
AxBA: An Approximate Bus Architecture Framework

Jacob R. Stevens, Ashish Ranjan, and Anand Raghunathan
School of Electrical and Computer Engineering, Purdue University

{steven69,aranjan,raghunathan}@purdue.edu

ABSTRACT
Modern computing platforms expend significant amounts of time and
energy in transmitting data across on-chip and off-chip interconnects.
This challenge is exacerbated in prevalent data-intensive workloads
such as machine learning, data analytics and search. However, these
workloads also present a unique opportunity in the form of intrinsic
resilience to approximations in computations and data. We explore
approximate compression of communication traffic, which lever-
ages this intrinsic resilience to improve communication bandwidth
and reduce the energy consumed by interconnects. Specifically, we
propose AxBA, an approximate bus architecture framework that
is aware of the data amenable to approximations and seamlessly
compresses/decompresses the corresponding transactions on the bus
without requiring any changes to pre-designed masters and slaves.
AxBA uses a lightweight compression scheme based on approxi-
mate deduplication, which is suitable for the tight latency constraints
imposed by bus-based interconnects. To facilitate software develop-
ment on AxBA-based systems, we introduce a software interface
that enables programmers to identify regions of the system address
space that are amenable to approximations. We also propose a run-
time quality monitoring framework that automatically determines
the error constraints for the identified regions such that a specified
application-level quality is maintained. We demonstrate the fea-
sibility of the proposed concepts by realizing a prototype AxBA
system on a Cyclone-IV FPGA development board using an Intel
Nios II processor-based SoC. Across a suite of six machine learning
benchmarks, AxBA obtains an average improvement in system per-
formance of 29% and a 25% reduction in system-level energy for a
0.5% loss in application-level quality.

1 INTRODUCTION
The exponential growth in creation and consumption of various
forms of digital data has led to the emergence of new application
workloads such as machine learning, data analytics and search.
These workloads process large amounts of data and hence pose
increased demands on the on-chip and off-chip interconnects of mod-
ern computing systems. Therefore, techniques that can improve the
energy-efficiency and performance of interconnects are becoming
increasingly important.

This work was supported in part by C-BRIC, one of six centers in JUMP, a Semicon-
ductor Research Corporation (SRC) program sponsored by DARPA, and in part by the
National Science Foundation under grant no. 1423290

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5950-4/18/11. . . $15.00
https://doi.org/10.1145/3240765.3240782

Several circuit and architectural techniques have been proposed
to realize faster or more energy-efficient interconnects. Comple-
mentary to these approaches, which attempt to reduce the time or
energy taken to transfer each bit, communication traffic compression
attempts to reduce the volume of data that must be transferred. It
leverages the redundancy in communication traffic, e.g., the sim-
ilarity of successive values transferred across the communication
network, to optimize both energy and performance. Prior efforts have
explored lossless compression in the memory hierarchy [1, 16, 21]
or the interconnects [3, 5, 6, 13, 25] for both general-purpose and
embedded computing systems.

Many prevalent workloads exhibit significant intrinsic resilience,
which is the ability to produce outputs of acceptable quality despite
approximations to the underlying computations or data. Approxi-
mate computing leverages this property to improve the energy and
performance of computing systems at different levels of abstraction,
including software, architecture and circuits [23]. This approach
opens up a unique opportunity to address the communication bottle-
neck by adopting approximate communication traffic compression
wherein the data transmitted on the interconnects is compressed by
introducing approximations, yielding additional benefits in energy
and performance. We propose AxBA, a framework to realize this
concept in bus-based communication architectures, and demonstrate
its hardware feasibility through an FPGA prototype system.

Most previous efforts in approximate computing have focused on
approximating computations (e.g., by lowering precision or skipping
selected computations) or approximating data stored in memory
(e.g., lowering refresh rates), while maintaining full accuracy for the
communication traffic [4, 9, 14, 18, 19, 22, 24]. A few recent efforts
on approximate communication can be classified into two distinct
categories: approximate memory compression and approximate in-
terconnects. Approximate memory compression utilizes techniques
to compress data at different levels of the memory hierarchy (in the
processor’s load/store queues [8], the on-chip cache hierarchy [20],
or the off-chip memory controller [17]). These techniques are solely
limited to the memory traffic and do not perform any approximations
to other data transfers, e.g., transfer of data to/from accelerators,
sensors and other peripheral components. Moreover, these proposals
require significant changes to existing IPs such as processor cores,
caches, and memory controllers, which may be infeasible for hard IP
cores, or incur significant (re-)design effort. In contrast, our proposal
is transparent to the underlying hardware components in the system
and applies to all communication traffic.

In the context of approximate interconnects, previous efforts [7,
10, 15] have proposed approximations to off-chip serial buses that
reduce the switching activity on the bus, thereby reducing power
consumption. These techniques solely focus on reducing the switch-
ing energy and do not improve the volume of bus traffic, which is
the focus of our work. Finally, some recent efforts [2, 12] propose to
reduce the data traffic in Network-on-Chips (NoCs) by compressing

similar values in a packet or dropping congested packets altogether.
These efforts demonstrate the potential for approximating commu-
nication traffic. However, a significant number of systems - particu-
larly in area-constrained edge devices - use bus-based interconnects.
Bus-based systems cannot tolerate significant compression/decom-
pression latency, requiring the use of different techniques.

