
Mixed-Size Placement via Line Search
Kristofer Vorwerk and Andrew Kennings

Department of E&CE

University of Waterloo

Waterloo, Ontario, Canada

{kpvorwer,akenning}@cheetah.vlsi.uwaterloo.ca

Abstract— We describe a remarkably simple yet very effective
line search technique for cell placement. Our method “corrects”
errors in force scaling by sampling different force weights in
each iteration of placement and selecting the best candidate
placements based on an objective function. Our technique is
not only very fast, but it does away with the need for the
ad hoc scaling that has plagued prior force-directed methods.
We describe the implementation of our method within a multi-
level flow and show that it can achieve good wire lengths
with competitive run-times compared to other academic tools.
Specifically, we produce placements with 12% and 15% better
HPWL than FengShui 5.0 and Capo 9.1, respectively, on
the ICCAD04 mixed-size benchmarks, while presenting run-times
that are 37% faster than Capo 9.1.

I. INTRODUCTION

Research in very large scale integrated placement continues

to receive significant attention as both the complexity and

size of deep sub-micron designs increase. Historically, global

placement techniques have focused on simulated annealing [1]

and min-cut partitioning-based methods [2, 3]. Despite offer-

ing excellent results, simulated annealing has been largely

abandoned due to its exponential performance scaling. Top-

down min-cut partitioning techniques, on the other hand, have

remained a touchstone against which alternative methods have

compared due to their attractive balance of quality and run-

time. However, there has been a shift toward analytic place-

ment approaches which promise a faster, higher-quality, and

more scalable means of placing modern designs. In contrast

with min-cut techniques, analytic methods are often better-able

to model specific circuit characteristics, such as pin offsets,

and appear to be more amenable to cell sizing, buffer insertion,

and ECO.

Analytic methods generally minimize an unconstrained,

smoothed wire length objective, but in so doing, may in-

troduce large amounts of cell overlap into the placement.

Several methods have been proposed to deal with this. The

analytic technique presented in [4] uses a log-sum-exponential

approximation to half-perimeter wire length (HPWL), coupled

with a non-convex penalty function to reduce unevenness in

cell distribution over the placement area. Similarly, [5] uses a

log-sum-exponential wire length approximation but employs

an inverse Laplacian transform to derive a smooth density

function which is used to remove overlap. However, these

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC) Discovery Grant #203763-03, and a
grant from Altera Corporation.

techniques can be highly complex or potentially legally en-

cumbered (e.g., [4, 6]). The implementations of such methods

are non-trivial and can be difficult to reproduce.

Force-directed placement methods perturb the objective

formulation based on cells’ area distribution in order to move

cells from high-density regions to low-density regions. In [7–

9], spreading forces are repeatedly added to a quadratic objec-

tive. Similarly, fixed point approaches [10, 11] use specially-

located attractors to pull cells from dense to less-dense regions

of the placement area.

Force-based placers do not generally rely on an objective

function to assess the quality of placements in each iteration—

these methods strive to generate a placement which is good “by

construction”. The lack of a clear objective function can be a

source of instability in these methods, as it requires reliance on

heuristics to keep quality “in check” by preventing unexpected

jumps in wire length between iterations.

Moreover, choosing appropriate force weights can be diffi-

cult in these methods, as wire length can be seriously damaged

when the cells are spread out by large forces. In [8], an

ad hoc scheme is described to control force weighting (and,

by extension, the rate of cell spreading). Early on, weights

are kept small to promote wire length minimization and are

slowly increased to encourage overlap removal. Nevertheless,

this kind of ad hoc scaling can lead to large iteration counts

and, therefore, long run-times.

In this paper, we introduce a remarkably simple yet very

effective line search technique for cell placement. Our method

“corrects” errors in force scaling by testing different force

weights in each iteration of placement and selecting the best

candidate placements based on a straightforward objective

function. The line search that we describe is not only very

fast, but it does away with the need for the ad hoc force

scaling that has plagued prior methods [7, 8]. We describe the

implementation of our line search-directed placer, LSD, which

is loosely based upon the open-source tool FDP, and show that

it can achieve competitive wire lengths with reduced run-times

compared to other academic approaches.

