
18.2

Coverage Directed Test Generation for Functional
Verification using Bayesian Networks

Shai Fine Avi Ziv
IBM Research Laboratory in Haifa

Haifa, 31 905, Israel
{fshai, aziv}Qil.ibm.com

ABSTRACT
Functional verification is widely acknowledged as the bottleneck
in the hardware design cycle. This paper addresses one of the
main challenges of simulation based verification (or dynamic veri-
fication), by providing a new approach for Coverage Directed Test
Generation (CDG). This approach is based on Bayesian networks
and computer learning techniques. It provides an efficient way for
closing a feedback loop from the coverage domain back to a gener-
ator that produces new stimuli to the tested design. In this paper, we
show how to apply Bayesian networks to the CDG problem. Ap-
plying Bayesian networks to the CDG framework has been tested in
several experiments, exhibiting encouraging results and indicating
that the suggested approach can be used to achieve CDG goals.

Categories and Subject Descriptors

General Terms

B.6.3 [Logic Design]: Design Aids-Ver$cation

Verification, Measurement, Algorithms, Experimentation

Keywords
Functional Verification, Coverage Analysis, Bayesian Networks

1. INTRODUCTION
Functional verification is widely acknowledged as the bottleneck

in the hardware design cycle [l]. To date, up to 70% of the design
development time and resources are spent on functional verifica-
tion. The increasing complexity of hardware designs raises the
need for the development of new techniques and methodologies
that can provide the verification team with the means to achieve its
goals quickly and with limited resources.

The current practice for functional verification of complex de-
signs starts with a definition of a test plan, comprised of a large
set of events that the verification team would like to observe dur-
ing the verification process. The test plan is usually implemented
using random test generators that produce a large number of test-
cases, and coverage tools that detect the occurrence of events in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 24,2003, Anaheim, California, USA.
Copyright 2003 ACM 1-581 13-688-9/03/0006 ... $5.00.

the test plan, and provide information related to the progress of the
test plan. Analysis of the coverage reports allows the verification
team to modify the directives for the test generators and to better
hit areas or specific tasks in the design that are not covered well [5] .

The analysis of coverage reports, and their translation to a set
of test generator directives to guide and enhance the implementa-
tion of the test plan, result in major manual bottlenecks in the oth-
erwise highly automated verification process. Considerable effort
is invested in finding ways to close the loop of coverage analysis
and test generation. Coverage directed test generation (CDG) is
a technique to automate the feedback from coverage analysis to
test generation. The main goals of CDG are to improve the cover-
age progress rate, to help reaching uncovered tasks, and to provide
many different ways to reach a given coverage task. Achieving
these goals should increase the efficiency and quality of the verifi-
cation process and reduce the time and effort needed to implement
a test plan.

In this paper, we propose a new approach for coverage directed
test generation. Our approach is to cast CDG in a statistical infer-
ence framework, and apply computer learning techniques to achieve
the CDG goals. Specifically, our approach is based on modeling the
relationship between the coverage information and the directives to
the test generator using Bayesian networks [9]. A Bayesian net-
work is a directed graph whose nodes are random variables and
whose edges represent direct dependency between their sink and
source nodes. Each node in the Bayesian network is associated with
a set of parameters specifying its conditional probability given the
state of its parents.

Simply stated, the CDG process is performed in two main steps.
In the first step, a training set is used to learn the parameters of
a Bayesian network that models the relationship between the cov-
erage information and the test directives. In the second step, the
Bayesian network is used to provide the most probable directives
that would lead to a given coverage task (or set of tasks).

Bayesian networks are well suited to the kind of modeling re-
quired for CDG, because they offer a natural and compact rep-
resentation of the rather complex relationship between the CDG
ingredients, together with the ability to encode essential domain
knowledge. Moreover, adaptive tuning of the Bayesian network
parameters provides a mean to focus on the rare coverage cases.