Complementary to previous efforts, we explore approximate com-
munication traffic compression in the context of bus-based systems.
We propose a new, lightweight, approximate communication traffic
compression scheme that is suitable for the tight latency constraints
of bus architectures. Since the proposed hardware changes are lim-
ited to the bus interfaces, our proposal is applicable to systems that
utilize pre-designed hard IP blocks, and to both on-chip and off-chip
buses.

The key contributions of our work are as follows:

∙ We propose AxBA, an approximate bus architecture frame-
work that enables transparent approximate compression of
data transferred across buses to improve energy and perfor-
mance.
∙ We propose a compression technique based on approxi-

mate deduplication, which is both lightweight and quality-
configurable, i.e., can conform to specified error constraints.
∙ We develop a software interface that application programs can

use to specify regions in the system address space that can be
subject to approximate compression, and a quality monitoring
framework to dynamically modulate the error constraints for
each region.
∙ We implement a prototype AxBA-based SoC using the Intel

Nios II processor on a Cyclone-IV FPGA. Our evaluations
on a suite of machine learning benchmarks reveal an average
improvement in system performance of 29% and a 25% reduc-
tion in system-level energy for a 0.5% loss in application-level
quality.

2 BACKGROUND AND MOTIVATION
Approximate compression reduces bus traffic and is applicable to a
variety of bus topologies, e.g. on-chip, off-chip, serial, parallel, etc.
For our discussion, we focus on parallel on-chip buses.

Parallel on-chip buses. Parallel on-chip buses are often used to
integrate various components (e.g., processors, accelerators, DMA
controllers, peripherals and on-chip memory) in a System-on-Chip
(SoC). These components can be classified into bus masters, which
can initiate transactions on the bus, and bus slaves, which can only
respond to transactions on the bus. If a bus contains multiple masters,
it is said to be a shared bus and it must use an arbiter to grant
access to the shared resources. Transferring data across parallel
on-chip buses can be a major bottleneck for modern data-intensive
workloads, especially with multiple masters trying to use a shared
bus concurrently, causing bus contention. We focus on reducing this
bottleneck by compressing the data traffic on the bus.

Motivation. Figure 1 motivates the opportunity for approximate
compression of bus traffic by showing a trace of the values observed
on the data bus over time for an eye detection application executing
on a simple SoC consisting of an Intel Nios II processor, memory
controller and peripherals. The colored horizontal bars represent
values observed on the data bus in terms of how similar they are

to the most frequently observed value, viz. 12. For example, the
dark red bar indicates words on the bus that are exactly equal to
12, the light orange bar denotes values within an absolute differ-
ence of 1, etc. We observed that the fraction of exactly identical
values on the bus is very small (4.5%). However, a significantly
higher fraction of values are approximately similar or within a low
dynamic range (53% within an absolute difference of 1 and 65%
within an absolute difference of 2). In addition, most of these values
appear in bursts, suggesting high compressibility. These observa-
tions underscore the significant opportunity available for reducing
bus traffic using approximate compression. However, an approxi-
mate bus traffic compression scheme must: (i) be aware of which
memory transactions may be approximated and which ones may
not, (ii) provide an ability to control the error introduced by ap-
proximations, (iii) add minimal latency to bus transactions (so as
to minimally impact system performance) and (iv) impose minimal
effort on designers. AxBA addresses these challenges by proposing
a lightweight, quality-aware compression scheme based on approxi-
mate deduplication, utilizing wrappers around existing bus masters
and slaves to transparently compress/decompress data transactions,
and introducing a software interface and runtime quality monitoring
framework to facilitate software development.

Time (units)

D
at

a
b

u
s

va
lu

e

53% within +/- 1 65% within +/- 2 79% within +/- 44.5% within +/- 0

Figure 1: Data bus trace for an eye detection application
3 APPROXIMATE BUS ARCHITECTURE

FRAMEWORK
Figure 2 provides a high-level overview of the Approximate Bus
Architecture (AxBA) framework along with the proposed hardware
and software enhancements. AxBA uses generic wrapper modules
around existing masters and slaves that seamlessly enable compres-
sion and decompression of different regions in the system address
space using different error constraints1. An AxBA module trans-
parently intercepts a bus transaction and compresses/decompresses
approximation-resilient data on the bus while adhering to the desired
error constraint. It also transforms the original bus protocol to an
AxBA bus protocol, which is virtually identical to the original bus
protocol, with the exception of an additional control signal. The
software enhancements consist of a programmer interface to specify
regions in the address space that are amenable to approximations
and a runtime quality monitoring framework that appropriately mod-
ulates the accuracy constraints for each of these regions to conform

1The master and slave components may be oblivious to compression, enabling pre-
designed components to be used without hardware changes.

