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ABSTRACT
This paper describes a register and functional unit (FU) binding al-
gorithm in high level synthesis. Our algorithm targets the reduction
of multiplexer inputs. Since multiplexers connect multiple inputs to
FUs or registers, the multiplexer count is a good indicator of the in-
terconnect complexity. Reducing the number of multiplexer inputs
results in reducing interconnect cost. Specifically, our algorithm
constructs a weighted and ordered compatibility graph, and binds
operations that form a long path in the graph together. As a result,
operations with many flow dependencies and common inputs are
bound to same FU, leading to a small number of FU inputs. In
addition, the operation variables generated by a single FU are as-
signed to the same register so that connections between FUs and
registers are reduced. We have implemented our algorithm within
a MATLAB to Verilog conversion tool, and applied it to a suite of
benchmark programs. Our experimental results have shown that the
proposed scheme achieves 11.8%, 43.6% and 58.8% multiplexer
input count reduction on average over weighted bipartite matching
algorithm, k-cofamily algorithm and left edge algorithm, respec-
tively. To assess the impact on interconnect reduction, we have
generated layouts of the circuits from our Verilog description. It is
shown that our approach delivers a 10.1% reduction in total wire-
length of global interconnects with minor area overhead of register
and FUs in comparison to the best previously proposed scheme.

1 Introduction
With the development of semiconductor fabrication technologies,
the feature size of transistors has kept decreasing at exponential
rates. On the other hand, chip dimensions continue increasing.
Consequently, global interconnects have become the bottleneck for
improving performance of next-generation VLSI designs. Specifi-
cally, large RC characteristics of global interconnects significantly
slow down the signal propagation, limiting the overall system fre-
quency. In addition, the large capacitive load of global intercon-
nects has become a major source of power consumption. As the
impact of global interconnect continues growing with technology
scaling, effective interconnect reduction schemes are urgently needed
to ensure the further advance of IC designs.

Optimization techniques at early stages in a design flow are of-
ten believed to be more effective than those at later stages. As a
result, interconnect reduction schemes during the high level syn-
thesis step are preferred. Unfortunately, efficient interconnect op-
timization techniques in the high level synthesis are challenging to
develop. In contrast to physical design, i.e., placement and routing,
in which location information of circuits is known and can be used
to estimate interconnects, high level synthesis only captures op-
erations and their dependencies. Consequently, metrics that track
interconnects, e.g., numbers of connections among function units
or multiplexer inputs, are usually used as the objective function for
minimization.

In this paper, we present a register and FU binding algorithm that
targets interconnect reduction. Similar to techniques in [4, 7], we
use the total input count of multiplexers to approximate the cost
of interconnects. Our scheme proceeds in five steps. Specifically,

given a data flow graph (DFG), compatibility graphs are generated
at first for different operation types. For each compatibility graph,
our scheme groups all operations into the minimal number of long
paths that have as many common inputs and flow dependencies as
possible. A single FU is used to perform the operations in each
path. Output variables in each path are bound to the same regis-
ter. Thirdly, multiple paths are concatenated to form mega-paths
of multi-type operations to increase register sharing. Fourthly, life-
times of all variables in mega-paths are analyzed to identify vari-
ables not bound to registers in the second step. Variables for pri-
mary inputs are also searched. Register binding is completed in the
fifth step.

Our algorithm minimizes the total number of multiplexer inputs.
In addition, it focuses on reducing the number of hardware re-
sources, i.e., registers and FUs. In particular, the operations in a
single path, when bound to a single FU and register, do not require
any multiplexer that link registers and FUs in the path. As a result,
the minimization of path count leads to simplified interconnect con-
figurations and less FUs. Moreover, the construction of mega-path
results in register reduction.

We have implemented our scheme into a software tool and ap-
plied it to a suite of benchmark designs. Experiments have shown
that our scheme derives binding results with the fewest multiplexer
input counts in comparison to previously proposed schemes. In
particular, 11.8%, 43.6% and 58.8% multiplexer input count reduc-
tions are achieved over weighted bipartite matching algorithm [5],
k-cofamily algorithm [4] and left edge algorithm [17], respectively,
with a limited overhead of FUs and registers. The multiplexer in-
put count reduction leads to short total global interconnect length.
For the circuit layouts generated from our binding results, the total
wirelength is reduced by 10.1%, 22.3% and 30.0% over weighted
bipartite matching algorithm, k-cofamily algorithm and left edge
algorithm, respectively.

