model for 
which the directives are weights of possible outcomes for inter- 
nal draws in the test generator (e.g. the directive cp-cmd-type 
in Fig. 2 specifies a preference to read commands, w r i t e  com- 
mands, etc.), we can specify a desired coverage task assignment 
(evidence) for the coverage nodes (e.g. Resp = ACK) and calcu- 
late the posterior probability distribution for directive nodes (e.g. 
p(Cmd TypelResp = ACK)), which directly translates to the set of 
weights to be written in the test generator’s parameter file. Note, as 
the example demonstrates, we can specify partial evidence andor 
determine a partial set of directives. 

4. INSTRUCTION STREAM GENERATION 
USING A DYNAMIC NETWORK 

To evaluate the feasibility of the suggested modeling approach 
to the CDG problem, we designed a controlled study that acts in 
a simple domain (small state space), where we have a deep un- 
derstanding of the DUT’s logic, direct control on the input, and a 
‘ground truth’ reference to evaluate performance. 

We conducted the experiment on a model of the pipeline of North- 
Star, an advanced PowerPC processor. The pipeline of Northstar 
contains four execution units and a dispatch unit that dispatches in- 
structions to the execution units. Figure 3 illustrates the general 

Dispatch 

Da:x;: 
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Simple Arith Complex Arith Branch Load/Store 
Pipe ( S )  Pipe (C) Pipe (B) Pipe (L) 

Figure 3: The structure of the Northstar pipeline 

structure of the NorthStar pipeline. For reasons of simplicity, our 
model contains only the simple arithmetic unit that executes simple 
arithmetic instructions such as add, and the complex arithmetic unit 
that can execute both simple and complex arithmetic instructions. 
Each execution unit consists of three pipeline stages: (1) Data fetch 
stage, in which the data of the instruction is fetched; (2) Execute 
stage, in which the instruction is executed; (3) Write back stage, 
where the result is written back to the target register. The flow of 
instructions in the pipeline is governed by a simple set of rules. 
For example, in-order dispatching of instructions to the execution 
units, and rules for stalling because of data dependency. Note, the 
complete set of rules is omitted to simplify the description. 

We developed a simple abstract model of the dispatch unit and 
two pipelines and used it to simulate the behavior of the pipeline. 
The input to our NorthStar model is a simplified subset of the Pow- 
erPC instruction set. Each instruction is modeled by four input 
variables. The first variable indicates the type of the instruction. 
There are five possible types: S - simple arithmetic; C1, C2, C3 
- complex arithmetic; and NOP - instructions that are executed in 
other execution units. The second and third input variables consti- 
tute the source and target register of the instructions. For simplicity 
and in order to increase the possibility of register interdependency, 
we used only eight registers instead of the 32 registers available in 
PowerPC. The last input variable indicates whether the instruction 
uses the condition register. Due to restrictions on the legal com- 
binations of the input variables (e.g., NOP instruction is not using 
registers), there are 449 possible instructions. 

We used a coverage model that examines the state of the two 
pipelines, and properties of the instructions in them. The coverage 
model consists of five attributes, the type of instruction at stage 1 of 
the simple and complex arithmetic pipelines (SlType and ClQpe,  
resp.), flags indicating whether stage 2 of the pipelines are occu- 
pied (S2Valid and C2Valid, resp.), and a flag indicating whether 
the instruction at stage 2 of the simple arithmetic pipeline uses the 
condition register (S2CR). The total number of legal coverage tasks 
in the model is 54 (out of 80 possible cases). 

The goal of the experiment was to generate instruction streams 
that cover the coverage model described above. Specifically, we 
concentrated on the ability to reach the desired coverage cases with 
many, yet relatively short, instruction sequences. 

We modeled the temporal dependencies between the instructions 
and coverage tasks and among the instructions using a two-slice 
Dynamic Bayesian Network (DBN) [6] .  Rather than an accurate 
mapping of the specific state machine structure, the DBN encoded 
the general knowledge of an expert on the modus operandi of this 
type of DUT. Using an expert’s domain knowledge proved to be vi- 
tal in this setup because it provided essential information needed 
for the generation of instruction streams. Moreover, it enabled 
the use of hidden nodes, which effectively reduced the complex- 
ity through dimensionality reduction. The resulting DBN has 19 
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Figure 4: two-slice DBN for the NorthStar experiment 
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Text Book 

Table 1: NorthStar experiment results 

nodes per slice, 13 of which are observed, 15 intra (within a slice) 
edges, and 37 inter (between slices) edges (see Fig 4). 

The training set is composed of 1000 sequences of random in- 
structions. The length of each sequence is 10 cycles. Note, the 
model the we used for the Bayesian network made it easier to mea- 
sure length in terms of cycles instead of instructions. The training 
set contained 385 different instructions. During its simulation, 49 
(out of 54) coverage cases were observed. The average number of 
instructions per sequence in the training set was 9.7 qut of the 20 
possible dispatches in 10 cycles (i.e.. more than half of the dispatch 
slots in the sequence are empty). 