The rest of this paper is organized as follows. Section II

presents a background of relevant analytic placement tech-

niques. Section III describes our line search approach. Sec-

tion IV discusses the incorporation of this method within a

multi-level flow, as well as further enhancements to allow for

I/O assignment and cell rotation. Finally, Section V presents

numerical results, and Section VI offers concluding remarks.

0-7803-9254-X/05/$20.00 ©2005 IEEE. 898

2

II. BACKGROUND

A circuit is typically modeled as a hypergraph Gh(Vh,Eh)
with vertices Vh = {v1,v2, · · · ,vn} representing cells and hyper-

edges Eh = {e1,e2, · · · ,em} corresponding to signal nets. Ver-

tices are weighted by cell area while hyperedges are weighted

according to criticalities or multiplicities. Vertices are either

free or fixed. Cell placements in the x- and y-directions are

captured by placement vectors x = (x1,x2, · · · ,xn) and y =
(y1,y2, · · · ,yn).

The quadratic optimization problem (QP) can be used to

minimize wire length and is formulated (in the x-direction) by

min
x

∑
i, j

ai j(xi− x j)
2 = min

x

1

2
xT Qxx+ cT

x x+dx (1)

where ai j represents the weight of the edge connecting cells i

and j in the weighted graph representation of the circuit. The

matrix Qx is the Hessian which encapsulates the hyperedge

connectivities. The vector cx is a result of fixed cell-to-free

cell connections, and the vector dx is a result of fixed cell-

to-fixed cell connections. In this formulation, cell overlap is

ignored, and the vector x provides only relative cell positions.

In [8], the system of equations is modified by including an

additional vector of forces in each iteration of the placement.

The force vector is derived from the distribution of cells

throughout the placement region. It perturbs the placement

to remove overlap by “pushing” cells away from regions of

high density and “pulling” cells toward regions of low density.

That is, at iteration i, the cell positions are determined from

the system of equations given by

Qxxi + cx +
i−1

∑
l=1

κlfl +κifi = 0 (2)

where fi represents the spreading forces computed at iteration

i and κi represents the weighting with respect to wire length.

At each iteration, forces throughout the placement region are

computed using an analogy similar to charge attraction or

repulsion in an electric field.

In FDP, a more linearized placement is achieved by employ-

ing the BOXPLACE heuristic [9] to move cells to the median

locations of their connected nets. This type of re-placement

ignores spreading forces and, in effect, performs a relative re-

ordering by lifting cells over top of other cells in order to

situate them in more favorable positions.

III. LINE SEARCH

In this section, we describe our line search placement

technique. The pseudocode for this method is presented in

Figure 1. Our approach entails computing spreading forces,

computing wire length-minimizing forces, and moving cells

in a weighted step in the direction of each force, where the

weights are determined using a line search and an objective

function.

A. Computing Forces

During each call to LINEPLACE, we compute spreading

forces using a quad-tree [8]. Given a current placement, cell

Procedure: LINEPLACE1

Inputs: Force ratio (α), “sliding” force multiplier (slideWt)2

begin3

Compute spreading forces, fS
x , fS

y in the x,y directions;4

Compute wire length forces, fWL
x , fWL

y in the x,y directions;5

Combine the forces: fU← α× fS +(1−α)× fWL;6

Orig_SM← spread metric of current placement;7

Orig_HPWL← HPWL of current placement;8

for each force multiplier γ do9

Save cells’ positions;10

curWt← γ×slideWt;11

for each cell i ∈ Vh do12

// Update cells positions in x,y13

x
′
(i)← x(i)+curWt× fU

x (i);14

y
′
(i)← y(i)+curWt× fU

y (i);15

od16

New_SM← spread metric of new placement;17

New_HPWL← HPWL of new placement;18

score← β× New_SM
Orig_SM

+(1−β)× New_HPWL
Orig_HPWL

;19

Record the score, curWt, and the current placement;20

Restore cells’ positions;21

end22

Restore cell positions from the best (lowest) score found;23

Set slideWt to the curWt that yielded the best placement;24

Fig. 1. Pseudocode for the line search placement

technique which places cells by moving them by a

weighted amount in the direction of forces.

area is inserted into all levels of the quad-tree based on cell

position. Then, for each bin in the bottom level of the quad-

tree, the multipole forces acting on the bin are accumulated

using interaction lists and near neighbors. Finally, the forces

for a given cell are calculated by summing the individual

forces upon the bins which that cell overlaps in the bottom

level of the quad-tree. Spreading forces are then normalized

by dividing each x- and y-component by the l2-norm of the

force vector.