The remainder of this paper is organized as follows. Section 2
reviews previous research on interconnect reduction in high level
synthesis. Section 3 gives an example that motivates our approach.
Section 4 formulates the problem of FU and register binding for
interconnect reduction. Our proposed algorithm is described in
Section 5. Section 6 provides the experimental results. Section
7 summarizes this paper.

2 Interconnect Reduction in High Level Syn-
thesis

For the past two decades, a plethora of techniques have been pro-
posed for interconnect optimization in high level synthesis. Most
of these techniques can be categorized into three groups, based on
how interconnects are estimated. Specifically, the interconnect re-
duction problem is recast as a min-cut graph partitioning problem
in [19, 20, 18]. The design objective is to reduce data communi-
cation among various operation clusters, which will be bound to
different FUs. The second group of schemes further improve inter-
connect estimation accuracy by incorporating physical design tech-
niques, e.g., floorplanning or placement, into high level synthesis
[27, 14, 26, 8, 6, 12, 13]. Since these schemes compute locations
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Figure 1: Motivating example (a) scheduled DFG (b) FU binding without interconnect consideration (c) register binding of variables
in 1(a) by left edge algorithm (d) synthesis result of 1(b) and 1(c). (e) interconnect oriented FU binding (f) interconnect oriented
register binding (g) synthesis result of 1(e) and 1(f)

of circuit blocks, they are able to derive interconnect measuring pa-
rameters such as total length and congestion, and conduct intercon-
nect optimizations accordingly. To confine the runtimes in a rea-
sonable range, only quick and sub-optimal physical design meth-
ods are applied, however, which degrade the effectiveness of these
schemes.

The third group of interconnect reduction schemes in high level
synthesis links interconnects to circuit components such as FUs,
registers and multiplexers. Specifically, they bind operations with
common inputs to the same FU and/or variables with common drivers1

to the same register. Consequently, the connection among regis-
ters and FUs is simplified, leading to interconnect reduction. For
register binding schemes, the work in [25, 7] assumes that reg-
isters are organized in register files whereas that in [11, 22, 23,
16, 5, 4, 3] assumes distributed registers. Similar variable-register
binding schemes are extended to variable-memory binding in [1,
15, 2]. A widely adopted method in interconnect-efficient binding
techniques is to use multiplexer input count to approximate the in-
terconnect cost. Multiple multiplexer minimization heuristics are
proposed including linear programming [1, 15, 22, 23], edge col-
oring algorithm [25], network flow algorithm [16, 4] , matching
algorithm [11, 5, 7] and simulated annealing [3].

3 Motivating Example
This section gives an example that motivates our work. Figure 1(a)
shows a scheduled DFG in which operations are represented as ver-
tices. For simplicity, our example contains only addition opera-
tions. Each operation has been scheduled in a time slot, called c-
step. Directed edges represent the data flow dependencies. Namely,
data is sent from the starting vertex to the ending vertex of an edge.
The names of variables are given next to the corresponding edges.
Figure 1(b) shows a FU binding solution without interconnect con-
sideration. The operations in the two shaded regions are bound to
two adders, either of which can perform an addition in one c-step.
Figure 1(c) shows the lifetime of each variable in figure 1(a), as
determined by the schedule, and the register binding result by left
edge algorithm (LEA). Variables v1 and v1′ are bound to the same
register because they are the same output of the top-left addition
operation and considered as one variable in the LEA. So are v2 and
v2′. Figure 1(d) is the netlist derived from figure 1(b) and 1(c).

1A driver of a variable is the FU what derives the variable.

the number of multiplexer inputs is 16. The numbers of adders and
registers are two and four, respectively.

If interconnect related information is taken into consideration,
the number of multiplexer inputs can be reduced. Figure 1(e) gives
the interconnect oriented FU binding. Figure 1(f) shows the life-
times of the variables in figure 1(e) and register binding . As the
figure shows, the number of registers does not increase in compar-
ison to that in figure 1(c). Figure 1(g) shows the synthesis result.
The number of multiplexer inputs is eight. The numbers of adders
and registers are two and four, respectively. The number of multi-
plexer inputs is reduced by 50% in comparison to that of 1(d) while
the numbers of FUs and registers do not increase. This example
reveals that it is possible to reduce multiplexer input count substan-
tially without adding registers or FUs.

