Exploring the Heterogeneous Design Space for both
Performance and Reliability

Rafael Ubal, Dana Schaa, Perhaad Mistry, Xiang Gong, Yash Ukidave,
Zhongliang Chen, Gunar Schirner and David Kaeli
Department of Electrical and Computer Engineering
Northeastern University, Boston, MA
{ubal,dschaa,pmistry,xgong,yukidave,zhonchen,schirner,kaeli}@ece.neu.edu

ABSTRACT

As we move into a new era of heterogeneous multi-core systems,
our ability to tune the performance and understand the reliability of
both hardware and software becomes more challenging. Given the
multiplicity of different design trade-offs in hardware and software,
and the rate of introduction of new architectures and hardware/-
software features, it becomes difficult to properly model emerging
heterogeneous platforms.

In this paper we present a new methodology to address these
challenges in a flexible and extensible framework. We describe
the design of a framework that supports a range of heterogeneous
devices to be evaluated based on different performance/reliability
criteria. We address heterogeneity both in hardware and software,
providing a flexible framework that can be easily adapted and ex-
tended as new elements in the SoC stack continue to evolve. Our
framework enables modeling at different levels of abstraction and
interfaces to existing tools to compose hybrid modeling environ-
ments. We also consider the role of software, providing a flex-
ible and modifiable compiler stack based on LLVM. We provide
examples that highlight both the flexibility of this framework and
demonstrate the utility of the tools.

1. INTRODUCTION

The days of single-core system architectures are clearly in the
rear-view mirror. We are surrounded by multi-core architectures
today, and we are designing for tomorrow’s increasingly complex
heterogeneous systems. This move is driven by a growing class of
consumer applications that require both graphics and compute in
smaller form factors, and in portable, power-efficient, systems.

Innovation in system architecture and embedded design has been
driven by our ability to evaluate design trade-offs quantitatively.
There have been a large number of efforts in the computer archi-
tecture community to develop accurate cycle-based simulators to
study the value of a myriad of design features [7, 12, 13, 22, 32,
34]. Similar efforts have been undertaken in the embedded system
community specifically with the emergence of System-Level De-
sign Languages (SLDLs), such as SystemC [18], and frameworks
have been developed for multicore and hardware software simula-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

DAC ’14, June 01 - 05 2014, San Francisco, CA, USA

Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00
http://dx.doi.org/10.1145/2593069.2596680.

tion including MParm [9], ReSP [8] and Daedalus [28].

In the past decade, we have moved away from simple homo-
geneous computing systems, where a single or a few cores on a
few CPUs. Today we have computing fabrics that include CPUs,
DSPs, GPUs and APUs. These systems range from high perfor-
mance computing platforms, to full-featured smartphones. They
include a range of inter-device relationships spanning master-slave
to peer-to-peer, and everything in between. What is common in
many of these environments is the need to run media/visualization
along with compute, with software playing a larger role than ever
before. In addition to these challenges, power and reliability are
now treated as first-rate design concerns.

The rate of innovation for media-based devices is only limited
by our imagination; however we need better tools to analyze com-
pute, graphics, and an optimizing compiler technology. This need
for sophisticated tools is a long standing requirement, as identified
by Wolf in 1993 [36]. An architecture is needed for these tools that
allow researchers and developers to efficiently evaluate the wide
range of design decisions present in heterogeneous systems. We
can no longer afford to develop stand-alone tools for particular ar-
chitectures or bus interfaces. We also need to work seamlessly with
existing tools, allowing designers to leverage past modeling efforts.

Multi2Sim currently provides a structural or cycle-based archi-
tectural simulation (or both) with full or partial support for seven
different architectures, three CPUs and four GPUs, a range of mem-
ory configurations, network topologies, and runtime environments.
These models have been developed over a six year period and are
being used across a wide international community. Multi2Sim ver-
sion 4.2 introduces new emulators for ARM and MIPS CPUs and
the NVIDIA Fermi GPU, new network topologies and an optimized
OpenCL runtime environment. This introduction builds upon a
rich base that includes the original X86-based superscalar multi-
core design models, AMD Evergreen (Radeon HD 5000 series)
and Southern Islands GPU (Radeon HD 6000 series) architectures,
and ongoing work on APUs, NVIDIA Kepler, and Analog Devices
DSP architectures. The current tools support execution of C/C++
programs on the CPUs and OpenCL execution on the CPUs and
GPUs. Ongoing work is targeting support for CUDA and the Het-
erogeneous Systems Architecture (HSA).