After training the Bayesian network, we tried to generate instruc- 
tion sequences for all 54 coverage tasks in the coverage model. 
Each sequence was generated using the DBN, by solving the Most 
Probable Explanation (MPE) problem for the requested coverage 
task. All 49 coverage cases of the training set plus three addi- 
tional uncovered cases were reached using instruction sequences 
designed by the DBN. In addition, we generated many different in- 
struction sequences for each coverage task that was covered by the 
Bayesian network. The average number of cycles in a generated se- 
quence dropped to 2.9, while the average number of instructions in 
a sequence reduced to 3.7. This reflects the fact that the generated 
instruction sequences cause less stall states en-route to reaching the 
desired coverage cases. Table 1 illustrates the details of reaching 
two difficult coverage cases-the rarest coverage task, which was 
seen only once in the training set, and an uncovered task. The ta- 
ble shows the number of cycles and instructions required to reach 
these tasks in the training set, the instruction sequencp generated 
by the trained DBN, and the 'text book' solution-the best pos- 
sible sequence. The table indicates that the instruction sequences 
generated by the DBN are shorter, both in instructions and cycles, 
than the sequences in the training set. Overall, the results indicate 
that the trained DBN is able to generate many compact instruction 
sequences that are not far from the best possible solution. 

Memory Subsystem 

t 
Storage Control 

Element 
Pipe 0 (SCE) 

Figure 5: The structure of SCE simulation environment 

5. STORAGE CONTROL EXPERIMENT US- 
ING A STATIC NETWORK 

The second experiment was conducted in a real-life setting. The 
design under test in the experiment is the Storage Control Element 
(SCE) of an IBM z-series system. Figure 5 shows the structure of 
the SCE and its simulation environment. The SCE handles com- 
mands from eight CPUs (CPO - CW). Each CPU consists of two 
cores that generate commands to the SCE independently. The SCE 
handles incoming commands using two internal pipelines. When 
the SCE finishes handling a command, it sends a response to the 
commanding CPU. 

The simulation environment for the SCE contains, in addition to 
the SCE itself, behavioral models for the eight CPUs that it ser- 
vices, and a behavioral model for the memory subsystem. The be- 
havioral models of the CPUs generate commands to the SCE based 
on their internal state and a directive file provided by the user. The 
directive file contains a set of parameters that affect the behavior 
of the system. Some of these parameters control the entire sys- 
tem while others are specific to certain components of the system, 
such as a specific CPU. Figure 2 shows an example of some pa- 
rameters that are used in the simulation environment of the SCE. 
Each parameter contains a set of possible values that the parameter 
can receive. Each value has a weight associated with it. When 
the value of a parameter is needed, it is randomly chosen from 
the set of possible values according the weights of these values. 
For example, when a CPU generates a new command, it first uses 
the cp-cmd-type parameter to determine the type of command to 
generate, and then a specific parameter for that command type to 
determine the exact command to be used. 

In the experiment, we tried to cover all the possible transactions 
between the CPUs and the SCE. The coverage model contained five 
attributes: The CPU (8 possible values) and the core (2 values) in 
it that initiated the command, the command itself (31 values), its 
response (14 values), and the pipeline in the SCE that handled it (2 
values). Overall, the cross product contains 13,888 cases and the 
coverage model contains 1968 legal coverage tasks. 

This experiment added many new challenges over the controlled 
experiment described in the previous section. First, our knowledge 
about the DUT in this experiment was very limited compared to 
the full understanding of the design in the first experiment. In addi- 
tion, we were less able to observe and control the input and output 
nodes of the Bayesian network. For the test parameters, we could 
only specify the distribution of each parameter and we could not 
observe @e values that were actually used, only their distribution. 
Moreover, in some cases the behavioral models ignored the param- 
eters and generated commands based on their internal state. Thus, 
the actual distribution used was not exactly the provided distribu- 
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Figure 6: Coverage progress of the CDG process 

tion of the parameters. This type of observation (distribution in- 
stead of specific value) is known as a so$ evidence. The coverage 
data that we got out of the simulation environment was a summary 
of all the coverage tasks that occurred during the simulation of a 
test-case. Therefore, it was hard to correlate between the observed 
coverage tasks and the parameters’ values that caused them and be- 
tween the different observed coverage tasks. 

Because we had limited knowledge about the DUT and the cor- 
relation between the parameters in the test directives and the cov- 
erage tasks, the first Bayesian network we constructed contained 
arcs between each of the coverage variables and each of the test 
parameters. We trained this network with 160 test-cases (each tak- 
ing more than 30 minutes to execute). After the initial training, we 
analyzed the Bayesian network and found out that most of the test 
parameters were strongly correlated either to the command and re- 
sponse coverage variables or the pipe and core variables, but only 
a single variable was strongly correlated to all coverage variables. 
Therefore, we partitioned the Bayesian network into two networks, 
one for command and response and the other for core and pipe. 
The result of the inference on the common parameter from the first 
network was used as input for the second one. We trained the sec- 
ond network with the same training set of 160 test-cases. During 
the training, 1745 out of the 1968 tasks in the model were covered, 
while 223 remained uncovered. 