4 Preliminaries and Problem Formulation
In this section, we define some notations and formulate the prob-
lem of register and FU binding for multiplexer input count mini-
mization.

4.1 Preliminaries
Given a scheduled DFG, two operations are compatible if they
are executed in different c-steps. Compatible operations can be
mapped to the same FU. The compatibility graph [10, 21] is often
created to represent the compatibility among operations in which
operations are represented as vertices and compatible operations
are connected by edges. Our modified compatibility graph is gen-
erated as follows.

Definition 1. Weighted and ordered compatibility graph (WOCG)
G(V,E) is a directed acyclic graph (DAG) with vertex set V and
edge set E. Vertex set V is composed of vertices each of which
represents an operation in the DFG. In addition, the operations in
V have the same operation type. Edges representing the compat-
ibility between operations compose the edge set E. The directed
edge u→ v is created between u and v if they are compatible, and
u is scheduled earlier than v. In addition, there is a weight wuv on
an edge u → v, representing whether there is a flow dependency
between u and v and how many common inputs the two operations
have.

Definition 2. A path in WOCG is a set of compatible operations
{op1, op2, ..., opi, ...opj , ...opn} ordered based on their scheduled
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times. Namely, c-step(opi) < c-step(opj) and i < j, where c-
step(op) represents the time slot where op is scheduled. .
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Figure 2: The procedure to construct a PCG (a) scheduled DFG
(b) paths constructed (c) PCG constructed

The compatibility concept can be extended to paths. To that end,
we define the lifetime of a path as follows.

Definition 3. The lifetime of a path p, denoted as L(p), is from
the start execution time of the first operation in p to the end execu-
tion time of the last operation in p.

Definition 4. Path compatibility graph (PCG) Gp(Vp,Ep) is a
weighted and ordered compatibility graph for paths. The vertices
represent paths in WOCG. An edge is inserted between two vertices
if their lifetimes do not overlap. Weights are assigned to edges to
represent data flow between two paths.

Figure 2 shows the procedure to construct a PCG. Figure 2(a) is
a scheduled DFG. Figure 2(b) shows paths p1 and p2 in addition
type WOCG and the multiplication type WOCG, respectively. The
lifetime of p1 is from c-step 1 to c-step 3, and that of p2 is from
c-step 4 to c-step 5. Since the lifetimes of p1 and p2 do not overlap,
p1 and p2 are compatible. Figure 2(c) represents the PCG. The ver-
tices vp1 and vp2 represent the paths p1 and p2, respectively. The
edge from vp1 to vp2 shows the compatibility between p1 and p2.
The weight w12 is assigned to the edge. The weight computation
is explained in section 5.2.

Definition 5. LetP be a path whose elements are {op1, op2, ..., opn}.
Suppose that operation opi generates variable vi. If one use-time
of vi is larger than c-step(opi+1), vi is a side variable.

The vs in figure 2(a) is a side variable because it is used by op4 at c-
step 4 which is larger than the c-step of op3 which is the successor
of op2 in p1, the generator of vs.

4.2 Formulation of Interconnect Oriented Binding Problem
The problem of register and FU binding for multiplexer input re-
duction can be formulated as follows.

PROBLEM: Given a scheduled DFG, find register and FU bind-
ing so that the numbers of FUs, registers and inputs of multiplexers
among registers and FUs are minimized.

5 The Proposed Heuristic
5.1 An Overview
The problem of register binding and FU binding are correlated [11,
7]. In addition, accurate interconnect extraction requires both bind-
ing results. Consequently, simultaneous register and FU binding is
crucial in reducing interconnect cost. Our algorithm binds registers
and FUs in an integrated fashion. It constructs a WOCG for each
FU type, and find paths in the WOCGs. Then, a FU is assigned to
the operations in each path. At the same time, a register is also as-
signed to the variables derived from the operations in a path. Next,

compatible paths are merged to form mega-paths for reduction of
registers. The lifetime of each mega-path is recorded for the final
register binding. Our scheme then finds side variables and primary
input variables. Finally, register binding for mega-paths, side and
primary input variables is performed.