We describe two experiments in which we tested the the abil-
ity of Bayesian networks to handle aspects of the CDG problem
in various settings. The goals of the experiments were to increase
the hitting rates in hard-to-reach coverage cases; design directives
aimed at reaching uncovered tasks; and provide many different di-
rectives for a given coverage task. We used two settings for our
experiments. In the first setting, we used a Bayesian network to
generate instruction streams to an abstract model of the pipeline of

286

http://aziv}Qil.ibm.com

Figure 1: Verification process with automatic test generation

an advanced super-scalar PowerPC processor. In the second set-
ting, we used a Bayesian network to generate directives to an ex-
isting test generator of a storage control unit of a mainframe with a
goal to cover all possible transactions from the CPUs connected to
this unit. In both experiments we reached our goals. The encour-
aging results suggests that Bayesian networks may well be used to
achieve the primary goals of CDG.

The remainder of this paper is as follows. In Section 2, we briefly
present the CDG framework and review related work. In Section 3,
we describe Bayesian networks and their application to CDG. Sec-
tions 4 and 5 provide detailed descriptions of the experiments. We
conclude with a few remarks and suggestions for future study.

2. COVERAGE DIRECTED TEST GENER-
ATION (CDG)

In current industry practice, verification by simulation, or dy-
namic verification, is the leading technique for functional venfica-
tion. Coverage is used to ensure that the verification of the design is
thorough, and the definition of coverage events or testing require-
ments is a major part in the definition of the verification plan of the
design. Often, a family of coverage events that share common prop-
erties are grouped together to form a coverage model [7]. Members
of the coverage model are called coverage tasks and are considered
part of the test plan. Cross-product coverage models [7] are of spe-
cial interest. These models are defined by a basic event and a set of
parameters or attributes, where the list of coverage tasks comprises
all possible combinations of values for the attributes.

Figure 1 illustrates the verification process with an automatic
random test generation. A test plan is translated by the verifica-
tion team to a set of directives for the random test generator. Based
on these directives and embedded domain knowledge, the test gen-
erator produces many test-cases. The design under test (DUT) is
then simulated using the generated test-cases, and its behavior is
monitored to make sure that it meets its specification. In addition,
coverage tools are used to detect the occurrence of coverage tasks
during simulation. Analysis of the reports provided by the cover-
age tools allows the verification team to modify the directives to
the test generator to overcome weaknesses in the implementation
of the test plan. This process is repeated until the exit criteria in the
test plan are met,

The use of automatic test generators can dramatically reduce the
amount of manual labor required to implement the test plan. Even
so, the manual work needed for analyzing the coverage reports and
translating them to directives for the test generator, canconstitute a
bottleneck in the verification process. Therefore, considerable ef-
fort is spent on finding ways to automate this procedure, and close
the loop of coverage analysis and test generation. This automated
feedback from coverage analysis to test generation, known as Cov-
erage Directed test Generation (CDG), can reduce the manual work
in the verification process and increase its efficiency.

In general, the goal of CDG is to automatically provide directives
that are based on coverage analysis to the test generator. This can
be further divided into two sub-goals: First, to provide directives to

the test generator that help in reaching hard cases, namely uncov-
ered or rarely covered tasks. Achieving this sub-goal can shorten
the time needed to fulfill the test plan and reduce the number of
manually written directives. Second, to provide directives that al-
low easier reach for any coverage task, using a different set of direc-
tives when possible. Achieving this sub-goal makes the verification
process more robust, because it increases the number of times a task
has been covered during verification. Moreover, if a coverage task
is reached via different directions, the chances to discover hidden
bugs relatedto this task are increased [SI.

In the past, two general approaches for CDG have been pro-
posed: feedback-based CDG and CDG by construction. Feedback-
based CDG relies on feedback from the coverage analysis to auto-
matically modify the directives to the test generator. For example,
in [2] , a genetic algorithm is used to select and modify test-cases to
increase coverage. In [13], coverage analysis data is used to mod-
ify the parameters of a Markov Chain that represents the DUT. The
Markov Chain is then used to generate test-cases for the design.
In [111, the coverage analysis results trigger a set of generation
rules that modify the testing directives. In contrast, in CDG by
construction, an external model of the DUT is used to generate test
directives designed to accurately hit the coverage tasks. For exam-
ple, in [141 an FSM model of pipelines is used to generate tests that
cover instruction interdependencies in the pipes.