We have found that spreading forces, by themselves, are

excellent at reducing overlap but poor at producing placements

with good HPWL. Thus, after deriving spreading forces from

the quad-tree, we solve a QP to derive a new set of “deflected”

spreading forces. To accomplish this, we first compute the

force gradient required to hold the current cells in place. To

this gradient, we add the new spreading forces (fS) to the QP,

as in (2), using a constant multiplier κ = 1. The solution to

this perturbed QP yields a set of new positions for the cells

in the netlist; however, the cells are not moved to these new

positions—rather, the new positions are subtracted from the

original positions of the cells to yield a new set of spreading

forces. Thus, the QP accomplishes a deflection of the forces

and yields new spreading forces which, empirically, result in

less harmful wire length. In other words, we effectively solve

a force-directed placement iteration along the lines of [7, 8],

but do not specifically accept the returned solution as the new

placement. Rather, we take this placement only to provide a

suggested direction in which cells can move to reduce overlap,

899

3

though the length of the step in this direction is yet unknown.1

The spreading forces derived by our quadratic “deflection”

technique are not sufficient, by themselves, to achieve high-

quality placements since the quadratic objective tends to be

sufficiently imprecise [5, 12]. To compensate, we compute ad-

ditional wire length-minimizing forces using BOXPLACE [8,

9]. In our approach, BOXPLACE is used to compute new

cell locations which reduce HPWL. As with the QP deflection,

however, cells are not actually moved by BOXPLACE—rather,

the new cell positions are subtracted from the cells’ original

positions to yield a directional “wire length” force.

The magnitudes of the individual components of the wire

length force tend to be much larger than the magnitudes of the

components of the corresponding spreading forces. We scale

the wire length force such that, for each cell, the components

possess no greater a magnitude than the cell’s corresponding

spreading force components. This helps to equalize the dis-

tance that a cell would move as a result of either force. Next,

we add the spreading and wire length forces together to create

a single, “unified” force, as shown in Figure 2. The parameter

α controls the preference between spreading and wire length

minimization—as the placement progresses, it allows us to

“rotate” the unified force toward either HPWL minimization or

overlap reduction.

B. Line Searching over the Force Weights

The unified force vector indicates the directions in which

to move cells, but does not indicate how far to move them to

achieve a good trade-off in overlap reduction versus increase

in HPWL. In other words, it is unclear how to scale the absolute

magnitudes of the unified force components to achieve good

spreading without ruining wire length. To this extent, we use

a line search to discover how far to step cells in the direction

of the forces in each iteration.

Our technique tests 20 different force weight multipliers to

determine the best possible step size in which to move the

1We note that, in the absence of fixed cells in a circuit, our placement
method still works—we simply avoid QP-deflected force computation and
rely entirely on forces from the quad-tree.

Fig. 2. Illustration of how spreading and wire length

forces are combined into a single, unified force. The

unified force can be “rotated” during placement via

the parameter α.

cells. For each candidate multiplier γ (which were determined

empirically), each force component is multiplied by γ and by

a “sliding” force weight (slideWt), and move the cells in

the direction of the resultant (scaled) force. Subsequently, the

HPWL is measured and a “spread metric” for the placement

is computed [8]. The quality of the placement is assessed by

comparing the ratios of the new and original HPWLs and spread

metrics:

score = β×
New_SM

Orig_SM
+(1−β)×

New_HPWL

Orig_HPWL
. (3)

In this formulation, β controls the preference between HPWL

and spread metric weighting (and was determined empirically).

After recording the objective function value, the cells’ po-

sitions are restored, and the next force weight multiplier is

tested, as above.

Once all points have been tested, the placement with the

best score is selected. The sliding force weight (slideWt) is

then set to the force weight (curWt) that yielded this best

placement. In this manner, our line search implements a “slid-

ing window” that tests sets of points within a specific range

around the current force weight. This allows the technique to

consider a wider range of potential force weights throughout

the placement process without having to test a larger number

of weights in any individual iteration.