5.2 Path Based Binding
In this subsection, we discuss the details of our algorithm. Figure
3 shows the overall algorithm flow, which can be divided into five
steps as follows.

Figure 3: The proposed algorithm

Step 1 (generation of WOCG for each operation type in a given
DFG): Step 1 is from line one to line four in figure 3. In this step,
WOCG is created. Each edge in WOCG has a weight. The weight
is calculated by incorporating flow dependency and the number of
common inputs between operations as follows.

Wij = α ∗ Fij +NINij + 1 (1)

The i and j in equation (1) are the indexes of the starting vertex vi
and ending vertex vj . Fij is a boolean variable which indicates if
there is a flow dependency between vi and vj . NINij is the number
of common inputs of vi and vj . α is an integer constant which rep-
resents the importance of the flow dependency. In our implemen-
tation, we set α = 2. If there is no flow dependency and common
inputs, the weight is one.

The reason of using Fij in the computation of Wij is that the
more flow dependencies in a path, the less number of inputs a FU
assigned to the operations in the path has. Moreover, since the out-
put registers are directly connected to the FU and highly probably
placed near the FU, the interconnect length between the FU and
output register is short. Figure 4 illustrates how flow dependency
in a path affects the minimization of multiplexer input count. For
simplicity, the primary inputs of the DFG is not considered. Figure
4(a) demonstrates the FU and register binding without considera-
tion of flow dependency. Figure 4(b) is its synthesis result. The
variables {v1, v2, v3, v7, v8} and {v6, v4, v5} are bound to reg-
ister r1 and r2, respectively. The number of multiplexer inputs
is eight. Figure 4(c) presents the FU binding with the incorpora-
tion of flow dependency. The consecutive operations in p1 and p2
have dependency relations. Figure 4(d) is synthesis result of figure
4(c). Variables {v1, v2, v6, v4, v8} in path p1 are bound to register
r1. The variables {v3, v7, v5}in p2 are bound to r2. The synthe-
sis result shows that there is no multiplexer. Thus, binding with
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consideration of flow dependency is effective in multiplexer input
reduction.
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Figure 4: Illustration of how flow dependency affect binding
result

The reasonNINij is included inWij is that the number of com-
mon inputs of two vertices could affect multiplexer input count in
the synthesis result. If two operations have a common input, the
common input does not require a multiplexer when both operations
are bound to the same FU. Figure 5 shows two binding results for
one WOCG, i.e. {p1, p1′} in figure 5(a) and {p2, p2′} in figure
5(c). All operations in p1, p1′, p2 and p2′ have dependency rela-
tion, respectively. In case of path p1, there are two common inputs
for the operations in the path i.e., a and b are inputs of more than
one operation. On the other hand, path p2 has no common inputs.
Figure 5(b) and 5(d) show synthesis results for {p1, p1′} and {p2,
p2′}, respectively. Adder add p1 and add p1’ are for operations in
path p1 and p1’, respectively. Registers reg p1 and reg p1’ are for
variables in path p1 and p1’. Same rule is applied to operations and
variables in path p2 and p2’. As can be seen, {p1, p1′} is better
binding with less number of multiplexer inputs.

Figure 6 shows the WOCG constructed from figure 1(a). The di-
rected edge represents the compatibility between operations and the
scheduled order. The weight on each edge is calculated by equa-
tion (1). For example, the edge from op1 to op4 means that op1 and
op4 are compatible, and op1 is scheduled before op4. Since there
is a flow dependency between them, F14 = 1. They have common
input b, thereforeNIN14 = 1. The weightw14 is 2∗1+1+1 = 4.

Step 2 (FU binding step): After generating WOCGs for all FU
types, our algorithm finds paths in the WOCGs by applying the
longest path algorithm [9]. After the longest path is found, edges
and vertices in the path are removed from the corresponding WOCG.
Edges that link vertices out of the path to those in the path are also
removed. The search and removal of the longest path are repeated
on the modified WOCG iteratively until there is no vertex and edge.
The process is from line six to line 10 in figure 3.