The common simulator architectural model of Multi2Sim has
been leveraged by many different research groups, spanning high
performance computing, server systems, tablet architectures and
smartphone platforms. Examples include: GPU performance anal-
ysis [19, 19], CPU/memory power analysis [20, 24, 29], memory
system analysis [27], GPU reliability [17, 31], graphics-compute
inter-operability [35], and interconnect performance analysis [25].
Figure 1 shows the large design space we presently address with
our infrastructure.

Performance

and Power
0
2
k=
[
g (
“ Hardware and
>
° Software
.g Design Tradeoffs
f=
° v —
‘é DSP -Memory|
9
g i
w

Reliability
Failures in time

Figure 1: Multi2Sim allows users to explore design tradeoffs, com-
paring performance, power and reliability in a common framework.

We have developed an architecture that allows for the rapid de-
velopment of modeling capabilities of new and evolving microar-
chitectures. Each architectural model uses a 4-stage development
process (illustrated in Figure 2) to create tools that can act as stand-
alone utilities or interact with each other: a disassembler, an emu-
lator, a timing simulator, and a visualization tool. These are the key
building blocks that allow us to study performance, power and reli-
ablity on these platforms. The interfaces between these stages offer
a unique level of generality that allows a programmer to intuitively
provide plug-in software for new architectures.

In addition to our models delivered through this common simu-
lator architecture, we utilize this same architected approach for de-
veloping Multi2C, our open-source compilation infrastructure. We
are able to translate OpenCL and CUDA kernels to Clang (LLVM’s
intermediate representation). Multi2C support is available in the
4.2 release of Multi2Sim.

Multi2Sim supports the evaluation of a rich set of user bench-
marks including SPEC2006, Mediabench, SPLASH-2, PAR-
SEC2.1, and OpenCL SDK2.5 applications. Combined with a
growing user/developer community, this open source project is im-
pacting the work of a large number of researchers. Unmodified C,
C++ and OpenCL applications run out-of-the-box on the Multi2Sim
framework.

This paper presents some of the challenges involved in devel-
oping a modeling framework for next-generation heterogeneous
systems, and provides some examples of our toolset’s capabilities.
The paper is organized as follows. Section 2 discusses prior work
on developing heterogeneous modeling. Section 3 describes the
Multi2Sim simulation architecture. Section 5 presents two case
studies showing the flexibility of the infrastructure. Finally, Sec-
tion 6 concludes the paper and discusses future directions.

2. RELATED WORK

Numerous simulation tools are publicly available. Regarding
CPU simulation, SimpleScalar [12] has been one of the most pop-
ular tools to simulate superscalar processors. As architectures
evolved, tools emerged to support multithreaded and multicore de-
signs. SMTSim [34] and MSim [32] are extensions of SimpleScalar
supporting multithreading. Simics [13] and GEMS [22] are widely
used simulator of multi-core processors.

GPU simulation tools are as well available. Barra [14] is an ISA-
level functional simulator (no timing model) targeting NVIDIA
G80 GPUs and working at the ISA level. GPGPUSim [7] is a de-
tailed GPU simulator including models for the memory hierarchy
and interconnects. Ocelot [15] is an emulator of PTX intermediate

code, with its own implementation of a CUDA runtime that dynam-
ically compiles kernel binaries into CPU/GPU architectures.

Other tools are available to model critical hardware surrounding
CPU/GPU cores. DRAMSim [30] is a public-domain DRAM sys-
tem simulator, with ongoing extensions for cache and disk memory
hierarchies. Topaz [4] and BigNetSim [6] are examples of inter-
connection network simulations, modeling the switch architectures
with detail.

Compared to the aforementioned works, Multi2Sim is unique in
that it models native ISA of multiple architectures, using unmod-
ified, vendor-compliant binaries. It integrates architectural mod-
els for most major components of an APU, including CPU/GPU
cores, memory hierarchy, and interconnects. It is integrated in an
ecosystem of additional facilities to run simulations on clusters of
computers, obtain packages of standard pre-compiled benchmarks,
or participate in discussion on open forums. All this material is
available for free on the project website [5].

3. MULTI2SIM FOR HETEROGENEOUS
SYSTEMS

The Multi2Sim framework supports a number of CPU and
GPU devices, both distributed (explicit communication) and shared
memory environments. We first introduce the basic structure of the
four key elements of any model in Multi2Sim and then highlight
the modeling capabilities enabled by these four elements.