One call to LINEPLACE is extremely fast, generally re-

quiring less than a second to complete on ibm18 (on a

Pentium 3.2 GHz machine). This performance is due to the

fact that spreading and wire length forces need only be

computed once—the individual iterations of the line search

simply measure incremental changes to the spread metric and

HPWL. Furthermore, the technique is amenable to parallel

computation because the forces are computed separately, as

is the evaluation of the HPWL and spread metric. Thus,

parallel threads could be employed to compute each force

and to evaluate the objective function criteria; we view this

opportunity for parallelism as being especially important with

the introduction of multi-core architectures [13].

In addition, the line search offers a significant advantage

over the work of [7–9] because it implements an easily-

tunable objective function which can be geared toward high-

performance placement (by encouraging faster spreading) or

toward high-quality placement (by preferring lower HPWL).

Since placements are tested against an objective function,

LINEPLACE can find the best force weight in which to move

cells, thereby accounting for (and “correcting”) small errors

in the forces. Furthermore, our line search can be extended to

account for additional objectives (such as timing and power)

simply by computing new forces and modifying the objective

function accordingly.

IV. MULTI-LEVEL PLACEMENT FLOW

We have found that a multi-level clustering approach can

significantly improve LSD’s placement quality. We have found

that multi-level clustering minimizes the negative impact of

spreading forces by helping to keep highly-connected cells

together. The line search method from Section III has been

integrated into a multi-level flow based on FDP [9], which we

now briefly describe.

900

4

A. Multi-Level Placement

The pseudocode for our multi-level placement flow is pre-

sented in Figure 3. A QP is first solved to determine the initial

positions of cells in the flat netlist. The flat netlist is then

clustered (using multiple passes) to 1000 cells via the physical

First Choice heuristic described in [9]. At most 40% of cells

are aggregated in one pass, so several “levels” of clustered

netlists are created, with the bottom-most netlist containing

approximately 1000 cells and the top-most netlist being the

flat netlist. At each level, clusters are positioned at a weighted

average location of their contained cells.

The most-clustered netlist is then iteratively placed to a

stopping value of approximately 30% overlap. In each inner

loop, LINEPLACE is used to place cells, as previously de-

scribed. The parameter α controls the “rotation” of the unified

force so that it points toward either wire length or overlap

minimization. In our implementation, we initially set α to

yield a 60%/40% mix between spreading and wire length

minimization, and then slowly increase it to favor 100%

spreading forces as the placement progresses.

Once the desired spread metric has been obtained, the netlist

is declustered, with cells placed at the centers of their former

clusters. BOXPLACE is called to move cells in the flat netlist

to improve wire length. Subsequently, the entire circuit is

reclustered up to a maximum of one less level than the number

of levels required for the previous clustering tree. As before,

line search-based placement is used to reduce overlap between

the clusters to approximately 30% and the process repeats.

The placer proceeds to legalization when it has placed the flat

netlist to approximately 30% overlap.

Two points are worth noting about this approach. First, by

repeatedly decrementing the maximum number of levels of

clustering, our approach places increasingly larger netlists until

it ultimately places the original (flat) netlist. Second, the use

of BOXPLACE and reclustering allow the physical clustering

technique to more accurately decide which cells should be

paired in subsequent clusters, which, in turn, improves the

quality of the clustering.

B. Movable I/Os

In many academic benchmark suites, I/Os are scattered

randomly around the periphery of the core [14, 15]. We have

devised a means of automatically reassigning and improving

the I/Os to reduce overall wire length based on a linear

assignment problem. Since the Bookshelf file format does not

specify a set of valid I/O positions, we assume that the valid

locations for I/OS are the set of positions in which they initially

appear. That is, we do not actually move pad locations, but

reassign the I/Os among the set of valid positions to improve

wire length. The edge costs in the assignment problem model

the bounding box cost of assigning an I/O to a candidate

position.

We use the Goldberg-Tarjan push-relabel, minimum-cost

flow solver [16]. While this technique has a worst-case bound

of O(|V |2|E| log |V |), it tends to be very fast in practice.