Figure 7 shows the path generation process of the WOCG in
figure 6. Figure 7(a) is the initial WOCG. The first longest path
in the WOCG is highlighted in bold. Figure 7(b) shows the up-
dated WOCG after the first longest path is removed with the sec-
ond longest path in bold. The intuition behind the generation of the
longest path is to reduce the total number of paths. Since the num-
ber of paths is equal to the number of FUs in the corresponding type
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Figure 5: Illustration of how common inputs affect binding re-
sult
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and directly related to the number of registers, path reduction leads
to a small number of FUs and registers. In addition, the weight of
an edge is monotonic to the amount of flow dependency and com-
mon inputs. Thus, finding a path with the largest weight leads to
the reduction of multiplexer inputs. The operations in the path are
bound to the same FU in line 11 of figure 3.

Step 3(finding path variables step): Step 3 is from line 13 to
line 19 of figure 3. The outputs of operations in the same path in a
WOCG are stored in the same register. As a result, it is crucial to re-
duce the number of paths for register reduction. Different from FU
binding in which paths from different WOCG cannot be combined
together since they contain operations with various types, these
paths can be potentially combined in register binding. For path
combination, the compatibility of all paths should be considered.
Figure 8 illustrates the process of path combination. Figure 8(a)
shows the paths for addition and multiplication types. Figure 8(b)
shows the compatibility graph for paths in figure 8(a). Moreover,
weights are assigned to edges of the path compatibility graph. The
weights are calculated in a similar way as the weights in WOCG.
However, only flow dependency between paths are considered be-
cause common inputs of different FUs do not affect multiplexer
input count. Path merging is conducted by the longest path algo-
rithm. Figure 8(c) presents the result. The outputs of operations in
a merged path will be assigned to a single register. The maximum
number of drivers of the register is the number of operation types in
the merged path. Figure 9 shows register binding result of a single
merged path in figure 8(c). The register is driven by two drivers,
i.e. the adder and multiplier. The lifetimes of merged paths are
recorded for the final register binding in step 5.

438



+

+

+

c-step 1

c-step 2

c-step 3 +

+

+
4 4

3 3
33

1

1

1 1
1

1

(a)

+

c-step 1

c-step 2

c-step 3 +

+
4

3
3

(b)

Figure 7: WOCG update process (a) the first longest path (b)
updated WOCG and the second longest path

+

+ +

+

+

+

p1

p2

p3

X

X

p4

X

X

p5

(a)

p1 p2 p3

p4 p5

w14 w15

w25 w35

(b)

+

+ +

+

+

+X

X X

X

p1_4

p2_5

p3

(c)

Figure 8: Construction of PCG (a) paths in a given DFG (b)
path compatibility graph (c) merged paths

Step 4 (finding side and input variables step): Step 4 is from
line 20 to line 24 in figure 3. Data dependencies among paths and
between un-adjacent operations within paths are analyzed in line
21 to search for side variables. A register is inserted for each side
variable. Figure 10 shows an example. In figure 10(a), v′2 is a side
variable because it has a consumer which is not a successor of its
generator within the compatibility path. Since a single register is
used for all variables within the path, it cannot keep the value of
v2′ until c-step 5. Thus, additional register is added.

In addition to registers for side variables, registers for primary
input variables should also be added. The primary input variables
are searched in line 24. Constants are not bound to registers. The
start and end use-time are recorded for the primary input and side
variables for final register binding.

Step 5 (final register binding step): Step 5 is in line 25. Specif-
ically, the lifetimes of all variables from the previous steps are ex-
amined. It is possible that the lifetimes of some variables do not
overlap. Registers assigned to the non-overlapping variables are
merged by left edge algorithm [17].

6 Experimental Results
We have developed a software program based on our algorithm.
We integrate the program in our high level synthesis tool which
converts a MATLAB program to a Verilog RTL description. Our
tool is implemented in C++. Benchmark programs are from [24].
They are data-oriented programs common in digital signal process-
ing (DSP) algorithms. Since the benchmarks are coded in C orig-
inally, we convert the C codes to MATLAB descriptions. An in-
house compiler is used to generate DFGs for all programs. The
scheduling of DFGs is done before binding procedure.