AxBA
Bus

Master

AxBA
Bus
Slave

AxBA
Master

Bus

Bus
Master

AxCompress Unit

Ex
ist
in
g
M
as
te
r I
P

Ex
ist
in
g
Sl
av
e
IP

AxBA Prefetcher

Quality Table
StartAddr EndAddr Type Error
0x0010 0x00F0 uint_8 5

… … … …

DecompRdData CompRdData

Decompression Q

Compressed? Type Data

type

UncompWrData
typeerror

CompWrData

RdRequestPrefetchRdRequest

Addr

RdRequest

RdCompressed

WrCompressed

Bus

AxCompress Unit

Quality Table
StartAddr EndAddr Type Error
0x0010 0x00F0 uint_8 5

… … … …

DecompWrData CompWrData

Decompression Q

type

UncompRdData
typeerror CompRdData

WrCompressed

RdCompressed

Addr

AxBA
Slave

Runtime Quality
Monitor

// initialization code
set_ax_region(…);
set_ax_region(….);
// Init. RQM
// rest of application

Ax. Application

// initialization code
// rest of application

Application

AxBA
Bus

Config

Config

Config

AxDecompress Unit
CompTrans

Done

Done
AxDecompress Unit

CompTrans

Bus
Slave

Figure 2: Overview of the AxBA framework

to a target application-level output quality. In this section, we discuss
the approximate compression scheme used in AxBA, followed by a
description of the specific hardware and software enhancements.

3.1 Approximate Compression Techniques
Approximate compression techniques for bus architectures should
have the following desiderata: (i) quality configurability, (ii) low
compression/decompression latency and (iii) minimal hardware com-
plexity and overheads. Towards this objective, we explore two differ-
ent lightweight approximate compression techniques, viz., Approxi-
mate Base-Delta (AxB+∆) Compression and Approximate Dedupli-
cation (AxDeduplication). In each scheme, an accuracy constraint
specifies the maximum error that may be incurred in compressing
each data element. Further, the compression is constrained such that
n data transactions on the bus are compressed to m transactions,
where n and m are integers and n > m. This greatly reduces the
complexity of the compression/decompression logic since there is
no need to split (and eventually reconstruct) bus transactions. In the
following paragraphs, we describe the two techniques in detail and
explain the rationale behind the choice of Approximate Deduplica-
tion as the compression scheme in AxBA.

First element base1

Remaining elements
 ∆s from the base,
2‐ =∆	,3 =࢞ࢇ∆
/࢞ࢇ∆ used if margin
is within MaxError

39 43 39 38 41 4039 37

1 byte

8‐bytes Uncompressed

4‐bytes Compressed

1 byte

3 0 ‐1 2 0 1 ‐2 ‐

3 bits

deltas

43 – 39 = 4 ∉ ሾ∆, ሿ࢞ࢇ∆

39
base

 ∈ ሾ∆࢞ࢇ, ࢞ࢇ∆ ࢘࢘࢘ࡱ࢞ࢇࡹሿ ࢞ࢇ∆=∆ MaxError= 4
2

3

Figure 3: Approximate base-delta compression scheme

Approximate Base-Delta Compression. Base-Delta (B+∆) [16],
a lossless cache compression algorithm, exploits the low dynamic
range of values in a data block to represent it with a common base
and a series of deltas, i.e., the differences between values within
the block and the base. Since the deltas require fewer bits than the
original values, this representation inherently compresses the orig-
inal block. Inspired by this approach, we propose AxB+∆ where
we subject the delta values to approximations. This is achieved by
allowing an element to be represented by the maximum (minimum)
delta value if it is within a certain accuracy bound from the maxi-
mum (minimum) delta value, thus extending the dynamic range of
the scheme. Figure 3 shows an example 8-byte uncompressed data
stream on the bus (equivalent to two bus words for a 32-bit data bus).
The sequence consists of eight 1-byte signed integers. Let us assume
that the maximum error magnitude that can be tolerated in compress-
ing each data element is 4. To reduce the complexity of compression
logic, the proposed approximate compression technique chooses
the first element as the common base and analyzes the remaining
values to determine the deltas while satisfying the desired accuracy
constraint. The number of bits required to represent the delta values
(3 bits in this example with ∆max = 3 and ∆min = −2) is precomputed
based on the total uncompressed size of the data stream, the data bus
size, and the size of the individual elements within the data stream.
Using AxB+∆, the seven remaining 1-byte elements (excluding the
first base element) can be compressed into 3-bits each, with an ad-
ditional byte for the base element. Thus, the entire data stream can
be compressed to 4 bytes instead of the original 8 bytes, saving the
transfer of a bus word, i.e., 4 bytes.

To decompress a compressed data transaction, AxB+∆ adopts a
similar approach to B+∆, wherein the element values are obtained
by simply adding the base value and the corresponding deltas.

Approximate Deduplication. Deduplication is a popular data com-
pression technique that eliminates duplicate copies in repeating data.