Furthermore, we note that the sizes of these assignment prob-

lems are generally well-bounded, as circuits do not typically

Procedure: MULTI-LEVEL PLACEMENT1

begin2

Determine initial cell positions by solving a QP;3

NumLevels← ∞;4

while NumLevels > 1 do5

Recluster flat netlist to at most NumLevels levels;6

NumLevels← number of levels in current clustering tree;7

metricTarget← current spread metric - 3% overlap;8

Set α to an initial value (determined empirically);9

slideWt← 1;10

while true do11

call LINEPLACE(α, slideWt);12

if spread metric shows less than ≈ 30% overlap then13

break ;14

else if spread metric ≤ metricTarget then15

Perform cell orientation optimization;16

call BOXPLACE to reposition cells and I/Os;17

Use linear assignment to reassign I/Os;18

metricTarget← current spread metric - 3% overlap;19

fi20

Increase α (based on an experimentally-determined rate);21

od22

Decluster netlist (placing cells at centers of clusters);23

call BOXPLACE on flat netlist;24

NumLevels← NumLevels−1;25

od26

Legalization and detailed improvement;27

end28

Fig. 3. Pseudocode for our multi-level flow.

possess more than 1000 placeable I/Os. After solving the

flow problem, I/Os are fixed in their assigned locations and

the placer continues as usual.

To further enhance the quality of the assignment, we allow

I/Os to move into the core (along with other cells) during the

occasional calls to BOXPLACE (after every 3% improvement

in overlap). This has the effect of repositioning I/Os in better

locations to reduce wire length. Subsequently, the minimum-

cost linear assignment formulation is used to snap I/Os back

to the nearest valid positions along the periphery.

By occasionally repositioning with BOXPLACE and snap-

ping using linear assignment, the I/Os are continually relocated

in more favorable positions as the design spreads. Empirically,

we have found that repositioning I/Os can yield a ≈ 5%

average improvement in wire length. Moreover, we note that

this approach is applicable to array-style I/O architectures in

which I/Os are located throughout the placement area (and not

just around the periphery).

C. Cell Rotation

In our flow, cells are greedily rotated and flipped to improve

wire length after every ≈ 3% improvement in the spread

metric. Once the spread metric indicates that there exists less

than ≈ 50% overlap remaining in the design, cells are only

allowed to flip (but not rotate), as rotating can re-introduce

large overlaps and cause convergence problems if performed

at the end of placement. We also note that BOXPLACE and

the QP can account for pin offsets as part of their numerical

formulation, and this helps to improve quality on designs with

non-zero offsets.

901

5

D. Legalization and Detailed Improvement

Our global placements are not valid in that residual overlap

may be present—movable objects may overlap with fixed

objects or, indeed, with each other. We begin by performing

a Tetris-like legalization along the lines of [2]. We legalize

toward the left edge of the layout area2, snapping movable

objects to their closest row. We keep track of the current

working edge of each row to estimate if a movable object

must be shifted to the right. This legalization serves to assign

movable objects to rows, but is not sufficient to create a

feasible placement as some movable objects may extend off

the right edge of the placement area. To obtain feasibility, we

use ideas from timing analysis and cell rippling.

We begin by creating buckets of cells. Multiple adjacent

standard cells are inserted into a bucket to form a “cluster of

cells” based on their row assignments and x-positions. Large

cells (e.g., macro cells) are inserted into their own buckets.

The widths of the buckets are determined by the widths of the

cells contained. Based on the row assignments and spanned

rows of each bucket, a constraint graph can be constructed

in the x-direction from left to right. The left and right edge

of the placement region is then considered a “primary input”

and “primary output”, respectively, for the graph. Similarly,

the left and right edges of fixed obstacles are also translated

into primary inputs and primary outputs. A “timing analysis”

can be performed on this graph to yield “paths” of buckets

(and their cells) that do not fit within the placement area or

between adjacent fixed objects. Such buckets will be identified

by the timing analysis as buckets with negative slack. Finally,

we consider these negative slack buckets in turn, and perform

cell rippling [17] to shift movable objects from buckets with

negative slack into buckets with positive slack. As cells are

rippled, we update the “timing analysis” incrementally and

terminate once there exist no buckets with negative slack.