3.1 Multi2Sim Mechanics

Multi2Sim includes four key elements: disassembler, emulator,
timing simulator and visual tool. They allow building a suite of
tools serving a range of different purposes, including:

1. debugging heterogeneous applications utilizing program em-

ulation,
2. identifying performance bottlenecks in a heterogeneous ar-

chitecture,

3. characterizing the speedup available through GPU accelera-
tion,

4. quantifying the reliability tradeoffs of both hardware and

software optimizations, and
5. evaluating the role of the runtime and the compiler in hetero-

geneous system performance/power/reliability.
3.1.1 Disassembler

Interpreting programs at the Instruction Set Architecture (ISA)-
level is essential for programming, debugging and accurate cycle-
based simulation. Hence, a disassembler is necessary for adding
new ISA model support. The dissembler works as follows:

1. consumes original program binaries in ELF format, gen-
erated by vendor-provided (or vendor-compliant) compiler,

and
2. decodes each extracted instruction and provides the exact
same output as the vendor disassembler.

While there are existing open-source tools to disassemble CPU bi-
naries, most GPU architectures include these tools as part of their
close-source drivers.

3.1.2 Emulator

The emulator runs a program (guest program) instruction by in-
struction, in an iterative process that reproduces what would be the
program output on a real machine. The virtual state of the guest
program is typically represented by its memory and registers. In
each iteration of the main loop, the emulator fetches the next in-
struction from the program binary, reads the input operands from
the virtual state, performs the encoded operation, and updates the

Executable file,

Exectuable Exectuable file, program arguments, User
ELF file program arguments processor configuration interaction
Instruction Run one
bytes instruction Pipeline
trace
. Timing Visual
Disassembler Emulator simulator (el
Instruction Instruction
fields information
Instructions Program Performance Cycle navigation,
dump output statistics timing diagrams

Figure 2: Four-stage design process for model development. Each tool can operate stand-alone, or serve as a library to tools on its right.

program state accordingly. Emulation offers a good amount of ba-
sic statistics and dynamic profiling information, such as instruction
classification, or hot program regions.

3.1.3 Timing Simulator

The timing simulator models hardware components on a cycle-
by-cycle basis, including instruction queues, functional units, reg-
ister renaming tables, branch predictors, and more; all with config-
urable latency and geometry parameters. The configuration flexi-
bility based on plain-text INI files makes our timing simulator suit-
able for architectural exploration, bottleneck detection, and fine-
grain performance debugging. The timing simulator provides a
very detailed statistics report, including utilization of hardware
structures and timing results.

Timing verification involves two processes. First, short se-
quences of ISA instructions are assembled into a single long pro-
gram that stresses one particular hardware component. After run-
ning the program both on real hardware and on the simulator, any
small performance discrepancies can be precisely isolated. The
second method consists in running real benchmarks covering most
of the instruction set, again run on both real and virtual environ-
ments. Performance differences in this case are isolated and fed
back to the first method iteratively, until all discrepancies have been
addressed.

3.1.4 Visual Tool

An interactive visualization tool allows the user to navigate
through the simulation using a scroll bar widget on a cycle-by-cycle
basis. Its main window shows the set of CPU and GPU cores active
during the simulation. The user can expand the level of detail and
browse pipeline diagrams, instructions in flight, mapped threads,
etc.. An additional panel explores the memory hierarchy, with de-
tails on cache sets, tags, blocks, or coherence states.

The visual tool is an invaluable resource to validate the timing
simulator, especially when implicit communication occurs in the
memory hierarchy on multi-core or GPU systems. We can visualize
cache states and network messages as they progress through the
system, dramatically improving visibility over plain-text logs.

3.2 Multi2C: Integrated Compiler Toolchain

Multi2C is an open-source compilation infrastructure integrated
in Multi2Sim. It consumes OpenCL and CUDA kernel sources and
generates executable binaries that can run on real GPUs. The com-
piler is architected modularly with 7) front-ends that translate the
kernel source code into the LLVM intermediate language [21], i)
back-ends that convert LLVM code into the target GPU ISA, and
4i%) assemblers that produce vendor-compliant binaries.