3. COVERAGE DIRECTED TEST GENER-
ATION USING BAYESIAN NETWORKS

The random nature of automatic test-case generaiors imposes a
considerable amount of uncertainty in the relationship between test
directives and coverage tasks, e.g., the same set of directives can
be used to generate many different test-cases, each leading to dif-
ferent coverage tasks. This inherent uncertainty suggests to cast
the CDG setup in a statistical inference framework. To this end,
Bayesian networks offer an efficient modeling scheme by provid-
ing a compact representation of the complex (possibly stochastic)
relationships among the CDG ingredients, together with the pos-
sibility to encode essential domain knowledge. It should be noted
that we do not suggest modeling the behavior of the design, typi-
cally a large and complicated (deterministic) finite state machine.
Rather, we model the CDG process itself, namely the trial-and-
error procedure govemed by the verification team, which controls
the test generation at one end and traces the progress of covering
the test plan at the other.

3.1 A Brief Introduction to Bayesian Networks
A Bayesian network is a graphical representation of the joint

probability distribution for a set of variables. This representation
was originally designed to encode the uncertain knowledge of an
expert and can be dated back to the geneticist Sewall Wright [15].
Their initial development in the late 1970s was motivated by the
need to model the top-down (semantic) and bottom-up (perceptual)
combinations of evidence (observations/findings). Their capability
for bidirectional inferences, combined with a rigorous probabilistic
foundation, led to the rapid emergence of Bayesian networks as the
method of choice for uncertain reasoning in AI and expert systems,
replacing ad hoc rule-based schemes. Bayesian networks also play
a crucial role in diagnosis and decision support systems [lo].

Obviously, there’s a computational problem in dealing with many
sources of uncertainty, i.e. the ability to perform probabilistic ma-
nipulations in high dimensions (the “curse of dimensionality”). The
main breakthrough emerged in the late 1980s and can be attributed
to Judea Pearl [12], who introduced ’modularity’, thus enabling

287

large and complex models and theirs associated calculations, to be
split up into small manageable pieces. The best way to do this is
via the imposition of meaningfully simplified conditional indepen-
dence assumptions. These, in turn, can be expressed by means of a
powerful and appealing graphical representation.

A Bayesian network consists of two components. The first is a
directed acyclic graph in which each vertex corresponds to a ran-
dom variable. This graph represents a set of conditional indepen-
dence properties of the represented distribution: each variable is
probabilistically independent of its non-descendants in the graph
given the state of its parents. The graph captures the qualitative
structure of the probability distribution, and is exploited for effi-
cient inference and decision making. The second component is a
collection of local interaction models that describe the conditional
probability p(Xi1Pui) of each variable Xi given its parents Pai. To-
gether, these two components represent a unique joint probability
distribution over the complete set of variables X [12]. The joint
probability distribution is given by the following equation:

It can be shown that this equation actually implies the conditional
independence semantics of the graphical structure given earlier.
Eq. 1 shows that the joint distribution specified by a Bayesian net-
work has a factored representation as the product of individual local
interaction models. Thus, while Bayesian networks can represent
arbitrary probability distributions, they provide a computational ad-
vantage for those distributions that can be represented with a simple
structure.

The characterization given by Eq. 1 is a purely formal charac-
terization in terms of probabilities and conditional independence.
An informal connection can be made between this characterization
and the intuitive notion of direct causal influence. It has been noted
that if the edges in the network structure correspond to causal re-
lationships, where a variable's parents represent the direct causal
influences on that variable, then resulting networks are often very
concise and accurate descriptions of the domain. Thus it appears
that in many practical situations, a Bayesian network provides a
natural way to encode causal information. Nonetheless, it is often
difficult and time consuming to construct Bayesian networks from
expert knowledge alone, particularly because of the need to provide
numerical parameters. This observation, together with the fact that
data is becoming increasingly available and cheaper to acquire, has
led to a growing interest in using data to learn both the structure
and probabilities of a Bayesian network (cf. [3,9, 121).

