
ABM-SpConv: A Novel Approach to FPGA-Based Acceleration of
Convolutional Neural Network Inference

Dong Wang, Ke Xu, Qun Jia
Beijing Jiaotong University

Beijing, China
{wangdong,17112071,16120347}@bjtu.edu.cn

Soheil Ghiasi
University of California, Davis

Davis, CA, USA
ghiasi@ucdavis.edu

ABSTRACT

Hardware accelerators for convolutional neural network (CNN) in-

ference have been extensively studied in recent years. The reported

designs tend to utilize a similar underlying architecture based on

multiplier-accumulator (MAC) arrays, which has the practical con-

sequence of limiting the FPGA-based accelerator performance by

the number of available on-chip DSP blocks, while leaving other re-

source under-utilized. To address this problem,we consider a trans-

formation to the convolution computation, which leads to trans-

formation of the accelerator design space and relaxes the pressure

on the required DSP resources. We demonstrate that our approach

enables us to strike a judicious balance between utilization of the

on-chip memory, logic, and DSP resources, due to which, our ac-

celerator considerably outperforms state of the art. We report the

effectiveness of our approach on a Stratix-V GXA7 FPGA, which

shows 55% throughput improvement, while using 6.25% less DSP

blocks, compared to the best reportedCNN accelerator on the same

device.

1 INTRODUCTION

Convolutional Neural Network (CNN) has become the dominate

approach in many artificial intelligence (AI) applications, such as

computer vision, speech recognition and robotics. Many studies

[11] have been carried out to design various CNN hardware ac-

celerators for real-time processing. Being able to provide massive

computational resources with flexible data precision, lower power

dissipation and shorter deployment cycle, FPGA-based CNN infer-

ence accelerator has received great attention in various application

fields from large-scale data-centers to energy-constrained IoT de-

vices.

One of the key challenges in designing FPGA-based CNN accel-

erator is to take full advantage of the on-chip computing resource

to speedupmultiply-and-accumulate (MAC) operations in the con-

volution (CONV) and fully-connected (FC) layers, which account

for over 99% [9] of the total operations for most CNNs. According

to the way in which convolution computation is implemented, ex-

isting designs can be divided into three major categories. The first

category of designs, such as [4, 12, 13], directly exploit parallelism

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317753

�
�

�
��

��
��

�	
�

�
��

�
��

��

�
�

��
�

����
���

� ��
� 	���
��	�
��� ��
��
���������
��

������

������
	 �
����

� ���� ��	

���
�� ������

��� ������
���	�

��
�
�
����

� ���� ���� ��	

���� ������

���� �����	�

��
���� �� ����

� ���� ��	

���
� ������

����� �����	�

��
����
�� ��
� ����

�

��
�

���
��
��

� !
"
#
�

$�#�	�
�
��
% ����

Figure 1: Comparing the design space of traditional MAC-

based accelerator with the proposed architecture in a

roofline model for Stratix-V-A7 FPGA.

of the convolution computation in Spatial Domain (referred to as

SDConv) by using large number of DSP blocks performingmassive

number of MAC operations in every cycle. As shown in Figure 1,

the design space of SDConv-based accelerator has a computational

roof of 2×Nmac × Freq, where Nmac and Freq denote the number

of on-chip MAC units and the operating frequency, respectively.

For instance, on a Stratix-V-A7 FPGA which has 256 DSPs, the

maximum attainable inference throughput is 204.8 GOP/s under

frequency of 200 MHz. (each DSP can perform two 16/8-bit fixed-

point MACs).

The second category of designs [3, 10] perform convolution in

the Frequency Domain (referred to as FDConv). By reducing the

number ofMACoperations required for convolution, FDConv-based

accelerator raises the computational roof over SDConv-based de-

sign by a factor of Rmac , where Rmac is the reduction rate in MAC

operation. For instance, up to 69.2% of the MAC operation is saved

in [3], resulting in a theoretical speedup of 3.3× in peak perfor-

mance. The throughput achieved by [3] on a Intel HARP platform

is 669.1 GOP/s, which is very close to this roof.