We compared our algorithm to weighted bipartite matching algo-
rithm [5], LEA [17] and k-cofamily algorithm [4] for multiplexer
input reduction. Since LEA guarantees the minimum number of
registers if there is no control dependency in a given DFG, we
compared the register counts of the results from LEA and our al-
gorithm. In addition to the number of registers, we compared the
number of functional units of the results from LEA and ours. We
also counted the numbers of global interconnects of every bench-
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Figure 9: FU and register binding for a merged path
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mark processed by all binding algorithms. The global interconnects
are defined as interconnects among FUs and/or registers. More-
over, in order to verify that reducing the number of multiplexer
inputs is directly related to total global wirelength reduction, we
generated the layout of each benchmark circuit based on the bind-
ing results using SOC Encounter from Cadence and measured the
total length of global interconnects. In case of global interconnect
counts and total global wirelength, we compared our algorithm to
LEA, weighted bipartite matching algorithm and k-cofamily algo-
rithm. Table 1 presents the numbers of multiplexer inputs for all
benchmark programs processed by our algorithm, LEA, weighted
bipartite matching algorithm and k-cofamily algorithm. The sec-
ond column to fifth column give the numbers of multiplexer inputs.
Column six to nine show the normalized numbers with respect to
the results of our algorithm. As the table shows, the average mul-
tiplexer input count of our algorithm is 58.8%, 43.6% and 11.8%
less than those of LEA, k-cofamily algorithm and weighted bipartite
matching algorithm, respectively. Table 2 shows the total numbers
of global interconnects. It is clear that the total number of global
interconnects is closely related to the number of multiplexer inputs.
As the table 2 shows, the total numbers of global interconnects of
circuits resulting from our algorithm are 35.2% less than that of
LEA, 7.9% less than that of weighted bipartite matching algorithm
and 24.1% less than that of k-cofamily algorithm on the average.
Table 3 presents the total wirelength of each benchmark design for
each algorithm. Our algorithm reduces total wirelength by 30.0%,
10.1% and 22.3% over LEA, weighted bipartite matching algo-
rithm and k-cofamily algorithm, respectively. Table 4 shows the
comparison of register counts between the optimal algorithm, i.e.
LEA, and our algorithm. The numbers in the second and third col-
umn are the register counts. The fourth and fifth column show the
normalized results. As the table presents, LEA and our algorithm
produce the same results for most benchmarks. On average, our
algorithm increases registers by 4%. Table 5 shows the comparison
of the number of adders and multipliers from the results by LEA
and our algorithm. The N+ and N∗ from the second column to the
fifth column represent adder counts and multiplier counts, respec-
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Benchmarks ours leftedge[17] bipartite[5] k-cofamily[4] ours leftedge bipartite k-cofamily
aircraft 1384 2901 1597 2888 1.000 2.096 1.154 2.087
chem 245 491 280 454 1.000 2.004 1.143 1.853
dir 200 267 217 229 1.000 1.335 1.085 1.145

feig dct 679 1016 764 860 1.000 1.496 1.125 1.267
honda 93 175 101 139 1.000 1.882 1.086 1.495
mcm 180 225 186 206 1.000 1.250 1.033 1.144
pr 76 103 91 97 1.000 1.355 1.197 1.276

u5ml 410 839 427 747 1.000 2.046 1.042 1.822
wang 100 129 114 116 1.000 1.29 1.14 1.16
arai 69 97 81 83 1.000 1.406 1.174 1.203
lee 102 133 115 137 1.000 1.304 1.127 1.343

AVG 1.000 1.588 1.118 1.436

Table 1: Comparison of multiplexer input counts

Benchmarks ours leftedge bipartite k-cofamily ours leftedge bipartite k-cofamily
aircraft 5.89E4 7.60E4 6.10E4 7.55E4 1.000 1.289 1.035 1.282
chem 1.90E4 2.72E4 1.95E4 2.56E4 1.000 1.430 1.026 1.350
dir 1.07E4 1.37E4 1.11E4 1.22E4 1.000 1.282 1.037 1.144

feig dct 3.24E4 4.20E4 3.29E4 3.60E4 1.000 1.298 1.018 1.113
honda 6.13E3 8.44E3 6.52E3 7.21E3 1.000 1.378 1.064 1.177
mcm 8.27E3 1.08E4 9.22E3 1.01E4 1.000 1.308 1.115 1.226
pr 3.58E3 4.76E3 4.13E3 4.77E3 1.000 1.330 1.154 1.331