30 29 31 33 27 32 28 30

1 byte

8‐bytes Uncompressed

30

4‐bytes Compressed

1 byte

8

3 bytes

countbase

First element
is base
Count
elements
within range

ૢ ∈ ሾ െ࢘࢘࢘ࡱ࢞ࢇࡹ, ࢘࢘࢘ࡱ࢞ࢇࡹሿ count++ MaxError = 4
1

2

Figure 4: Approximate deduplication scheme

It has been widely used in secondary storage systems [11]. We pro-
pose a simple deduplication-based compression scheme inspired
by run-length coding that can be realized with minimal hardware
complexity. We store sequences of identical data values as a single
value and its count. A compressed representation thus consists of a
base element (the first element) and a count of how many times that
element appears consecutively. AxDeduplication extends this com-
pression scheme by relaxing the exact match requirement imposed
for the consecutive elements. In other words, a value is interpreted
as a repeated instance of the base value as long as the two differ
by less than a specified error bound. Figure 4 shows an example
8-byte uncompressed data stream containing eight 1-byte signed
integers, to which the proposed scheme is applied with a maximum
permissible error magnitude of 4. The number of bits required to
maintain the count is predetermined and is a function of the size
of the elements in the data stream and the data bus width. In this
example, the eight 1-byte elements can be compressed into a 1-byte
base and a 3-byte count, resulting in a savings of 4 bytes. AxDedu-
plication can be further extended to store multiple repeating values
along with their corresponding counts based on the bus width and
the size of the underlying elements. For example, when compressing
byte-sized scalar data transactions on a 4-byte wide bus, there are
two other possible representations for a compressed transaction, viz.,
two base elements and their repeating counts, or three base elements
and their counts. These representations capture the higher likelihood
of different repeating patterns in a data stream, while trading-off the
maximum count that can be stored for each repeating value. Our
experiments suggest that allowing two base elements greatly im-
proves the compression ratio, while the additional benefits for three
or more base elements are greatly diminished. Therefore, we choose
a compressed representation with two base elements. To decompress
a compressed transaction, we use the respective counts and repeat
the corresponding base elements.
Comparison of Compression Techniques. In order to determine
the compression technique for AxBA, we developed a software im-
plementation for the two proposed schemes and compared them with
a previously proposed low-overhead Bi-directional Precision Scaling
scheme (BPS) [17]. Figure 5 quantifies the potential for reduction in
communication traffic by comparing the compression ratios achieved
across a suite of machine learning benchmarks (benchmark details
are provided in Section 4) while ensuring that the application qual-
ity is maintained within 0.5%. We observe that AxDeduplication
achieves much higher compression ratios compared to the other
schemes. This is because in both BPS and AxB+∆, each scalar
element transmitted on the bus explicitly requires at least one bit
for representation (either its truncated value or its delta from the

0

1

2

3

4

5

6

7

8

REAL OCR TEXT DIG EYE HDR GEOMEAN

C
o
m
p
re
ss
io
n
 R
at
io
 →

AxDeduplication AxB+∆ BPS

Figure 5: Comparison of compression techniques with 0.5%
loss in application-level quality

base). Thus, the number of elements that can be represented depends
linearly on the number of available bits in the compressed represen-
tation. However, AxDeduplication requires only one element to be
represented explicitly, with the remainder being represented by a
count. Therefore, in the limit, an exponential number of elements
can be represented using the same number of bits, thereby offering
higher opportunity for compression. Due to its potential for higher
compression with minimal hardware complexity, we choose AxD-
eduplication as the compression scheme for AxBA. It is important
to note, however, that the choice of approximate compression tech-
nique is not limited to those explored in this section; any low-latency,
quality-aware compression technique can be implemented within
the AxBA framework.

3.2 Hardware Support for AxBA
Figure 2 presents the design of a generic AxBA wrapper to realize ap-
proximate compression of communication traffic for a master/slave
pair. An AxBA wrapper consists of: (i) A Quality table that captures
the approximation-tolerant regions in the system address space and
the error constraints associated with each region, (ii) An AxCom-
press/AxDecompress unit pair that perform the compression and
decompression at runtime, and (iii) An AxBA prefetcher (specific to
slaves) that prefetches requests from the slave to perform compres-
sion during reads at the slave end. An AxBA bus is identical to the
underlying bus protocol, with an additional bit to indicate whether a
transaction is compressed. The following paragraphs describe these
components in greater detail.

Quality Table. In order to perform quality-aware compression,
AxBA requires a mechanism to identify the bus transactions that can
tolerate approximations. We propose the use of a fully-associative
quality table that is programmable at runtime for this purpose. It
consists of a small number of entries (4 in our experiments) with
each entry identifying a region of the system address space that
is amenable to approximation. Specifically, as shown in Figure 2,
each entry includes: (i) the range of addresses that constitute the
region, (ii) the data type of the elements in the region (e.g., signed
16-bit, unsigned 8-bit, etc.), and (iii) the quality constraint (e.g., max-
imum error magnitude) for the elements within the region. On each
write request (read response) from the master (slave), the address
of the transaction is compared with all the address ranges in the
quality table to determine whether the address lies within any of
the ranges (i.e., whether the address has been marked as resilient to

approximations). If the address falls within a range in the table, the
matching data type and error constraint are used by the Approximate
Compress Unit to try to compress the data transaction. Otherwise,
the transaction remains uncompressed for a miss. Similarly, for a
read response (write request) in the master (slave), the quality table
provides the data type of the elements in the compressed transaction,
which is used to decompress this transaction. Given the small size
of the quality table, our experiments indicate that it incurs negligible
energy and performance overheads. Since the lookup is conducted
in parallel across entries, there is minimal impact on latency.