Typical types of queries that can be efficiently answered by the
Bayesian network model are derived from applying the Bayes rule
to yield posterior probabilities for the values of a node (or set of
nodes), X, given some evidence, E , i.e. assignment of specific val-
ues to other nodes:

Thus, a statistical inference can be made in the form of either select-
ing the Maximal A Posteriori (MAP) probability, maxp(XIE), or
obtaining the Most Probable Explanation (MPE), argmaxp(X1E).

The sophisticated yet efficient methods that have been developed
for using Bayesian networks provide the means for predictive and
diagnostic inference1. A diagnostic query is such that the evidence

'This is in contrast to standard regression and classification meth-
ods (e.g., feed forward neural networks and decision trees) that
encode only the probability distribution of a target variable given
several input variables.

n

I cp-core-enable =
{ / / val weiqht I -

Test Generator
Directives

Cove ar g e
Variables

Figure 2: Bayesian Network of CDG

nodes E represent a cause, while the queried nodes, X, represent
an effect. The reversed direction, i.e. evidence on the effect nodes
which serves to determine the possible cause, is called abductive.
These methods also allow Bayesian networks to reason efficiently
with missing values, by computing the marginal probability of the
query given the observed values.

There are two important extensions of Bayesian networks: Dy-
namic Bayesian networks and influence diagrams. The first exten-
sion (see [6]) enables the incorporation of time, thus modeling tem-
poral dependencies in a stochastic process. The second extension
(see [3]) enriches the Bayesian network paradigm with decision
making and utility considerations which create a powerful mecha-
nism for dealing with decisions under uncertainty constraints.

3.2 A Bayesian Network for CDG
The CDG process begins with the construction of a Bayesian net-

work model that describes the relations between the test directives
and the coverage space. Figure 2 illustrates a simple, yet typical,
Bayesian network, which models a small excerpt of the CDG setup.
The network describes the relationship between the directives that
influence the type of command that is generated (cp-cmd-type)
and the active cores inside a CPU (cp-core-enable), and the
coverage attributes of a generated command (cmd), its response
(resp), and the core that generated it (core). The network is
comprised of input nodes (the white circles on the left) that re-
late to test directives that appear to their left and coverage nodes
(the white squares on the right) that define the coverage space. In
addition to these nodes, for which we have physical observations,
the network may also contain hidden nodes, namely variables for
which we don't have any physical evidence (observations) for their
interactions. These variables are represented as shaded ovals in
the figure. Hidden nodes are added to the Bayesian network struc-
ture primarily to reflect expert domain knowledge regarding hidden
causes and functionalities which impose some structure on the in-
teraction between the interface (observed) nodes2.

The Bayesian network at Fig. 2 describes the causal relationships
from the test generation directives (causes) to the coverage model
space (effects). For example, it encodes the expert knowledge that
indicates that there is an intemal mode of operation for which we
do not have any direct physical observation, yet it is determined
by the combined values of the test generation attributes. On the
other hand, the (hidden) mode of operation directly influences the
choice of the resulting command and core, which are attributes of

*Introducing hidden nodes to the network structure has the sec-
ondary impact of reducing the computational complexity by dimen-
sionality reduction, and as a means for capturing non-trivial (higher
order) correlations between observed events.

288

the coverage model. Note the absence of a direct link between the
requested core (via the directive cp-core-enable) and the ob-
served one (at Core), which captures our understanding that there
is no direct influence between the directives and the coverage at-
tribute. Another assumption encoded in the CDG Bayesian net-
work structure at Fig. 2, is that the only information that governs
the response for the command is the generated command itself, and
this is encoded via the direct link from Cmd to Resp.