The third type of designs reduce the number of MAC operations

by directly pruning the CNN model [1, 2, 8]. Unimportant weights

are forced to zero during the training (or fine-tuning) stage so that

they will not contribute to computational workload and memory

bandwidth in inference. Convolution performed on a pruned CNN

model is referred to as Sparse Convolution (SpConv). The design

space of SpConv-based accelerators share a similar computational

roof of 2×Rmac ×Nmac × Freq with FDConv-based ones. The per-

formance of the reported SpConv-based FPGA accelerators have

not exceed that of [3].

From an architecture view, existing FPGA accelerators tend to

utilize a similar underlying architecture based onMAC arrays. The

practical consequence is that the on-chip DSPs are exhausted, while

Table 1: Comparison of the #OP required by different convolution approaches for selected layers and the entire VGG16 model.

Layer Parameters #OP (MOP)

Pruning ABM-SpConv

Layer C R N K×K M Ratio SDConv FDConv[3] SpConv[7] Acc. Mult. Acc./Mult.

CONV1_1 224 224 3 3×3 64 42% 173 52.5 100 50.3 12.1 4.1
CONV1_2 224 224 64 3×3 64 78% 3,699 1,119 814 407 119 3.4
CONV4_1 28 28 256 3×3 512 68% 1,849 559 592 296 9.23 32.0
CONV4_2 28 28 512 3×3 512 73% 3,699 1,119 998 499 7.95 62.7

FC6 1 1 25088 1×1 25088 96% 205 205 8.23 4.11 0.037 111
FC7 1 1 4096 1×1 4096 96% 33.6 33.6 1.34 0.67 0.021 31.9

Entire CNN 30,941 9,531 10,082 5,040

#OP Saved 0% 69.2% 67.4% 83.6%

leaving other resource under-utilized. In this paper, we improve

the performance of FPGA-based CNN inference accelerator beyond

MAC-based designs by transforming the accelerator design space

in which the computational roof is bound by accumulator resource

rather than MAC. The insight enabling this idea is that quantized

CNN models only have a fixed number of possible values (For in-

stance, 16 values for a 4-bit fixed-point number), so many multi-

plications performed in convolution can be avoided by factorization.

To this end, we first develop a new approach which performs the

multiplication and accumulation operations of convolution in sep-

arated stages. Then, we design a heterogeneous hardware archi-

tecture comprised of a “big” accumulator array and a “small” mul-

tiplier array on which the two stages of convolution can be effi-

ciently mapped. Our scheme transforms the design space of FPGA-

based CNN accelerators to one with a raised computational roof of

2 × Nacc × Freq, where Nacc is the number of accumulators used

and Nacc is much larger than Nmac as shown in Figure 1

In summary, the contributions of this work are:

• WeproposeABM-SpConv, a new sparse convolution scheme

which achieves a higher arithmetic intensity for accumula-

tion than multiplication so that the computational roof of

the accelerator design space is transformed as accumulator-

bound.

• We propose an FPGA accelerator architecture which con-

sists of heterogeneous arrays of accumulators and multipli-

ers to match the distinct computation flow of ABM-SpConv.

Several optimization schemes, including semi-synchronous

parallel processing and index-based weight encoding, are

developed to ensure highly efficient data-path utilization

and low external memory bandwidth requirement.

• A complete flow for design space exploration is introduced,

and key design steps for finding the optimal hardware pa-

rameters are developed. The implemented accelerator achieves

1.55× speedup in inference throughput compared to the state-

of-the-art design on a Stratix-V GXA7 FPGA.