The front-end consumes an OpenCL/CUDA kernel source file

and delivers LLVM 3.1 bitcode. Internally, our implementation
leverages open-source tools flex [3] and bison [2] as lexical and syn-
tax analyzers, respectively. An initial set of optimization passes can
be applied using pre-defined LLVM library functions. Currently,
the compiler front-end implements the complete OpenCL C gram-
mar, while support for built-in functions is in progress. Multi2C
has been tested with the AMD SDK 2.5 [1].

The back-end consumes an LLVM 3.1 binary module and pro-
duces plain-text assembly code, producing the final GPU ISA.
LLVM is translated to ISA incrementally though a set of passes,
starting with a one-to-many instruction equivalence. Three manda-
tory passes are applied to guarantee code correctness: i) generation
of SIMD control-flow leveraging structural analysis, ii) a-posteriori
translation of LLVM phi nodes, and iii) vector/scalar register map-
ping leveraging data-flow analysis.

The assembler reads a plain-text file and generates a vendor-
compliant ELF binary. The main section on the input file con-
tains the ISA code in the format established by the vendor, either
through a public specification (AMD) or through its disassembler
tools (NVIDIA). The remaining sections contain additional meta-
data that need to be encoded in the binary, such as program con-
stants or kernel arguments. Currently we support the AMD South-
ern Islands backend. Ongoing development of back-ends and as-
semblers are currently in progress for the NVIDIA Fermi and Ke-
pler target architectures.

4. HYBRID SIMULATION

Current modeling and design paradigms have to be expanded
to allow designers to take advantage of GPUs in the embedded
context. This includes performance estimation tools for emerg-
ing applications and extending design space exploration to include
heterogeneous CPU/GPU processing. Most importantly however,
with the increase in massive parallel compute power offered by
the GPU, the pressure on the memory subsystem dramatically in-
creases. Therefore, new methods are needed that explicitly model
and analyze the GPU induced traffic.

To address the design challenges of GPU integration in the em-
bedded space, we extend Multi2Sim to expose its detailed emu-
lation capabilities to SystemC. Figure 3 presents one instance of
Multi2Sim’s hybrid modeling capabilities. In particular, we enable
virtual platforms with a GPU model emulated in Multi2Sim, which
is accessible through SystemC TLM 2.0. We pair an ARM Cortex
A9 (emulated through OVP), which communicates through an AXI
interconnect, with a GPU modeled in Multi2Sim. The OpenCL ap-
plication on the CPU interacts with the GPU though the AXI bus.
This allows for detailed analysis of the CPU/GPU traffic, as well as
analyzing the GPU induced traffic.

ARM Cortex-A9 Multi2Sim Wrapper SVS‘e"\“/g
mas
Global Wse
Mem. GPU
OpenCL App Model Memory
M2S OpenCL Lib
M2S GPU Driver Mem.
Mem. Ifc
v [S1
\L I |
AMBA AXI X ﬂ

Figure 3: SystemC-based CPU / GPU virtual platform

In order to expose Multi2Sim to SystemC, we have created a
SystemC wrapper which is connected through a standard SystemC
TLM 2.0 to other components. Multi2Sim typically runs stan-
dalone, using its own discrete event simulation engine. For inte-
gration, we leveraged this simulation loop, making the GPU model
callable to simulate a predefined quantum of Multi2Sim simulation
steps. These are called inside the wrapper, and synchronize with
SystemC time. To allow communication with the GPU model, a
memory interface (Mem Ifc.) enables SystemC access to the mem-
ory emulated inside Multi2Sim. This allows us to access the global
memory (for input and output data), instruction memory (to load
the OpenCL kernel), as well as a set of control MMRs to synchro-
nize and control GPU model execution.

The OpenCL application running on the ARM Cortex A9 con-
trols and coordinates GPU execution. For this, new drivers are
needed that provide CPU/GPU communication. This is realized
using the Multi2Sim OpenCL run-time, which was originally de-
veloped for usage inside Multi2Sim. The OpenCL library uses a
newly developed backend driver, the M2S GPU Driver.