Approximate Compression Unit. The Approximate Compression
Unit (ACU) utilizes the proposed AxDeduplication scheme to dy-
namically compress an incoming read/write transaction. The ACU
takes the error constraint and the data type from the quality table,
and the uncompressed write data (read data) from the bus master
(bus slave), to produce compressed write data (read data) and a con-
trol signal to indicate whether the transaction is compressed, i.e.,
WrCompressed (RdCompressed). Specifically, it compares each
element in the uncompressed transaction with the earlier identified
base element(s) to determine the corresponding repeating count(s)
while ensuring that the error constraint is not violated. Depending on
the achieved compression ratio, the ACU then packs multiple con-
tiguous transactions into one (or more) compressed transaction(s).
Note that the ACU does not finish compression until it receives a
transaction in which the error constraint is violated, marking the
end of the compressed transaction(s). However, since this process of
ending one series of compressed transactions and beginning another
is pipelined, the ACU incurs only one cycle of latency overhead per
stream of transactions (i.e., n transactions can be transmitted in n+1
cycles).

Approximate Decompression Unit. The Approximate Decompres-
sion Unit (ADU) receives a compressed transaction (CompTrans)
from the Decompression Queue, which contains the data type of the
elements comprising the compressed transaction, the actual com-
pressed data, and a control signal indicating if the data is com-
pressed. Accordingly, the ADU in the AxBA master (AxBA slave)
decodes the repeating count(s) and the base value(s) embedded
in CompRdData (CompWrData) and decompresses it to multiple
transactions. This is achieved by repeating each base element an
appropriate number of times, requiring a variable number of cycles.
Note that even though the ADU incurs variable decompression la-
tency, it still keeps the bus occupied by producing one decompressed
transaction for the master (slave) in each cycle.

Decompression Queue. To hide the decompression latency of the
ADU from the AxBA bus and remove the quality table lookup
for decompression from the critical path, we introduce a Decom-
pression Queue between the AxBA bus and the ADU. The queue
temporarily holds the incoming AxBA bus transactions. When an
AxBA bus transaction is ready, the queue stores CompRdData (or
CompWrData), along with its data type (from the quality table). It
then provides this information (CompTrans) to the ADU whenever
the ADU finishes its current compressed transaction. We provision
the size of queue to be the maximum number of data transactions
that can be compressed into a single compressed transaction (8 in
our implementation) to avoid any buffer stalls.

AxBA Prefetcher. A read request to an AxBA slave requires mul-
tiple read data responses from the underlying slave to perform
compression. To this end, we introduce a simple next sequential
prefetcher in the AxBA slave that initiates prefetch requests to the
slave for each AxBA master read request. When an AxBA slave
initially receives an incoming AxBA RdRequest, it first fetches data
corresponding to the request address. The AxBA prefetcher then
initiates multiple sequential prefetch requests (Pre f etchRdRequest)
so that the AxBA slave generates a compressed bus transaction.
After the initial request is serviced by the AxBA slave, the AxBA
prefetcher continues to speculatively generate prefetch requests to
the slave for consecutive addresses until the ACU produces another
compressed bus transaction ready to be consumed by the next request.
If the next incoming AxBA bus request is sequential, i.e., the re-
quest address matches the previously prefetched address, the AxBA
prefetcher immediately services the request with the ready com-
pressed bus transaction and begins generating speculative prefetch
requests for the next request again. Otherwise, it clears the ready
transaction and responds as if the incoming AxBA RdRequest was
an initial request.

AxBA Bus. AxBA requires an additional 1-bit control signal that
denotes whether an incoming transaction to AxBA master/slave is
compressed. This necessitates enhancements to the standard bus
interconnect including bus components such as arbiters, bridges, etc
2. Note that it may be possible to reuse existing bus control signals
for this purpose, but such optimizations depend on the specifics
of the underlying bus protocol. In our experiments, we assume an
additional control bit and account for the associated overheads.

3.3 Software Support for AxBA Framework
To minimize programmer burden, we propose a software interface
that allows programmers to manually identify known approximation-
tolerant regions in the system address space, and propose a runtime
quality monitoring (RQM) framework that automatically obtains er-
ror constraints for the identified regions while ensuring that the target
application quality is satisfied. The following paragraphs describe
them in detail.

Software Interface. We introduce a function (set_ax_region,
shown in Figure 2) that a programmer uses to manually identify
approximation-tolerant regions in the system address space. Specifi-
cally, it creates an entry in the quality table that is exposed to AxBA
through memory-mapped registers.

Runtime Quality Monitoring Framework. RQM requires the pro-
grammer to specify: (i) the approximation-tolerant regions, (ii) the
application-level quality constraint, and (iii) a quality function to
evaluate output quality. It then executes the application in two in-
terleaved phases – calibration phase and evaluation phase. During
the calibration phase, RQM obtains the error constraints for the
programmer-identified regions. The application is then executed
with these constraints in the evaluation phase. The calibration phase
is invoked at regular intervals to evaluate the programmer-specified
quality function. In this phase, RQM re-executes the application for

2These enhancements must be done for each unique underlying bus protocol AxBA is
used with

each input with no approximation, i.e., error constraint of 0, and sub-
sequently evaluates the quality function using the outputs with and
without approximation. In case the evaluated output quality satisfies
(violates) the application-level constraint, RQM greedily relaxes
(tightens) the error constraint for the most communication-intensive
region. The communication intensity for an approximation-tolerant
region is obtained using access counters embedded in the AxBA
wrappers.