2 PRELIMINARIES

CNNs are composed of multiple functional layers [11], each of

which performs certain type of arithmetic operations on the in-

put image or feature map. As the most compute-intensive layer,

convolution computation is comprised of iterative 3-dimensional

(3-D) MAC operations as follow:

FOm,r ′,c ′ =

N−1∑
n=0

K−1∑
k=0

K−1∑
k′=0

FIn,r ′ ·S+k ,c ′ ·S+k′ ·Wm,n,k ,k′ (1)

where S denotes the convolution stride. FIn,r ,c , FOm,r ′,c ′ andWm,n,k ,k′

denote the input and output feature maps and the weight, which

are of the sizeN×R×C ,M×R′×C ′, andM×N×K×K , respectively. A

convolution kernel is defined as the 3-D MAC operation that gen-

erates one feature map pixel, while channels refer to the feature

matrices of size R × C or R′ × C ′. For FC computation, Equation

(1) can be reused by setting R = 1,C = 1 and K = 1, which be-

comes a 1-D inner-product operation. Table 1 gives an example of

the dimensional parameters and the number of operations (#OP)

for the VGG16 [5] model that has been widely used as a perfor-

mance benchmark in the literature. Due to limited space, only the

numbers for a few selected layers and the entire CNN are shown.

3 THE ABM-SPARSE CONVOLUTION

In this section, we introduce the Accumulate-Before-Multiply Spar-

se Convolution (ABM-SpConv) scheme. The key idea is to perform

accumulate and multiply operations in separated steps so that the

arithmetic intensity of multiplication can be reduced by removing

redundant operations, which consequently relaxes the demand for

DSP units when implemented on FPGA.

Assuming that weightW is quantized and kept in fixed-point

format with q-bit precision, there exists at most Q = 2q different

values for W . By denoting these fixed-point value as W̄p , where

p = 0, · · · ,Q−1, we perform factorization on Equation 1 as follow:

FOm,r ′,c ′ =

∑
w

FI0(w) ·W̄0 + · · · +
∑
w

FIQ−1(w) · W̄Q−1

=

Q−1∑
p=0

(
W̄p ·

∑
w

FIp (w)

) (2)

where FIp (w) represents the input feature pixels that are multi-

plied by the same weight W̄p in a convolution kernel. Based on

this new equation, we propose to conduct the convolution compu-

tation in a two-stage flow as follow:

(1) For each non-zero W̄p , find and Accumulate all the feature

points FIp (w) in the convolution kernel, producing Q − 1

partial products in total;

(2) Multiply each partial product with the corresponding W̄p

and do a final accumulation to obtain the output value for

the current convolution kernel.

Iteratively repeating step (1) and (2) for all convolution channels

will generate allM × R′ ×C ′ output feature map pixels.

Studies [6] have shown that the weight can be quantized with

8-bit (or less) precision with less than 1% decrease in inference ac-

curacy. Thus, with a 8-bit quantized weight, our scheme requires

at most 256 rather than N × K × K multiplications for each con-

volution kernel (For pruned weight, the actual number is much

smaller than 256). On the other hand, accumulation of FIp (w) for

W̄p = 0 can be easily skipped in the computation flow, which

means that hardware implementation can also exploit sparsity to

reduce computation complexity and memory footprint for weight

storage. In Table 1, we report the number of addition and mul-

tiplication required when performing ABM-SpConv on a pruned

VGG16 model [7]. 83.6% of the total operations (accumulate and

multiply) is saved compared to SDConv, while the reduction over

FDConv [3] and SpConv [7] are 47.1% and 50%, respectively.

4 HARDWARE ARCHITECTURE

4.1 Design Challenges

The new convolution scheme introduces the following novel de-

sign challenges: (i) The irregular sparsity pattern among different

convolution kernels introduces imbalanced workload, which pre-

vent us from achieving full parallelism of convolution on an ac-

celerator architecture consisting of tightly-synchronized executed

processing elements, such as MAC array. (ii) The accumulate and

multiply operations have different arithmetic intensity and are car-

ried out in two distinct computation stages. Mapping both opera-

tions on a homogeneous hardware architecture causes low utiliza-

tion of computational resources. (iii) The algorithm also requires

randommemory access to the feature map data in memory accord-

ingly to the irregular locations of the weights, which degrades the

efficiency of external memory bandwidth and requires complicated

data flow control in data path design. In the following section, we

discuss our proposed hardware architecture, which addresses the

aforementioned design challenges.