OpenCL binary clEnqueueWriteBuffer(...) call

OpenCL library | c1EnqueuewWriteBuffer(...) definition
77777777 l write(...) system call

GPU driver drvwriteMem(...)
Li Linux kernel APIs, such as
inux copy_from_user(...)
GPU Device /dev/devGPU

Figure 4: OpenCL Call Hierarchy

Figure 4 illustrates the call hierarchy in more detail. An OpenCL
application consists of a host program and one or more device
kernels. The host program can be written in a high-level pro-
gramming language (e.g., C, Python) with the OpenCL exten-
sion, and linked with our OpenCL library. During its execu-
tion, the host program will dispatch OpenCL API functions (e.g.,
clEnqueueWriteBuffer). The OpenCL call passes control
to its definition in the OpenCL library. To write data to the GPU
device, c1EnqueueWriteBuffer uses a write system call, de-
fined as the function drviWriteMem in the GPU driver. Then sev-
eral Linux kernel APIs (including copy_ from_user) are called
in drviWriteMem to copy data from the user-space OpenCL ap-
plication to kernel-space device. The data is finally written to the
GPU device /dev/devGPU transferring the data via the AXI in-
terconnect.

With the Multi2Sim-SystemC integration, new research av-
enues are opened that combine the rich set of models available in
Multi2Sim with the large set of available SystemC models. As

such, it becomes feasible to investigate custom memory hierar-
chies, and interconnect schemes that are shared across a heteroge-
nous set of PEs (e.g. processors, GPUs, and custom hardware)
considering actual bus traffic. Our Multi2Sim SystemC integration
allows developers to explore the trade-off between CPU and GPU
processing, as well investigate how to manage the traffic traffic
demands due to heterogeneous processing. As such, Multi2Sim-
SystemC is a valuable platform for virtual platform based design
space exploration.

5. MULTI2SIM MODELS

5.1 Heterogeneous Performance Modeling

Multi2Sim has been used in hundreds of design space explo-
rations that consider both CPUs and GPUs. The simulator can be
used effectively for debugging OpenCL programs, identifying per-
formance bottlenecks using the visual profiler, and can allow for
the analysis of CPU/GPU interaction using shared memory in the
latest release of the framework. We will focus on this last capability
next in our first example of the versatility of the tools.

Ideally, memory coherence should be enabled for workloads that
need it, and disabled for those that do not. In the age of heteroge-
neous many-cores (multi-cores with thousands of cores on-chip),
the ability to enable/disable coherence could perhaps have signif-
icant impact on the performance and scalability. For GPUs, en-
abling coherence could potentially increase their utility to a larger
variety of programs. For CPUs, disabling coherence when it is not
required for correctness could have a dramatic impact on perfor-
mance when executing highly data-parallel applications.

5.1.1 Memory Coherency Modeling

As CPU and GPU architectures cooperatively adapt to modern
workloads, their memory systems —particularly the cache coher-
ence protocols— play an increasingly important role. While a tradi-
tionally non-coherent memory hierarchy restricts the type of work-
loads executable on a GPU, a strictly coherent cache system on a
CPU constrains performance of data-parallel applications, such as
OpenCL or CUDA programs.

We have implemented a powerful enhancement to traditional co-
herence protocols (e.g., MESI, MOESI) in Multi2Sim. We have
added the ability to model a non-coherent state, N, that allows
for dynamic cache block transitions between coherent and non-
coherent modes in a memory system.

To implement this in Multi2Sim, we modified the AMD Radeon
5870 memory system that presently implements a single, multi-
banked L2, and incorporated multiple L2s that each serve a subset
of the compute units. In the new design, each L2 is the size of a
previous L2 bank, keeping the total L2 capacity constant. We also
considered the design of the AMD Southern Island 7970 in this
work, and have analyzed this protocol for additional target archi-
tectures given the flexibility of the Multi2Sim framework.

We found that removing unnecessary coherence operations for
OpenCL programs can result in up to a 12% performance improve-
ment on a CPU, and up to 31% on an APU. Providing optional co-
herence for GPUs also allows support for more diverse programs
and relaxes memory system design constraints, providing up to
1.8X speedup on simulated benchmarks.

5.2 Heterogeneous Reliability

The impressive performance benefits provided by GPU comput-
ing have made them an attractive target for a range of important
application domains. Biomedical image analysis, encryption/de-
cryption and financial market analysis are just three examples of

the many general purpose applications now using GPUs. These
three applications tend to be more sensitive to intermittent hard-
ware faults, as compared to typical graphics workloads. These crit-
ical workloads demand the addition of fault tolerance mechanisms
into future GPUs to ensure reliable computation.