In a nutshell, the design of the Bayesian network starts with iden-
tifying the ingredients (attributes) that will constitute the directives
to the test generator on one hand, and to the coverage model on the
other. These attributes are dictated by the interface to the simulation
environment, to the coverage analysis tool, and by the specification
of the coverage model in the test plan. These ingredients are used
as the first guess about the nodes in the graph structure. Connect-
ing these nodes with edges is our technique for expert knowledge
encoding, as demonstrated in Fig. 2. Obviously, using a fully con-
nected graph, i.e. with an edge between every pair of nodes, rep-
resents absolutely no knowledge about the possible dependencies
and functionalities within the model. Hence, as the graph structure
becomes sparser, it represents deeper domain knowledge. We dis-
covered that a good practice in specifying a dependency graph is
to remove edges for which we have strong belief that the detached
nodes are not directly influencing one another. At this point, hid-
den nodes can be added to the structure, either to represent hidden
causes, which contribute to a better description of the functional-
ities of the model, or to take on a role from the complexity stand
point, by breaking the barges cliques in the graph (see [4]).

After the Bayesian network structure is specified, it is trained
using a sample of directives and the respective coverage tasks. To
this end, we activate the simulation environment and construct a
training set out of the directives used and the resulting coverage
tasks. We then use one of the many known learning algorithms (cf.
[3]) to estimate the Bayesian network’s parameters (i.e. the set of
conditional probability distributions). This completes the design
and training of the Bayesian network model.

In the evaluation phase, the trained Bayesian network can be
used to determine directives for a desired coverage task, via pos-
terior probabilities, MAP and MPE queries, which use the cov-
erage task attributes as evidence. For example, in a model for
which the directives are weights of possible outcomes for inter-
nal draws in the test generator (e.g. the directive cp-cmd-type
in Fig. 2 specifies a preference to read commands, w r i t e com-
mands, etc.), we can specify a desired coverage task assignment
(evidence) for the coverage nodes (e.g. Resp = ACK) and calcu-
late the posterior probability distribution for directive nodes (e.g.
p(Cmd TypelResp = ACK)), which directly translates to the set of
weights to be written in the test generator’s parameter file. Note, as
the example demonstrates, we can specify partial evidence andor
determine a partial set of directives.

4. INSTRUCTION STREAM GENERATION
USING A DYNAMIC NETWORK

To evaluate the feasibility of the suggested modeling approach
to the CDG problem, we designed a controlled study that acts in
a simple domain (small state space), where we have a deep un-
derstanding of the DUT’s logic, direct control on the input, and a
‘ground truth’ reference to evaluate performance.

We conducted the experiment on a model of the pipeline of North-
Star, an advanced PowerPC processor. The pipeline of Northstar
contains four execution units and a dispatch unit that dispatches in-
structions to the execution units. Figure 3 illustrates the general

Dispatch

Da:x;:

Write Back

Simple Arith Complex Arith Branch Load/Store
Pipe (S) Pipe (C) Pipe (B) Pipe (L)

Figure 3: The structure of the Northstar pipeline

structure of the NorthStar pipeline. For reasons of simplicity, our
model contains only the simple arithmetic unit that executes simple
arithmetic instructions such as add, and the complex arithmetic unit
that can execute both simple and complex arithmetic instructions.
Each execution unit consists of three pipeline stages: (1) Data fetch
stage, in which the data of the instruction is fetched; (2) Execute
stage, in which the instruction is executed; (3) Write back stage,
where the result is written back to the target register. The flow of
instructions in the pipeline is governed by a simple set of rules.
For example, in-order dispatching of instructions to the execution
units, and rules for stalling because of data dependency. Note, the
complete set of rules is omitted to simplify the description.

We developed a simple abstract model of the dispatch unit and
two pipelines and used it to simulate the behavior of the pipeline.
The input to our NorthStar model is a simplified subset of the Pow-
erPC instruction set. Each instruction is modeled by four input
variables. The first variable indicates the type of the instruction.
There are five possible types: S - simple arithmetic; C1, C2, C3
- complex arithmetic; and NOP - instructions that are executed in
other execution units. The second and third input variables consti-
tute the source and target register of the instructions. For simplicity
and in order to increase the possibility of register interdependency,
we used only eight registers instead of the 32 registers available in
PowerPC. The last input variable indicates whether the instruction
uses the condition register. Due to restrictions on the legal com-
binations of the input variables (e.g., NOP instruction is not using
registers), there are 449 possible instructions.