4.2 Architecture Design

Figure 2-(a) shows the overall architecture of the proposed ABM-

SpConv accelerator, including a task scheduling unit, a fetch/store

unit and multiple convolution units (CUs). The task scheduler de-

tects the status of each CU and, whenever there is an idle CU, it

launches a new computation task on that CU. As depicted in Fig-

ure 3, a computation task is defined as a group of convolution op-

erations that are performed on a prefetch window of the input fea-

ture map. Each CU has its own loop counter so that it can indepen-

dently execute tasks with varying workload. Synchronization of

the CUs is infrequently conducted, only when feature map buffers

are updated with new data. Measured CU utilization data (see Sec-

tion 6) show that this semi-synchronous CU architecture success-

fully solves the first design challenge.

Convolution Unit. To address the second design issue, we pro-

pose a heterogeneous CU architecture of two independent arrays

�����������

���
�����

����
��������� ���������

 ��������
!���"��

����
���
�����

� !"
���������
 ��������
!���"��

����
���
�����

� !#

���������
 ��������
!���"��

����
���
�����

� !$
���������
 ��������
!���"��

����
���
�����

� !%

(a)

���������

 ��������

!���"��

�������
#��������

&		
�
'�
��
&����

(
'
��'���
&����

��� 	
$����

���� 	
�������

%

%
��� 	
$����

(b)

Figure 2: The proposed hardware architecture. (a) high-level

architecture. (b) architecture of the convolution unit.

of accumulators and multipliers as shown in Figure 2-(b). The accu-

mulator array accumulates the input feature map FIp pixels which

share the same weight W̄p and stores the partial results into fol-

lowing FIFOs. The multipliers then read the partial result, multiply

it by the fixed-point W̄p and send the product to the Sum/Round

logic for final processing. We further separate the accumulators

into groups such that every Nд accumulators share one multiplier

in the data-path. During convolution, the multiplier dynamically

chooses the outputs of upstream FIFOs as its input operand in a

round-robin manner. With a proper setting of FIFO depth, the two-

stage convolution computation can be efficiently pipelined. This

hardware structure enables the accelerator to use Nд times more

accumulators than DSPs to speedup CNN inference computation.

In the final design, 16-bit accumulator and 16b-by-16b multiplier

are adopted to ensure full-precision fixed-point computation and

no information loss during convolution, which guarantees the va-

lidity of Equation (2). Rounding is performed only once before writ-

ing feature map data back to main memory.

On-ChipBuffer. Figure 4 illustrates how the prunedCNNmodel

is encoded and stored in a pair of local buffers. To alleviate the

overhead of data-path control, we propose to encode the indexes

(n,k,k ′) of the non-zero weights according to the order of cor-

responding W̄p in the weight buffer (WT-Buffer). Another small

buffer (Q-Table) is designed to store extra information, including

the fixed-point value (VAL) ofW̄p , the corresponding number (NUM)

of occurrence of indexes and the total number of occurrence of the

encoded weights, which are used by the loop counter and multi-

pliers. A dedicated Address Generator is designed to decode the

weight on-the-fly, map the indexes onto the feature map domain

 �
�

 ���

$���&'

)���� *

)���� "

)���� #

)���� $

$���&����

(
��

+

���� ��) # * '+ �+ �+ ,+

,��

��
���

(
�� -

+
,��

��

���

-����

-����

�����
	� -�����

������

� !"

� !#

���� ��) # * �+ �+ .+ /+

��������	
�	
�
�
����

Figure 3: Computation task mapping and batched input im-

ages/feature prefetching schemes.

* *

" $ #

!" * "

��
��� -����

�

* " !"

" !% !"

* * *

�.*

�."

-�!/
����

0&1 � (

2!���'�

""
!% "
!" $
" %
#
$ "

3 3
" " "
* # *
" * #
" " #
* " *
* # #
" * "
" " *
* * *
* " #
* " "

4�	���

Figure 4: The proposed sparse weight encoding scheme. A

simplified case forM = 1,N = 2,K = 3. Weighs are quantized

in 3-bit, i.e., 1 sign bit and 2 integer bits.

and load continuous data stream from the feature map buffer (FT-

Buffer). As illustrated in Figure 3, batched feature maps are cached

in terms of prefetch window and feature matrices are vectorized

so that data-level parallelism is exploited to further increase the

throughput of the accelerator. The width of the local buffers FT-

Buffer, WT-Buffer and Q-Table are 8 · Svec , 16 and 16 bits, respec-

tively.