Even though parity protection mechanisms are being incorpo-
rated by GPU vendors, and high-end GPUs are utilizing ECC in
their memory systems, many of the GPU hardware structures re-
main unprotected. Recent efforts in this direction include software
ECC for global memory [23], software thread-level and instruction-
level replication for detection of faults in compute resources [16],
and hardware-based checkers incorporated in the design at a fine
granularity for low latency detection and recovery of faults in
ALUSs [33]. The common problem with these previous approaches
is that they lack the required reliability characterization of the GPU
hardware. It is becoming increasingly necessary to have more pow-
erful protection techniques that cover other structures within a het-
erogeneous platform.

In our Multi2Sim modeling framework, we have introduced the
ability to perform fault injection into the execution. Our strategy
focuses on accessing the reliability of different microarchitectural
structures. We have the ability to inject errors in to the runtime of
any of our models. The fault injection mechanism is not specific to
the microarchitecture, and can be applied to different GPU archi-
tectures. Given the overhead associated with fault-injection anal-
ysis, and the need to perform hundreds or thousands of injections
to obtain statistical significance, we are presently developing the
ability to directly compute the Architectural Vulnerability Factor
(AVF) [11] of the targeted device. AVF analysis provides us with
a measure the amount of vulnerable state per cycle. It captures the
dynamics of the hardware and software to accurately identify if a
bit flip in an hardware device will result in a program-visible error
by the software.

5.2.1 Reliability modeling on an Evergreen GPU

To demonstrate the ability of our framework to study design
tradeoffs when considering reliability, we present results from a
recent study using statistical fault injection [17]. Our experimen-
tal evaluation is based on AMD’s Evergreen family of GPUs. Our
simulation framework allows us to modify parameters for the struc-
tures under study. We consider the impact on vulnerability as we
change the total size, register width, local memory allocation gran-
ularity of different structures. In the experiments, we have used the
AMD Radeon 5870. The benchmarks used in these experiments
are from the AMD OpenCL SDK.

The fault-injection-based experiments were carried out using
Multi2Sim. The simulator is fed a fault definition file which enu-
merates the faults to be injected during the simulation. Each line
of the fault definition file contains the following information for a
single fault: a) fault type, b) fault location, and c) fault injection
time. Fault type specifies the structure where the fault should be
injected; location is a bit-position within the structure; and time is
the simulation cycle injected. Fault injection is simulated by a bit-
flip in the desired position at the specified time. The faulty value
remains intact, and potentially is propagated to other locations, un-
til it is overwritten by the program. Multi2Sim supports multiple
fault injections into multiple structures in a single simulation pass.
For each structure, a total of 5000 single faults were injected.

In order to calculate AVF, we compute the number of fault in-
jection experiments that resulted in a program failure, and divide
by the total number of fault injected. All of the benchmarks have
a self-check mechanism. This mechanism compares the output of
the OpenCL kernel with a reference output calculated by the CPU.

These experiments (see Table 1) find that the AVF of the register
file and local memory of the targeted architecture are 6% and 1%,
respectively. These values are low, especially when compared to
values reported on comparable CPU structures (AVF values are as
high as 15% for the register file [26] and 25% for the cache mem-
ory [10]). While one might assume that the main memory on the
GPU to be a large contributor to the overall system AVF, it was
surprising to find that the AVF of the Active Mask Stack (AMS) (a
much smaller memory structure) is 0.58% on average.

6. CONCLUSIONS

In this paper we have discussed some of the key challenges ahead
for the design community when designing and simulating hetero-
geneous systems. We have presented the Multi2Sim simulation
framework which allows users to build upon and leverage a 6-year
effort that presently supports a wide range of users. We described
some of the current work in the area of CPU and GPU architec-
ture exploration. The two example studies considered the impact
of changing the memory coherency protocol in an APU platform
and modeling GPU reliability using fault injection.

In future work we plan to grow the Multi2Sim user/developer
community, extending our work on compilation, SystemC integra-
tion, graphics interoperability, and programmable hardware (i.e.,
FPGAs). We also plan to focus our work on the emerging HSA
standard that has been recently announced.

7. ACKNOWLEDGMENTS

The authors would like thank AMD, Analog Devices, NVIDIA,
Samsung and Qualcomm for supporting this work. This work was
also supported in part by NSF CISE grants CSR-1319501 and SHF-
1017439.