4 EXPERIMENTAL METHODOLOGY
In this section, we describe the experimental setup and the bench-
mark applications used to evaluate AxBA.
Experimental Setup. We designed two prototype systems using a
Cyclone-IV FPGA development board — a single-core system and
a multi-core system. The single-core system consists of a Nios II
processor, an on-chip scratchpad, a DMA engine, and an SDRAM
controller interfaced with an on-board SDRAM. The multi-core sys-
tem (shown in Figure 6) consists of two Nios II cores, each with
a private on-chip scratchpad and a DMA engine, interfaced to the
SDRAM through a shared SDRAM controller. To realize approx-
imate compression of bus traffic, we introduced AxBA wrappers
around the DMA engine and the SDRAM controller for both the
systems. This resulted in an area overhead of 7.7% for both the multi-
core and single-core systems. The max frequency (Fmax) worsened
by 2.3% in the multi-core system, while the single-core system
incurred no delay overhead. To obtain energy estimates, we used Al-
tera’s PowerPlay Power Analyzer tool with a 50 ms simulation trace
that captures the key computational kernels for each application. We
utilized a performance counter in the Nios II core to measure the
execution time for each benchmark.

SDRAM

On-Chip
Memory

Core 0
AxBA

Wrapper

Core 1
DMA

AxBA
Wrapper

DMA

Private AxBA Bus Private AxBA Bus

Shared AxBA Bus

AxBA Wrapper

SDRAM
Controller

On-Chip
Memory

Figure 6: Test system used in our evaluation

Benchmarks. Table 1 lists the benchmarks and the datasets used
used in our experiments. The quality metric for each benchmark is
also provided. Each of these benchmarks were executed in isolation
on the single-core system, and in a data-parallel fashion on the
multi-core system.

5 EXPERIMENTAL RESULTS
5.1 Single-core performance and energy benefits
Figure 7 shows the normalized execution time of the benchmarks
when using the proposed AxBA framework in a single-core system.

Table 1: Machine Learning Benchmarks

Application Algorithm Dataset Quality metric

Handwritten Digit Recognition (HDR)
Support vector machines

MNIST
Classification

accuracy
(fraction
of inputs
correctly
classified)

Text Classification (TEXT) REUTERS
Character Recognition (OCR) K-nearest neighbors OCR digits

Eye Detection (EYE) Generalized learning
vector quantization YUV faces

Handwritten Digit Classification (DIG) K-nearest neighbors Gisette

Document Clustering (REAL) K-means clustering Real-sim Mean cluster
radius

The execution times are normalized to a baseline design which does
not use bus traffic compression. As shown in the figure, AxBA results
in an execution time reduction of up to 42% (average of 19%) with
an average 0.5% loss in application-level accuracy. This is mainly
due to the reduction in bus traffic with approximate compression,
resulting in a reduced volume of data being transferred across the
bus.

0

0.2

0.4

0.6

0.8

1

1.2

TEXT OCR EYE DIG HDR REAL GEOMEAN

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Baseline 0.5% Quality Loss

Figure 7: Single-core execution time benefits with AxBA

Figure 8 demonstrates the system-level energy benefits achieved
by the AxBA framework. In the isolated system, energy benefits
range from 3% to 41% (average of 15%) while incurring negligible
loss (average 0.5%) in output quality. The energy benefits are directly
proportional to the reduction in execution time after accounting for
the additional hardware overheads in AxBA.

0

0.2

0.4

0.6

0.8

1

1.2

TEXT OCR EYE DIG HDR REAL GEOMEAN

N
o
rm

al
iz
e
d
 S
ys
te
m
 E
n
e
rg
y

Baseline 0.5% Quality Loss

Figure 8: Single-core system energy benefits with AxBA

5.2 Dual-core performance and energy benefits
Figure 9 illustrates the normalized execution time of the benchmarks
for an application-level output quality constraint of 0.5% using the

proposed AxBA framework when running the dual-core system in
a data-parallel fashion. As seen in the figure, the AxBA framework
results in a reduction in execution time of up to 50% (average of
29%) with a small loss in application-level accuracy (0.5%). The
execution time benefits are higher than for the single-core system
because in this case AxBA also minimizes contention for the shared
bus.

0

0.2

0.4

0.6

0.8

1

1.2

TEXT OCR EYE DIG HDR REAL GEOMEAN

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e Baseline 0.5% Quality Loss

Figure 9: Congested system execution time benefits with AxBA

Similarly, in Figure 10, we show the system-level energy benefits
for the the multi-core system. In this case, the AxBA framework
achieves benefits in system-level energy ranging from 3.7% to 49%,
(average of 25%).