We checked the performance of the trained network and its abil- 
ity to increase the coverage rate for the uncovered tasks in the train- 
ing set. The baseline for comparison was the progress achieved by 
the best test directive file created by an expert user. 

We tried to maximize the coverage progress rate using a large 
number of test directive files aimed at specific sets of uncovered 
tasks. This approach is not realistic for a human user due the ef- 
fort needed to create each set of directives. However, it is useful 
for the automatic creation of directives, because the inference time 
from the trained network is negligible. Our method to maximize 
the coverage progress rate was to randomly partition the uncov- 
ered tasks, use the trained network to create a test directive file 
for each partition, and simulate a single test-case for each directive 
file. This process was repeated until all the tasks were covered. 
The CDG process was able to cover all uncovered tasks after 250 
test-cases, while the baseline case of the user defined test directives 
file covered only two thirds of them after over 400 test-cases (see 
Figure 6). 

6. CONCLUSIONS AND FUTURE WORK 
In this paper we demonstrated how Bayesian networks can be 

used to close the loop between coverage data and directives to test 

generators. The experiments described in the paper show that this 
modeling technique can be efficiently used to achieve the CDG 
goals of easier reach for hard coverage cases, diverse reach for av- 
erage cases, and improved coverage progress rate. It should be 
noted that the suggested CDG method is not limited to the types 
of simulation environments handled in this paper (i.e., parameters- 
based test generation and direct stimuli generation). It can be used 
in other types of environments, such as test generators in which the 
control on the stimuli is embedded in the generator itself. 

Our future work has two distinct aspects: enhancing the learning 
capabilities and effectively applying the suggested framework to 
the verification process. From the learning perspective, we plan 
to explore other techniques that may increase our capabilities. For 
example, incremental structure learning as a means for encoding 
richer domain knowledge, and the efficient construction of good 
queries to boost targeting rare cases using selective sampling. To 
effectively deploy the CDG framework, we need to gain a better 
understanding of the type of knowledge that should be encoded in 
the model, and to identify in which areas the suggested approach 
may prove most beneficial to the verification process. 

7. REFERENCES 
[l] J. Bergeron. Writing Testbenches: Functional Verification of HDL 

[2] M. Bose, J. Shin, E. M. Rudnick, T. Dukes, and M. Abadir. A 
Models. Kluwer Academic Publishers, January 2000. 

genetic approach to automatic bias generation for biased random 
instruction generation. In Proceedings of the 2001 Congress on 
Evolutionary Computation CEC2001, pages 442-448, May 2001. 

[3] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. 
Probabilistic Networks and Expert Systems. Springer-Verlag, 1999. 

[4] G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering 
hidden variables: A structure-based approach. In Proceedings of the 
13th Annual Conference on Neural Information Processing Systems, 
pages 479435,2000. 

[5] L. Foumier, Y. Arbetman, and M. Levinger. Functional verification 
methodology for microprocessors using the Genesys test-program 
generator. In Proceedings of the 1999 Design, Automation and Test 
in Europe Conference (DATE), pages 434-441, March 1999. 

[6] Z. Ghahramani. Learning dynamic Bayesian networks. In Adaptive 
Processing of Sequences and Data Structures, Lecture Notes in 
Artificial Intelligence, pages 168-197. Springer-Verlag, 1998. 

[7] R. Grinwald, E. Harel, M. Orgad, S. Ur, and A. Ziv. User defined 
coverage - a tool supported methodology for design verification. In 
Proceedings of the 35th Design Automation Conference, pages 
158-165, June 1998. 

[8] A. Hartman, S. Ur, and A. Ziv. Short vs long size does make a 
difference. In Proceedings of the High-Level Design Validation and 
Test Workshop, pages 23-28, November 1999. 

Technical report, Microsoft Research, 1996. 

applications of Bayesian networks. Communications ofthe ACM, 
38(3):24-30, 1995. 

[l 11 G. Nativ, S. Mittermaier, S. Ur, and A. Ziv. Cost evaluation of 
coverage directed test generation for the IBM mainframe. In 
Proceedings of the 2001 lntemational Test Conference, pages 
793-802, October 2001. 

[12] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Network of 
Plausible Inference. Morgan Kaufmann, 1988. 

[13] S. Tasiran, E Fallah, D. G. Chinnery, S. J. Weber, and K. Keutzer. A 
functional validation technique: biased-random simulation guided 
by observability-based coverage. In Proceedings of the International 
Conference on Computer Design, pages 82-88, September 2001. 

[14] S. Ur and Y. Yadin. Micro-architecture coverage directed generation 
of test programs. In Proceedings of the 36th Design Automation 
Conference, pages 175-180, June 1999. 

Research, 1921. 

[9] D. Heckerman. A tutorial on learning with Bayesian networks. 

[lo] D. Heckerman, A. Mamdani, and M. Wellman. Real-world 

[ 151 S. Wright. Correlation and causation. Journal of Agricultural 

29 1 