u5ml 3.05E4 4.53E4 3.13E4 4.11E4 1.000 1.485 1.026 1.349
wang 4.11E3 5.47E3 4.50E3 4.79E3 1.000 1.331 1.096 1.166
arai 3.00E3 3.90E3 3.17E3 3.26E3 1.000 1.319 1.071 1.104
lee 4.27E3 5.81E3 5.07E3 6.20E3 1.000 1.360 1.187 1.451

AVG 1.000 1.352 1.079 1.241

Table 2: Comparison of global interconnect counts

Benchmarks ours leftedge bipartite k-cofamily ours leftedge bipartite k-cofamily
aircraft 8.78E7 1.14E8 9.41E7 1.12E8 1.000 1.298 1.071 1.270
chem 1.02E7 1.34E7 1.08E7 1.29E7 1.000 1.319 1.059 1.268
dir 6.87E6 8.38E6 7.19E6 7.54E6 1.000 1.220 1.046 1.097

feig dct 4.02E6 5.24E6 4.19E6 4.19E6 1.000 1.303 1.042 1.041
honda 2.67E6 3.45E6 2.83E6 3.37E6 1.000 1.293 1.061 1.263
mcm 2.84E6 3.60E6 3.03E6 3.16E6 1.000 1.268 1.069 1.112
pr 1.09E6 1.48E6 1.36E6 1.46E6 1.000 1.356 1.248 1.338

u5ml 1.92E7 2.74E7 2.10E7 2.39E7 1.000 1.425 1.097 1.246
wang 1.09E6 1.33E6 1.18E6 1.29E6 1.000 1.214 1.082 1.176
arai 3.42E5 4.31E5 4.07E5 4.20E5 1.000 1.261 1.190 1.228
lee 7.02E5 9.40E5 7.82E5 1.03E6 1.000 1.339 1.113 1.464

AVG 1.000 1.300 1.101 1.223

Table 3: Comparison of the total wirelength
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tively. The N+ and N∗ in the sixth and the ninth column represent
the normalized results of adder and multiplier counts, with respect
to the LEA, respectively. As table 5 shows, the average increases
of adders and multipliers of our algorithm are 2% and 7%, respec-
tively.

7 Conclusion
In this paper, we present a FU and register binding algorithm for
interconnect reduction. Our algorithm identifies long paths in the
compatibility graph generated from a DFG, and conducts FU and
register binding concurrently. Our scheme targets the minimization
of multiplexer inputs by analyzing the flow dependency and com-
mon inputs of operations. Experimental results show that our algo-
rithm reduces the number of multiplexer inputs by 11.8% and the
total number of global interconnects by 7.9% on average in compar-
ison to the best previously proposed algorithms. Our scheme also
achieves a total global wirelength reduction by 10.1% on average.

Benchmarks leftedge[17] ours leftedge ours
aircraft 1176 1176 1 1
chem 181 181 1 1
dir 72 72 1 1

feig dct 94 97 1 1.03
honda 54 54 1 1
mcm 38 38 1 1
pr 15 20 1 1.33

u5ml 285 285 1 1
wang 17 19 1 1.12
arai 12 12 1 1
lee 16 16 1 1

AVG 1 1.04

Table 4: Comparison of register counts

leftedge ours leftedge ours
Benchmarks N+ N∗ N+ N∗ N+ N∗ N+ N∗

aircraft 52 1159 52 1159 1 1 1 1
chem 15 176 15 176 1 1 1 1
dir 8 64 8 64 1 1 1 1

feig dct 12 8 15 8 1 1 1.25 1
honda 9 52 9 52 1 1 1 1
mcm 16 30 16 30 1 1 1 1
pr 8 14 8 14 1 1 1 1

u5ml 24 277 24 277 1 1 1 1
wang 8 8 8 10 1 1 1 1.25
arai 8 2 8 3 1 1 1 1.5
lee 8 8 8 8 1 1 1 1

AVG 1 1 1.02 1.07

Table 5: Comparison of multiplier and adder counts
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