8. REFERENCES

[1] AMD Accelerated Parallel Processing (APP) SDK.

http://developer.amd.com/sdks/ AMDAPPSDK.
[2] Lex: A Lexical Analyzer Generator. Computing Science
Technical Report No. 39, Bell Laboratories, Murray hill,
New Jersey, 1975.
Yacc: Yet Another Compiler Compiler. Computing Science
Technical Report No. 32, Bell Laboratories, Murray hill,
New Jersey, 1975.
P. Abad, P. Prieto, L. Menezo, A. Colaso, V. Puente, and
J. Gregorio. TOPAZ: An Open-Source Interconnection
Network Simulator for Chip Multiprocessors and
Supercomputers. In Proc. of the 6th Int’l Symposium on
Networks-on-Chip, pages 99—-106, May 2012.
[5] N. G. at Northeastern University. The Multi2Sim Simulation
Framework: A CPU-GPU Model for Heterogeneous
Computing. http://www.multi2sim.org/.
P. P. L. at University of Illinois. Runtime Systems and Tools:
BigNetSim—Parallel Interconnection Network Simulation.
http://charm.cs.illinois.edu/research/bignetsim.
[7] A.Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt.
Analyzing CUDA Workloads Using a Detailed GPU
Simulator. In Proc. of the Int’l Symposium on Performance
Analysis of Systems and Software, pages 163-174, Apr. 2009.
G. Beltrame, L. Fossati, and D. Sciuto. Resp: A nonintrusive
transaction-level reflective mpsoc simulation platform for
design space exploration. IEEE Trans. on CAD of Integrated
Circuits and Systems, 28(12):1857-1869, 2009.
L. Benini, D. Bertozzi, A. Bogoliolo, F. Menichelli, and
M. Olivieri. MPARM: Exploring the Multi-Processor SoC
Design Space with SystemC. Journal of VLSI Signal
Processing, 41(2):169-184, 2005.
[10] A. Biswas, P. Racunas, R. Cheveresan, J. Emer,

S. Mukherjee, and R. Rangan. Computing architectural

3

[t

[4

=

[6

=

[8

—

[9

—

Table 1: Architectural vulnerability factor (AVF) and occupancy of register files (REG), active mask stacks (AMS), and local memories
(MEM). AVF-util considers only the utilized portion of the corresponding hardware structure.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

REG(%) AMS (%) MEM(%) MAX occupancy (%)
Benchmark AVF | AVF-util AVF AVF-util | AVF | AVF-util | REG | MEM | AMS
BitonicSort 0.04 25.00 0.00 0.00 N/A N/A 0 0 3
DwtHaar1D 1.13 10.17 0.00 0.00 0.50 4.17 50 50 9
RecursiveGaussian 2.08 5.81 0.36 16.98 0.00 0.00 78 25 9
ScanLargeArrays 391 14.50 0.02 33.33 0.48 4.23 63 25 9
MatrixMultiplication | 20.30 32.59 0.10 71.43 3.75 3.84 63 100 13
SobelFilter 19.36 22.50 2.86 24.78 N/A N/A 75 0 9
DCT 3.68 9.01 0.72 53.73 0.10 1.74 44 6 6
URNG 0.18 0.88 0.00 0.00 N/A N/A 19 0 3
Average 6.34 15.06 0.58 40.05 0.97 2.80 49 23 8

vulnerability factors for address-based structures. In
Computer Architecture, 2005. ISCA "05. Proceedings. 32nd
International Symposium on, pages 532 — 543, june 2005.
A. Biswas, P. Racunas, J. Emer, and S. Mukherjee.
Computing accurate avfs using ace analysis on performance
models: A rebuttal. Computer Architecture Letters, 7(1):21
—24, jan. 2008.

D. C. Burger and T. M. Austin. The SimpleScalar Tool Set,
Version 2.0. Technical Report CS-TR-1997-1342, 1997.

M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics:
A Full System Simulation Platform. IEEE Computer,
35(2):50-58, Feb. 2002.

S. Collange, M. Daumas, D. Defour, and D. Parello. Barra:
A Parallel Functional Simulator for GPGPU. In Proc. of the
18th Int’l Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, Aug. 2010.
G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark. Ocelot: a
Dynamic Optimization Framework for Bulk-Synchronous
Applications in Heterogeneous Systems. In Proc. of the 19th
Int’l Conference on Parallel Architectures and Compilation
Techniques, pages 353-364, Sept. 2010.

M. Dimitrov, M. Mantor, and H. Zhou. Understanding
software approaches for gpgpu reliability. In Proceedings of
2nd Workshop on General Purpose Processing on Graphics
Processing Units, GPGPU-2, pages 94-104, 2009.

N. Farazmand, R. Ubal, and D. Kaeli. Statistical fault
injection-based avf analysis of a gpu architecture. In JEEE
Workshop on Silicon Errors in Logic, 2012.