We used a coverage model that examines the state of the two
pipelines, and properties of the instructions in them. The coverage
model consists of five attributes, the type of instruction at stage 1 of
the simple and complex arithmetic pipelines (SlType and ClQpe,
resp.), flags indicating whether stage 2 of the pipelines are occu-
pied (S2Valid and C2Valid, resp.), and a flag indicating whether
the instruction at stage 2 of the simple arithmetic pipeline uses the
condition register (S2CR). The total number of legal coverage tasks
in the model is 54 (out of 80 possible cases).

The goal of the experiment was to generate instruction streams
that cover the coverage model described above. Specifically, we
concentrated on the ability to reach the desired coverage cases with
many, yet relatively short, instruction sequences.

We modeled the temporal dependencies between the instructions
and coverage tasks and among the instructions using a two-slice
Dynamic Bayesian Network (DBN) [6] . Rather than an accurate
mapping of the specific state machine structure, the DBN encoded
the general knowledge of an expert on the modus operandi of this
type of DUT. Using an expert’s domain knowledge proved to be vi-
tal in this setup because it provided essential information needed
for the generation of instruction streams. Moreover, it enabled
the use of hidden nodes, which effectively reduced the complex-
ity through dimensionality reduction. The resulting DBN has 19

289

Time slice (cycle) t Time slice (cycle) t+l
I

I I

0 Input Node 0 Coverage Node 0 Hidden Node

Figure 4: two-slice DBN for the NorthStar experiment

Uncovered

Training Set

Text Book

Table 1: NorthStar experiment results

nodes per slice, 13 of which are observed, 15 intra (within a slice)
edges, and 37 inter (between slices) edges (see Fig 4).

The training set is composed of 1000 sequences of random in-
structions. The length of each sequence is 10 cycles. Note, the
model the we used for the Bayesian network made it easier to mea-
sure length in terms of cycles instead of instructions. The training
set contained 385 different instructions. During its simulation, 49
(out of 54) coverage cases were observed. The average number of
instructions per sequence in the training set was 9.7 qut of the 20
possible dispatches in 10 cycles (i.e.. more than half of the dispatch
slots in the sequence are empty).

After training the Bayesian network, we tried to generate instruc-
tion sequences for all 54 coverage tasks in the coverage model.
Each sequence was generated using the DBN, by solving the Most
Probable Explanation (MPE) problem for the requested coverage
task. All 49 coverage cases of the training set plus three addi-
tional uncovered cases were reached using instruction sequences
designed by the DBN. In addition, we generated many different in-
struction sequences for each coverage task that was covered by the
Bayesian network. The average number of cycles in a generated se-
quence dropped to 2.9, while the average number of instructions in
a sequence reduced to 3.7. This reflects the fact that the generated
instruction sequences cause less stall states en-route to reaching the
desired coverage cases. Table 1 illustrates the details of reaching
two difficult coverage cases-the rarest coverage task, which was
seen only once in the training set, and an uncovered task. The ta-
ble shows the number of cycles and instructions required to reach
these tasks in the training set, the instruction sequencp generated
by the trained DBN, and the 'text book' solution-the best pos-
sible sequence. The table indicates that the instruction sequences
generated by the DBN are shorter, both in instructions and cycles,
than the sequences in the training set. Overall, the results indicate
that the trained DBN is able to generate many compact instruction
sequences that are not far from the best possible solution.

Memory Subsystem

t
Storage Control

Element
Pipe 0 (SCE)

Figure 5: The structure of SCE simulation environment

5. STORAGE CONTROL EXPERIMENT US-
ING A STATIC NETWORK

The second experiment was conducted in a real-life setting. The
design under test in the experiment is the Storage Control Element
(SCE) of an IBM z-series system. Figure 5 shows the structure of
the SCE and its simulation environment. The SCE handles com-
mands from eight CPUs (CPO - CW). Each CPU consists of two
cores that generate commands to the SCE independently. The SCE
handles incoming commands using two internal pipelines. When
the SCE finishes handling a command, it sends a response to the
commanding CPU.