Once we have a legalized placement with no overlap and

no placement violations, we proceed to detailed improvement.

Presently, our detailed improvement consists of greedy swap-

ping of same-sized cells (as this avoids the re-introduction of

overlap) and single row branch-and-bound optimization. We

do not employ methods for multiple row optimizations [2] or

for whitespace optimization although we believe that the future

incorporation of such techniques would improve our results.

V. NUMERICAL RESULTS

We compare our line search-directed placer, LSD, with

and without I/O reassignment, to other well-known aca-

demic tools (including Capo 9.1 [3], FengShui 5.0 [2],

FastPlace 1.0 [11], and Dragon 3.01 [18]) on both stan-

dard cell and mixed-size problems.3 We have run all placers

with default command line parameters on a 3.2 GHz Xeon with

2 GB RAM running Redhat Linux. All run-times are reported

2This does not imply that we pack tightly to the left—we attempt to preserve
the global placement as much as possible and do not perform any compaction
of whitespace.

3We omit direct comparisons with several tools due to space and unavail-
ability of executables. Comparisions of these tools to Capo and Fengshui in
the literature allow for indirect comparisions.

in minutes, and wire lengths are reported as pin-to-pin HPWL

(divided by 106).

A. Standard Cell Circuits

Our first set of experiments focuses on standard cell place-

ment problems obtained by modifying the ISPD02 IBM-MS

Mixed-size Placement Benchmarks [15]. These benchmarks

were modified by shrinking macro cells to standard cell dimen-

sions and adjusting the layouts to maintain a chip aspect ratio

close to 1.0 with 5% white space.4 Results on standard cell

placement problems are presented in Table I. Comparisons to

FengShui are not available because it crashed on all designs.

Some FastPlace results (as noted in the table by an asterisk)

are not legalized because the FastPlace detailed placer did

not complete after 5 hours.

We observe that LSD, without I/O reassignment, achieves

results that are, on average, 4% better than Capo, 16% better

than FastPlace, and only 2% worse than Dragon. Our run-

times are competitive, being 25% faster than Capo, 81% faster

than Dragon, though admittedly slower than FastPlace. Yet,

with I/O assignment, our tool offers 16% better quality than

FastPlace and 6% better quality than Capo for a modest

10% increase in run-time. It is interesting to note the unstable

behavior of FastPlace and FengShui on these circuits given

that only minor differences exist in whitespace and cell sizing

between our standard cell benchmarks and those used in [11].

B. Mixed-size Problems

Our second set of experiments focuses on mixed-size place-

ment problems. We use the ICCAD04 IBM-MSwPins Mixed-

size Placement Benchmarks [14]. Results are presented in

Table II. We observe that LSD, without I/O reassignment,

achieves results that are 10% better than Capo and 8% better

than FengShui on mixed-size designs. Run-times are also

favorable, with LSD being 37% faster than Capo, and only 26%

slower than FengShui. I/O assignment offers an improvement

of ≈ 5% in HPWL at the cost of only ≈ 14% in run-time,

bringing the quality of our placer to 12% and 15% better than

FengShui and Capo, respectively.

VI. CONCLUSIONS

We have described the implementation of a novel line

search technique for generic placement. Our method achieves

competitive results using a surprisingly simple approach which

“corrects” weighting errors in the spreading forces by testing

and evaluating a set of force multipliers. This technique

alleviates the need for the ad hoc scaling formerly used in [9].

Consequently, our method achieves improved quality with

good run-times compared to other academic tools.

We feel that there are still opportunities to improve the

quality and performance of our flow. Specifically, we are

working at reducing our tool’s memory footprint to improve

the handling of large designs. Moreover, we are investigating

better ways of handling global and detailed placement in

designs with fixed obstacles.

4The modifications to the benchmarks are available for download [19].

902

6

TABLE I. Results on modified ISPD02 circuits (macros reduced to row height).

Circuit FastPlace 1.0 Dragon 3.01 Capo 9.1 LSD LSD with I/O Assgn. WL Ratio (LSD vs.)