T. Grotker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC. Kluwer, 2002.

B. Jang, P. Mistry, D. Scha, and D. Kaeli. Static memory
access pattern analysis on a massively parallel gpu. In
Proceedings of SAAHPC, 2010.

C.-Y. Lai, G.-Y. Pan, H.-K. Kuo, and J.-Y. Jou. A read-write
aware dram scheduling for power reduction in multi-core
systems. In Design Automation Conference (ASP-DAC),
2014 19th Asia and South Pacific, pages 604—-609, Jan 2014.
C. Lattner. LLVM and Clang: Advancing Compiler
Technology. Free and Open Source Developers European
Meeting (keynote), Feb. 2011.

M. R. Marty, B. Beckmann, L. Yen, A. R. Alameldeen,

M. Xu, and K. Moore. GEMS: Multifacet’s General
Execution-Driven Multiprocessor Simulator. Proc. of the
33rd Int’l Symposium on Computer Architecture, pages
92-99, June 2006.

N. Maruyama, A. Nukada, and S. Matsuoka. A
high-performance fault-tolerant software framework for
memory on commodity gpus. In Parallel Distributed
Processing (IPDPS), 2010 IEEE International Symposium
on, pages 1 —12, april 2010.

R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt. Predicting
performance impact of dvfs for realistic memory systems. In
Proceedings of the 2012 45th Annual IEEE/ACM

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

International Symposium on Microarchitecture, MICRO-45,
pages 155-165, Washington, DC, USA, 2012. IEEE
Computer Society.

R. Mohanty, A. Turuk, and B. Sahoo. Performance
evaluation of multi-core processors with varied interconnect
networks. In Advanced Computing, Networking and Security
(ADCONS), 2013 2nd International Conference on, pages
7-11, Dec 2013.

P. Montesinos, W. Liu, and J. Torrellas. Using register
lifetime predictions to protect register files against soft
errors. In Dependable Systems and Networks, 2007. DSN
’07. 37th Annual IEEE/IFIP International Conference on,
pages 286 —296, june 2007.

R. Natarajan and M. Chaudhuri. Characterizing
multi-threaded applications for designing sharing-aware
last-level cache replacement policies. In Workload
Characterization (IISWC), 2013 IEEE International
Symposium on, pages 1-10, Sept 2013.

H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel,

S. Polstra, R. Bose, C. Zissulescu, and E. Deprettere.
Daedalus: Toward composable multimedia mp-soc design. In
DAC, pages 574-579, 2008.

S. K. Rethinagiri, O. Palomar, R. Ben Atitallah, S. Niar,

O. Unsal, and A. C. Kestelman. System-level power
estimation tool for embedded processor based platforms. In
Proceedings of the 6th Workshop on Rapid Simulation and
Performance Evaluation: Methods and Tools, RAPIDO 14,
pages 5:1-5:8, New York, NY, USA, 2014. ACM.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A
Cycle-Accurate Memory System Simulator. Computer
Architecture Letters, 10(1):16-19, Jan. 2011.

R. Shah, M. Choi, and B. Jang. Workload-Dependent
Relative Fault Sensitivity and Error Contribution Factor of
GPU On-Chip Memory Structures. In Proc. of the Int’l
Conference on Embedded Computer Systems, pages
271-278, July 2013.

J. Sharkey. M-Sim: A Flexible, Multithreaded Architectural
Simulation Environment. Technical Report CS-TR-05-DPO01,
Department of Computer Science, State University of New
York at Binghamton, 2005.

J. W. Sheaffer, D. P. Luebke, and K. Skadron. A hardware
redundancy and recovery mechanism for reliable scientific
computation on graphics processors. In Proceedings of the
22nd ACM SIGGRAPH/EUROGRAPHICS symposium on
Graphics hardware, pages 55-64, 2007.

D. M. Tullsen. Simulation and Modeling of a Simultaneous
Multithreading Processor. 22nd Annual Computer
Measurement Group Conference, Dec. 1996.

Y. Ukidave, X. Gong, and D. R. Kaeli. Performance
evaluation and optimization mechanisms for inter-operable
graphics and computation on gpus. In GPGPU@ASPLOS,
page 37, 2014.

'W. Wolf. Guest editor’s introduction: Hardware-software
codesign. IEEE Design & Test of Computers, 10(3):5—, 1993.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