0

0.2

0.4

0.6

0.8

1

1.2

TEXT OCR EYE DIG HDR REAL GEOMEAN

N
o
rm

al
iz
e
d
 S
ys
te
m
 E
n
e
rg
y

Baseline 0.5% Quality Loss

Figure 10: Congested system energy savings with AxBA

5.3 Compression ratio vs. quality trade-off
Figure 11 demonstrates the compression ratio vs. application-level
quality trade-off obtained by varying error bounds for the data struc-
tures that are amenable to approximations. The results are presented
for two representative benchmarks, EYE and HDR. The figure also
shows the compression ratios observed for an error bound of 0 (i.e.,
lossless compression). In both cases, we achieve higher compres-
sion ratios at negligible output quality loss with more relaxed data
structure error bounds. Specifically, HDR exhibits a slow and steady
increase in compression ratio along with a smaller loss in application
quality as the error bound is relaxed. On the other hand, for the EYE
application, we observe a steeper increase in the compression ratio
as the permissible error increases, but the accompanying increase in
application-level quality loss is also much steeper.

5.4 AxBA in action: Case study
Figure 12 visually illustrates AxBA in action by plotting the bus
traffic observed during a 30 ms time window with the HDR applica-
tion executing on the single-core system, as well as the bus traffic

0

1

2

3

4

5

0

1

2

3

4

5

6

7

0 2 4 6 8 10 18 20

%
 A
pp

lic
at
io
n
qu

al
ity

 lo
ss
 →

Co
m
pr
es
si
on

 ra
tio

 →

Max. DS Error →

Compression ratio
Quality loss

EYE

0

0.1

0.2

0.3

0.4

0.5

0.6

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

0 1 2 3 5 6 13 15 20

%
 A
pp

lic
at
io
n
qu

al
ity

 lo
ss
 →

Co
m
pr
es
si
on

 ra
tio

 →

Max. DS Error →

Compression Ratio
Quality Loss

HDR

Compression ratio
Quality loss

Figure 11: Compression ratio vs. output quality trade-off for
two representative benchmarks

observed in the baseline system for the same duration. Notice that
the traffic on the bus in both cases is fairly regular and interleaved
with the computation phases of the application. This is because the
system has a software-managed scratchpad interfaced with the pro-
cessor that requires explicit DMA transfers to copy the data from
the off-chip SDRAM to the scratchpad memory (and vice versa). As
shown in the figure, AxBA significantly reduces the data transfer
time during each phase, which eventually leads to improved system
performance. Note that the time spent in the computation phases
remains identical for both the systems, and the performance benefits
are primarily due to the reduced volume of data that is transferred
across the bus.

6 RELATED WORK
In this section, we present an overview of the related efforts in ap-
proximate communication, and highlight the distinguishing features
of our work. Previous works in approximate communication can be
classified based on the type of interconnects (off-chip vs. on-chip)
and the nature of communication traffic they target.

Approximate memory compression. [8] proposed extensions to
the load/store queue for handling variable precision across the com-
pute and memory systems, allowing for more concise representation
in memory. [20] designed a cache architecture that stores similar
valued cache lines as a single cache line, increasing the effective
cache capacity. [17] proposed a quality-aware memory controller
that transparently compresses/decompresses off-chip memory traffic.
All these efforts focus solely on the memory traffic, and do not target

Transfer Compute Transfer Compute

ComputeAx Txfr.
Ax Txfr. Ax Txfr.

Exec. time benefits Exec. time benefits

ComputeCompute

Figure 12: Bus traffic over time with single-core execution of handwritten digit recognition application

other communication traffic. In addition, these techniques also re-
quire significant changes to existing IPs, i.e., processor cores, cache
hierarchy, memory controller etc. In contrast, AxBA focuses on the
entire communication traffic and requires no changes to the existing
bus masters and slaves.

Approximate off-chip communication. In the context of off-chip
communication, [7, 10, 15] propose approximation techniques to
reduce data transitions on the off-chip serial bus, thereby reducing
bus energy. However, unlike our proposal, these efforts do not reduce
the overall bus traffic, and hence do not offer any improvements in
performance.

Approximate on-chip communication. In the context of on-chip
communication, [12] proposes the use of a lightweight and lossy
NoC for latency-sensitive packets, e.g., critical word response for
cache misses, in conjunction with a regular NoC for the other pack-
ets to improve execution time without impacting application quality.
This is orthogonal to AxBA, which focuses on mitigating the over-
all impact of communication traffic, and not just the critical word
latency. [2] focuses on reducing communication traffic in NoCs us-
ing frequent pattern and dictionary-based approximate compression
techniques. These compression techniques are simply not applicable
to bus-based architectures that impose stricter latency constraints,
requiring the exploration of new lightweight approximate compres-
sion techniques for AxBA. Moreover, our proposal is applicable to
both on-chip and off-chip bus-based architectures.

7 CONCLUSION
This paper presents an approximate bus architecture framework,
AxBA, that leverages the intrinsic error resilience of modern work-
loads to reduce communication traffic, improving both energy and
performance. The AxBA framework transparently compresses/de-
compresses transactions within approximation-resilient regions of
the system address space, and requires no changes to existing bus
masters and slaves. We propose a lightweight compression scheme,
Approximate Deduplication, that is well-suited for use within the
AxBA framework. We provide a software interface to AxBA and a
runtime quality monitoring framework that minimizes programmer
effort for an AxBA-based system. An FPGA prototype is used to
demonstrate the energy and performance improvements realized by
AxBA.