WL CPU WL CPU WL CPU WL CPU WL CPU FP Dragon Capo LSD I/O

ibm01 2.01 0.1 1.68 15.9 1.68 1.9 1.76 2.1 1.74 2.3 0.88 1.05 1.05 1.01

ibm02 3.83 0.2 3.64 14.2 3.71 4.1 3.76 4.9 3.63 5.3 0.98 1.03 1.01 1.04

ibm03 5.76 * > 300 5.45 13.2 5.69 5.4 5.29 4.6 5.64 4.7 n/a 0.97 0.93 0.94

ibm04 6.22 * > 300 6.19 25.7 6.59 6.8 6.22 5.3 6.12 5.9 n/a 1.00 0.94 1.02

ibm05 11.37 0.4 9.83 40.4 9.95 8.2 9.95 7.5 9.55 8.3 0.88 1.01 1.00 1.04

ibm06 5.73 0.3 5.07 29.7 5.71 7.2 5.23 5.8 5.19 6.3 0.91 1.03 0.92 1.01

ibm07 13.36 0.6 8.76 38.2 9.39 11.8 8.88 8.6 8.78 9.3 0.66 1.01 0.95 1.01

ibm08 10.14 0.8 8.76 92.7 9.54 12.9 8.98 10.9 8.99 12.2 0.89 1.03 0.94 1.00

ibm09 11.77 * > 300 12.69 83.2 12.61 14.1 11.44 9.6 10.82 10.6 n/a 0.90 0.91 1.06

ibm10 18.94 1.1 17.34 73.8 18.45 20.8 18.01 13.6 17.77 14.5 0.95 1.04 0.98 1.01

ibm11 16.53 * > 300 16.42 52.1 18.08 21.3 16.68 13.0 16.16 14.1 n/a 1.02 0.92 1.03

ibm12 26.51 1.4 22.50 80.7 24.32 26.8 23.00 14.7 22.62 16.6 0.87 1.02 0.95 1.02

ibm13 20.26 * > 300 20.93 67.8 24.07 26.6 19.62 16.1 19.85 18.3 n/a 0.94 0.82 0.99

ibm14 38.15 3.4 32.81 165.2 34.02 50.9 35.55 29.9 34.01 34.8 0.93 1.08 1.04 1.05

ibm15 45.65 * > 300 47.17 217.4 49.91 64.4 45.85 36.6 42.65 42.5 n/a 0.97 0.92 1.08

ibm16 45.89 5.0 44.97 250.8 47.00 69.2 47.30 46.7 45.06 47.7 1.03 1.05 1.01 1.05

ibm17 122.06 7.1 65.14 532.2 67.76 81.5 64.89 52.0 63.04 57.9 0.53 1.00 0.96 1.03

ibm18 58.49 7.8 41.36 475.8 43.55 73.4 44.46 58.6 45.81 66.8 0.76 1.07 1.02 0.97

Avg. 0.86 1.01 0.96 1.02

TABLE II. Results on the ICCAD04 mixed-size circuits.

Circuit FengShui 5.0 Capo 9.1 LSD LSD with I/O Assgn. WL Ratio (LSD vs.)

