
The Real-Time UML Standard: Definition and Application

Bran Selic
Rational Software Canada

bselic@rational.com

Abstract

This very short paper describes the objectives,

content, and usage of a real-time UML profile that has
been standardized by the Object Management Group.
This profile defines a comon framework for describing
the quantitative aspects of software systems. In addition,
it provides specific facilities for analysing real-time
systems for schedulability or performance.

1. Introduction

In September 2001, the Object Management Group
(OMG) adopted a specification for a standard way of
modelling real-time systems using the Unified Modelling
Language (UML) [1]. This specification is in the form of
a UML “profile” – a set of interpretation rules, markings,
and constraints imposed on standard UML to more
accurately capture the specific phenomena of a given
application domain. The benefits of such standard are
clear: interoperability of tools and the emergence of
highly reusable common skills and knowledge that
extend beyond individual organizations.

This standard goes under the ostensibly omnibus
technical title of “UML profile for schedulability,
performance, and time” [2]. However, the common
underpinning is a standard model of metric time, that is,
time represented as a physical quantity. This model is
then used to support two well-established forms of time-
based model analysis: schedulability analysis based on
schedulability theory and performance analysis based on
queuing theory. By introducing quantitative information
into a UML model, the model can be analysed to predict
crucial time-related characteristics well in advance of
committing to costly implementation decisions. This, of
course, is the primary purpose of models in most
traditional engineering disciplines.

Space limitations preclude any in-depth coverage of
this standard. In the rest of this brief paper, we examine
the basic objectives of the profile, describe its contents,
and conclude with an overview of how it can be applied
in practice.

2. Objectives and Approach

A principal requirement was to allow the
construction of predictive UML models, that is, models
that can be used to compute key system properties. A
second major requirement was to automate, as much as
possible, the formal analysis of such models by a process
represented in Figure 1. In this conceptual view,
modellers construct UML models of their systems
without focusing specifically on analysis (that is, they do
not define analysis-specific models). They then attach
supplementary quantitative properties to the appropriate
model elements to capture temporal values such as delay,
frequency, execution time, etc. Such a model can then be
transferred from a model-editing tool to a specialized
model processor for analysis. The standard defines the
format and semantics of these supplementary annotations
so that models can be exchanged between any tools that
comply with the standard. Of course, the same model can
be analysed from a number of different perspectives.

MMooddeell EEddiittoorr

UML Model

Modeler/
Analyst

MMooddeell
PPrroocceessssoorr
MMooddeell

PPrroocceessssoorr

Figure 1. Usage of the profile

Since each model processor automatically
transforms the UML model into the internal form
required by its analysis method, the technical details of
the analysis algorithms are hidden from the modeller.
This eliminates the need for the rare and complex
expertise required to use these techniques (this has been
one of the biggest impediments to their more widespread
use in practice).

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

3. Elements of the Profile

The profile itself is defined in layered fashion as
described by the UML model in Figure 2.

Figure 2: The structure of the real-time profile

The General Resource Modeling Framework package

defines the conceptual underpinning for all other parts of
the profile. At the core of this framework is a generic
model of resource usage relationships that incorporates the
notion of quality of service (QoS) characteristics (the
RTresourceModeling sub-profile). In this model the
physical foundation that underlies all software systems is
captured through the generic notion of a resource.
Resources represent the inherent limitations of the physical
world; i.e., elements that have finite capacities and limited
speeds. This model is a very general and can serve as a
basis for all kinds of quantitative analyses, not just those
defined in this standard.

The second sub-profile in this core framework
contains a very general model of physical and measured
time (RTtimeModeling). Both continuous and discrete
time models are supported. Also included in this part of
the profile are general models of various timing
mechanisms such as clocks and timers, which are common
in most real-time operating systems.

The third foundational element is a general model of
concurrency and concurrency mechanisms. This includes
the notion of active objects (threads), the carriers of all
concurrency in concurrent software systems.

Each of these foundational sub-profiles can be
specialized further for specific needs. For instance, many
performance analysis techniques have an idiosyncratic
model of concurrency mechanisms, which can be derived
by constraining the general concurrency model in a
suitable way. The same foundation can be specialized
differently for the purposes of schedulability analysis.