REFERENCES
[1] L. Benini, D. Bruni, A. Macii, and E. Macii. 2002. Hardware-assisted data

compression for energy minimization in systems with embedded processors. In
Proc. of DATE.

[2] R. Boyapati, J Huang, P. Majumder, K.H. Yum, and E.J. Kim. 2017. APPROX-
NoC: A Data Approximation Framework for Network-On-Chip Architectures. In
Proc. of ISCA.

[3] R. Canal, A. Gonzalez, and J.E. Smith. 2000. Very low power pipelines using
significance compression. In Proc. of MICRO.

[4] V. K. Chippa, D. Mohapatra, K. Roy, S.T. Chakradhar, and A. Raghunathan. 2014.
Scalable Effort Hardware Design. IEEE Trans. on VLSI Systems (Sept 2014).

[5] D. Citron and L. Rudolph. 1995. Creating a wider bus using caching techniques.
In Proc. of HPCA.

[6] M. Farrens and A. Park. 1991. Dynamic base register caching. In Proc. of ISCA.
[7] D. Jahier Pagliari, E. Macii, and M. Poncino. 2016. Approximate Differential

Encoding for Energy-Efficient Serial Communication. In Proc. of GLSVLSI.
[8] A. Jain, P. Hill, S.C. Lin, M. Khan, M.E. Haque, M.A. Laurenzano, S. Mahlke, L.

Tang, and J. Mars. 2016. Concise Loads and Stores: The Case for an Asymmetric
Compute-Memory Architecture for Approximation. In Proc. of MICRO.

[9] S. Jain, S. Venkataramani, and A. Raghunathan. 2016. Approximation through
Logic Isolation for the Design of Quality Configurable Circuits. In Proc. of DATE.

[10] Y. Kim, S. Behroozi, V. Raghunathan, and A. Raghunathan. 2017. AXSERBUS:
A Quality-Configurable Approximate Serial Bus for Energy-Efficient Sensing. In
Proc. of ISLPED.

[11] P. Kulkarni, F. Douglis, J. LaVoie, and J.M. Tracey. 2004. Redundancy Elimination
Within Large Collections of Files. In Proc. of USENIX.

[12] Z. Li, J. San Miguel, and N. Enright Jerger. 2016. The runahead network-on-chip.
In Proc. of HPCA.

[13] C. Liu, A. Sivasubramaniam, and M. Kandemir. 2004. Optimizing bus energy con-
sumption of on-chip multiprocessors using frequent values. In Proc. of Euromicro
PDP.

[14] S. Liu, K. Pattabiraman, T. Moscibroda, and B.G. Zorn. 2011. Flikker: Saving
DRAM Refresh-power through Critical Data Partioning. In Proc. of ASPLOS.

[15] D. Jahier Pagliari, E. Macii, and M. Poncino. 2016. Serial T0. In Proc. of DAC.
[16] G. Pekhimenko, V. Seshadri, O. Mutlu, M.A. Kozuck, P.B. Gibbons, and T.C.

Mowry. 2012. Base-delta-immediate Compression: Practical Data Compression
for On-chip Caches. In Proc. of PACT.

[17] A. Ranjan, A. Raha, V. Raghunathan, and A. Raghunathan. 2017. Approximate
Memory Compression for Energy-efficiency. In Proc. of ISLPED.

[18] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan. 2014.
ASLAN: Synthesis of Approximate Sequential Circuits. In Proc. of DATE.

[19] A. Ranjan, S. Venkataramani, Z. Pajouhi, R. Venkatesan, K. Roy, and A. Raghu-
nathan. 2017. STAxCache: An approximate, energy efficient STT-MRAM cache.
In Proc. of DATE.

[20] J. San Miguel, J. Albericio, A. Moshovos, and Natalie Enright Jerger. 2015.
Doppelgänger: A Cache for Approximate Computing. In Proc. of MICRO.

[21] S. Sardashti, A. Arelakis, P. Stenström, and D.A. Wood. 2015. A Primer on
Compression in the Memory Hierarchy. Morgan & Claypool Pubs.

[22] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard. 2011. Managing Per-
formance vs. Accuracy Trade-offs With Loop Perforation. In Proc. of ESEC/FSE.

[23] S. Venkataramani, S.T. Chakradhar, K. Roy, and A. Raghunathan. 2015. Approxi-
mate Computing and the Quest for Computing Efficiency. In Proc. of DAC.

[24] S. Venkataramani, V.K. Chippa, S.T. Chakradhar, K. Roy, and A. Raghunathan.
2013. Quality Programmable Vector Processors for Approximate Computing. In
Proc. of MICRO.

[25] P. Zhou, B. Zhao, Y. Du, Y. Xu, Y. Zhang, J Yang, and L. Zhao. 2009. Frequent
Value Compression in Packet-based NoC Architectures. In Proc. of ASP-DAC.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