The simulation environment for the SCE contains, in addition to
the SCE itself, behavioral models for the eight CPUs that it ser-
vices, and a behavioral model for the memory subsystem. The be-
havioral models of the CPUs generate commands to the SCE based
on their internal state and a directive file provided by the user. The
directive file contains a set of parameters that affect the behavior
of the system. Some of these parameters control the entire sys-
tem while others are specific to certain components of the system,
such as a specific CPU. Figure 2 shows an example of some pa-
rameters that are used in the simulation environment of the SCE.
Each parameter contains a set of possible values that the parameter
can receive. Each value has a weight associated with it. When
the value of a parameter is needed, it is randomly chosen from
the set of possible values according the weights of these values.
For example, when a CPU generates a new command, it first uses
the cp-cmd-type parameter to determine the type of command to
generate, and then a specific parameter for that command type to
determine the exact command to be used.

In the experiment, we tried to cover all the possible transactions
between the CPUs and the SCE. The coverage model contained five
attributes: The CPU (8 possible values) and the core (2 values) in
it that initiated the command, the command itself (31 values), its
response (14 values), and the pipeline in the SCE that handled it (2
values). Overall, the cross product contains 13,888 cases and the
coverage model contains 1968 legal coverage tasks.

This experiment added many new challenges over the controlled
experiment described in the previous section. First, our knowledge
about the DUT in this experiment was very limited compared to
the full understanding of the design in the first experiment. In addi-
tion, we were less able to observe and control the input and output
nodes of the Bayesian network. For the test parameters, we could
only specify the distribution of each parameter and we could not
observe @e values that were actually used, only their distribution.
Moreover, in some cases the behavioral models ignored the param-
eters and generated commands based on their internal state. Thus,
the actual distribution used was not exactly the provided distribu-

290

/- 1

Tesl-easss

Figure 6: Coverage progress of the CDG process

tion of the parameters. This type of observation (distribution in-
stead of specific value) is known as a so$ evidence. The coverage
data that we got out of the simulation environment was a summary
of all the coverage tasks that occurred during the simulation of a
test-case. Therefore, it was hard to correlate between the observed
coverage tasks and the parameters’ values that caused them and be-
tween the different observed coverage tasks.

Because we had limited knowledge about the DUT and the cor-
relation between the parameters in the test directives and the cov-
erage tasks, the first Bayesian network we constructed contained
arcs between each of the coverage variables and each of the test
parameters. We trained this network with 160 test-cases (each tak-
ing more than 30 minutes to execute). After the initial training, we
analyzed the Bayesian network and found out that most of the test
parameters were strongly correlated either to the command and re-
sponse coverage variables or the pipe and core variables, but only
a single variable was strongly correlated to all coverage variables.
Therefore, we partitioned the Bayesian network into two networks,
one for command and response and the other for core and pipe.
The result of the inference on the common parameter from the first
network was used as input for the second one. We trained the sec-
ond network with the same training set of 160 test-cases. During
the training, 1745 out of the 1968 tasks in the model were covered,
while 223 remained uncovered.

We checked the performance of the trained network and its abil-
ity to increase the coverage rate for the uncovered tasks in the train-
ing set. The baseline for comparison was the progress achieved by
the best test directive file created by an expert user.

We tried to maximize the coverage progress rate using a large
number of test directive files aimed at specific sets of uncovered
tasks. This approach is not realistic for a human user due the ef-
fort needed to create each set of directives. However, it is useful
for the automatic creation of directives, because the inference time
from the trained network is negligible. Our method to maximize
the coverage progress rate was to randomly partition the uncov-
ered tasks, use the trained network to create a test directive file
for each partition, and simulate a single test-case for each directive
file. This process was repeated until all the tasks were covered.
The CDG process was able to cover all uncovered tasks after 250
test-cases, while the baseline case of the user defined test directives
file covered only two thirds of them after over 400 test-cases (see
Figure 6).