The various types of analysis-specific models are
defined in the Analysis Models package of the overall
profile. This package contains three specific sub-profiles:

• The SAProfile package, specializes the
concepts of the concurrency modelling and
time modelling sub-profiles into a set of
generalized concepts commonly used in
different schedulability analyses, such as
rate-monotonic analysis [1] and others.

• The PAprofile package incorporates a set of
general concepts used in performance
analyses.

• The RSAprofile package further refines the
concepts of the schedulability profile for the
very specific case of the real-time CORBA
middleware standard. This is useful for
analysing the schedulability of applications
based on this technology.

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

Both the schedulability and the peformance sub-
profiles can be specialized further to meet specific needs
although they are concrete enough that they can also be
used directly without further specialization (but, for
relatively general analyses). The RSAprofile provides a
convenient example of how either individual organizations
or other more refined standards could customize these
general analysis profiles to support specific analyses.

The final element of the profile is a pre-packaged
library of modelling elements (RealTimeCORBAModel),
which capture the essential features of real-time CORBA
technology. The purpose of this package is to simplify the
construction of standard models of applications that are
based on this technology. Individual vendors of real-time
CORBA middleware can provide their own versions of
this library that are annotated with the appropriate QoS
information corresponding to their particular realizations.
These elements can then be imported directly into user
models, saving time and allowing modellers to focus on
modelling application-specific parts.

It is anticipated that in the future there will be many
other such pre-built models of specific supporting
technologies. The intent is to emulate the situation that
currently exists in the hardware world, in which chip
vendors typically publish VHDL models of their products,
so that designers can incorporate them directly into their
CAD models.

4. Application of the Standard

In the process of drafting the standard a number of
prototypes were constructed to validate the approach. The
results proved quite successful. Modellers would develop
UML models of their applications using a standard UML
editing tool. This was done without specialized knowledge
of the analyses to be performed – on the assumption that
modellers are not experts in the analysis methods. Using
the various concepts defined in the standard (stereotypes
and tagged values), such qualitative models were then
given quantitative characteristics (arrival rates, delays,
capacities, etc.). These models were then transferred to an
analysis tool that complied with the standard where they
were analysed and the results returned back to the model
editing tool.

The standard provides for a fairly sophisticated usage
model. For example, it includes the possibility of defining
parameterised QoS annotations, that is, annotations whose
values are variables. This allows the same model to be
analysed for a variety of different values – something that
is fundamental in exploring design alternatives. Thus, the

modeller does not have to create separate copies of a given
model for each different set of QoS values. There is even a
facility, based on the standard shareware language Perl,
which allows modellers to complex program expressions
for computing these values.

The results are generally intended to be fed back to
the model-editing tool in the form of UML models in
which the computed analysis values are embedded
directly. This ensures that the modellers can understand
the results of the analysis without having to be experts in
the analysis method. There is also a capability to include
tool-specific results (e.g., expressed in the form of HTML
pages that can be displayed using standard web browsers)
for cases where specific tools have additional useful
information that is not defined in the standard.

5. Conclusions

The difficulty of software design and in particular the
design of real-time and embedded software is exacerbated
by a lack of quantitative analysis. It is not unusual for
software systems to be designed and implemented that
fully meet their functional requirements but that still have
to be discarded or redesigned at great expense because
they fail to meet their quantitative requirements. The
purpose of the real-time UML profile is to provide a
standard means whereby developers can take advantage of
established quantitative analysis techniques and tools
automatically – without necessarily being experts in these
techniques. This can help transform the notoriously
unreliable discipline of software design into a more mature
and more predictable engineering discipline.

6. References

1. Klein, M., Ralya, T., Pollak, B., Obenza, R., and Gonzalez
Harbour, M., A Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate Monotonic Analysis for Real-Time
Systems, Kluwer Academic Publishers, 1993.

2. Object Management Group, Response to the RFP for
Schedulability, Performance, and Time (Real-time vendors
consortium -- initial submission), OMG document number
ad/2001-06-14, June 2001.

3. Object Management Group, RFP for Scheduling,
Performance, and Time, OMG document number ad/99-03-
13, March 1999.

4. Object Management Group (OMG), The Unified Modeling
Language Specification (version 1.4), OMG document
number formal/2001-09-67, September 2001.

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