WL CPU WL CPU WL CPU WL CPU FS Capo LSD I/O

ibm01 2.46 1.8 2.54 2.7 2.42 2.2 1.97 2.4 0.98 0.95 1.23

ibm02 5.75 3.1 5.10 5.0 5.11 4.3 4.58 4.7 0.89 1.00 1.12

ibm03 8.48 3.4 9.37 13.2 7.08 5.1 6.46 5.1 0.83 0.76 1.10

ibm04 8.71 3.9 9.41 9.8 7.69 4.8 7.42 5.6 0.88 0.82 1.04

ibm06 6.98 5.4 7.35 9.8 6.20 5.9 6.55 6.7 0.89 0.84 0.95

ibm07 11.78 7.2 12.70 14.7 10.57 9.2 10.12 9.0 0.90 0.83 1.04

ibm08 14.16 8.7 13.65 16.3 13.30 10.9 12.08 12.3 0.94 0.97 1.10

ibm09 14.95 8.4 15.88 16.7 13.30 10.8 13.03 12.8 0.89 0.84 1.02

ibm10 35.89 12.9 32.88 29.9 30.70 14.0 27.98 20.8 0.86 0.93 1.10

ibm11 20.37 12.4 22.51 24.1 18.41 14.4 17.57 16.6 0.90 0.82 1.05

ibm12 40.33 13.5 39.01 33.1 36.46 22.3 35.74 24.3 0.90 0.93 1.02

ibm13 25.41 14.6 27.83 30.1 23.60 17.8 21.91 20.0 0.93 0.85 1.08

ibm14 38.34 28.8 40.60 55.7 37.84 33.1 36.70 38.4 0.99 0.93 1.03

ibm15 50.71 35.0 55.89 67.6 47.69 37.4 49.07 42.3 0.94 0.85 0.97

ibm16 59.73 38.7 65.38 76.0 61.27 42.3 56.97 50.4 1.03 0.94 1.08

ibm17 71.08 43.1 73.29 84.4 69.45 54.2 70.48 65.3 0.98 0.95 0.99

ibm18 45.34 45.2 47.77 65.2 44.88 66.2 44.76 72.1 0.99 0.94 1.00

Avg. 0.92 0.89 1.05

REFERENCES

[1] T. Taghavi, X. Yang, and B.-K. Choi, “Dragon2005: large-scale mixed-
size placement tool,” in Proc. ISPD, 2005, pp. 245–247.

[2] A. R. Agnihotri, S. Ono, and P. H. Madden, “Recursive bisection
placement: feng shui 5.0 implementation details,” in Proc. ISPD, 2005,
pp. 230–232.

[3] J. A. Roy et al., “Capo: robust and scalable open-source min-cut
floorplacer,” in Proc. ISPD, 2005, pp. 224–226.

[4] A. B. Kahng, S. Reda, and Q. Wang, “Aplace: a general analytic
placement framework,” in Proc. ISPD, 2005, pp. 233–235.

[5] T. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed
method for circuit placement,” in Proc. ISPD, 2005, pp. 185–192.

[6] K. Chaudhary and S. K. Nag, “Method for analytical placement of cells
using density surface representations,” United States Patent 6,415,425,
July 2002.

[7] H. Eisenmann and F. M. Johannes, “Generic global placement and
floorplanning,” in Proc. DAC, 1998, pp. 269–274.

[8] K. Vorwerk, A. Kennings, and A. Vannelli, “Engineering details of a
stable analytic placer,” in Proc. ICCAD, 2004, 573–580.

[9] K. Vorwerk and A. Kennings, “An improved multi-level framework for
force-directed placement,” in Proc. DATE, 2005, pp. 902–907.

[10] B. Hu and M. Marek-Sadowska, “FAR: Fixed-points addition & relax-
ation based placement,” in Proc. ISPD, 2002, pp. 161–166.

[11] N. Viswanathan, M. Pan, and C. C.-N. Chu, “Fastplace: an analytical
placer for mixed-mode designs,” in Proc. ISPD, 2005, pp. 221–223.

[12] A. Kennings and I. Markov, “Analytical minimization of half-perimeter
wirelength,” in Proc. ASPDAC, 2000, pp. 179–184.

[13] D. Pham et al., “The design and implementation of a first-generation
CELL processor,” in Proc. International Solid-State Circuits Conference,
2005.

[14] S. N. Adya et al., “Unification of partitioning, placement and floorplan-
ning,” in Proc. ICCAD, 2004, pp. 550–557.

[15] S. Adya and I. Markov, “ISPD02 mixed-size placement benchmarks,”
http://vlsicad.eecs.umich.edu/BK/ISPD02bench, Current July 2004.

[16] B. V. Cherkassky and A. V. Goldberg, “On implementing the push-
relabel method for the maximum flow problem,” Algorithmica, vol. 19,
no. 4, pp. 390–410, 1997.

[17] S.-W. Hur and J. Lillis, “Mongrel: Hybrid techniques for standard cell
placement,” in Proc. ICCAD, 2000, pp. 165–170.

[18] X. Y. M. Wang and M. Sarrafzadeh, “Dragon2000: Standard-cell place-
ment tool for large industry circuits,” in Proc. ICCAD, 2000, pp. 260–
263.

[19] http://gibbon.uwaterloo.ca.

903