6. CONCLUSIONS AND FUTURE WORK
In this paper we demonstrated how Bayesian networks can be

used to close the loop between coverage data and directives to test

generators. The experiments described in the paper show that this
modeling technique can be efficiently used to achieve the CDG
goals of easier reach for hard coverage cases, diverse reach for av-
erage cases, and improved coverage progress rate. It should be
noted that the suggested CDG method is not limited to the types
of simulation environments handled in this paper (i.e., parameters-
based test generation and direct stimuli generation). It can be used
in other types of environments, such as test generators in which the
control on the stimuli is embedded in the generator itself.

Our future work has two distinct aspects: enhancing the learning
capabilities and effectively applying the suggested framework to
the verification process. From the learning perspective, we plan
to explore other techniques that may increase our capabilities. For
example, incremental structure learning as a means for encoding
richer domain knowledge, and the efficient construction of good
queries to boost targeting rare cases using selective sampling. To
effectively deploy the CDG framework, we need to gain a better
understanding of the type of knowledge that should be encoded in
the model, and to identify in which areas the suggested approach
may prove most beneficial to the verification process.

7. REFERENCES
[l] J. Bergeron. Writing Testbenches: Functional Verification of HDL

[2] M. Bose, J. Shin, E. M. Rudnick, T. Dukes, and M. Abadir. A
Models. Kluwer Academic Publishers, January 2000.

genetic approach to automatic bias generation for biased random
instruction generation. In Proceedings of the 2001 Congress on
Evolutionary Computation CEC2001, pages 442-448, May 2001.

[3] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter.
Probabilistic Networks and Expert Systems. Springer-Verlag, 1999.

[4] G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering
hidden variables: A structure-based approach. In Proceedings of the
13th Annual Conference on Neural Information Processing Systems,
pages 479435,2000.

[5] L. Foumier, Y. Arbetman, and M. Levinger. Functional verification
methodology for microprocessors using the Genesys test-program
generator. In Proceedings of the 1999 Design, Automation and Test
in Europe Conference (DATE), pages 434-441, March 1999.

[6] Z. Ghahramani. Learning dynamic Bayesian networks. In Adaptive
Processing of Sequences and Data Structures, Lecture Notes in
Artificial Intelligence, pages 168-197. Springer-Verlag, 1998.

[7] R. Grinwald, E. Harel, M. Orgad, S. Ur, and A. Ziv. User defined
coverage - a tool supported methodology for design verification. In
Proceedings of the 35th Design Automation Conference, pages
158-165, June 1998.

[8] A. Hartman, S. Ur, and A. Ziv. Short vs long size does make a
difference. In Proceedings of the High-Level Design Validation and
Test Workshop, pages 23-28, November 1999.

Technical report, Microsoft Research, 1996.

applications of Bayesian networks. Communications ofthe ACM,
38(3):24-30, 1995.

[l 11 G. Nativ, S. Mittermaier, S. Ur, and A. Ziv. Cost evaluation of
coverage directed test generation for the IBM mainframe. In
Proceedings of the 2001 lntemational Test Conference, pages
793-802, October 2001.

[12] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Network of
Plausible Inference. Morgan Kaufmann, 1988.

[13] S. Tasiran, E Fallah, D. G. Chinnery, S. J. Weber, and K. Keutzer. A
functional validation technique: biased-random simulation guided
by observability-based coverage. In Proceedings of the International
Conference on Computer Design, pages 82-88, September 2001.

[14] S. Ur and Y. Yadin. Micro-architecture coverage directed generation
of test programs. In Proceedings of the 36th Design Automation
Conference, pages 175-180, June 1999.

Research, 1921.

[9] D. Heckerman. A tutorial on learning with Bayesian networks.

[lo] D. Heckerman, A. Mamdani, and M. Wellman. Real-world

[151 S. Wright. Correlation and causation. Journal of Agricultural

29 1