Design Parameters. The proposed architecture can be config-

ured by the following design parameters to achieve flexible perfor-

mance and hardware cost:

(1) Ncu – the number of parallel CUs; Nknl – the maximum

number of convolution operations that can be executed in

parallel on one CU; Nд – the number of accumulators that

share the same multiplier.

(2) Svec – the width of the vectorized input data.

(3) Df , Dw and Dq – the depth of the local feature, weight and

Q-Table buffers, respectively.

5 DESIGN SPACE EXPLORATION

In this section, we define themathematical models for design space

exploration and then, present the complete flow and show how the

models are applied.

5.1 Performance and Resource Estimation
Models

The Performance Model, Bandwidth Model and Resource Require-

ment Model used in the proposed design space exploration flow

are defined as follow:

���������)��

 ,�'�� ������ ���	� 45�'���
���

,��& &		�'���
�� ������
���

��� (���' ������6

��
���
(���'

7 ������

0��%

(���' ��
����

(��

&		
��	� 8

9- ����
����

(��

����
����
 8

:��

��

��

:��

(���'
&�	�6

�
�

�
(

��
�'

�
�

��
��

(���' &��'���� 7 4�	�����

�� �� �)

�'�
����
�����	
���;�
���

/������
�
&��'����

���

�����'�
���

 ��� 0�	

,��� &

�����'�
���������	�

01

Figure 5: Overview of the design space exploration flow.

Performance Model. The theoretical execution time for the

l-th convolution layer is calculated by:

Tl =
#OPl

Svec · Ncu
·
CEIL(R′/Nknl)

R′
·

1

Freq
(3)

where #OPl is the number of accumulations performed in layer l .

Then, the average performance (image/s) can be estimated by

Ptotal =
1∑
Tl

·Utilization. (4)

Bandwidth Model. As show in Figure 3, the whole input fea-

ture map for the l-th layer is processed after Gr
l
· Gc

l
times of

prefeching, where Gc
l
and Gr

l
equal

Gc
l
= CEIL

(
C

FLOOR[(Swin − K)/S] + 1

)
, Gr

l
= CEIL

(
R′

Nknl

)
Consequently, the total amount (Byte) of feature map data that are

transmitted from external memory per image is

Hf =

∑
l

(
Gc
l
·Gr

l
· Swin · [(Nknl − 1) · S + K] · N

)
(5)

The corresponding amount of encoded weight that is fetched per

image (assuming a minimum batch size of Svec) is

Hw =

∑
l

[
2 ·Gc

l
·Gr

l
·M · N · K2 · (1 − Pl)

]
/Svec (6)

where Pl denotes the pruning rate of the l-th layer. In total, the

average external memory bandwidth can be estimated by

Htotal =
Hw + Hf∑

Tl
(7)

Resource Requirement Model. The following equations are

used to estimate the required hardware resources, including logic,

DSP and on-chip memory, respectively.

Cloдic = C0 + (C1 +C2 · Svec · Nknl) · Ncu (8)

Cdsp = C3 + [C4 + (Svec · Nknl)/4] · Ncu (9)

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
N

knl

0

2

4

6

8

10

P
er

fo
rm

an
ce

 in
cr

em
en

t (
im

ag
e/

s)

N
cu

=2,S
vec

=4

N
cu

=2,S
vec

=8

N
cu

=2,S
vec

16

N
cu

=3,S
vec

=4

N
cu

=3,S
vec

=8

N
cu

=3,S
vec

=16

optimal

Figure 6: Exploration for the optimal value of Nknl . An op-

erating frequency of 200MHz is assumed.

2 4 6 8 101214

S
vec

161820220
24

10

1

20

262

T
hr

ou
gh

pu
t (

im
ag

e/
s)

3

30

N
cu

284

40

5 306 7 328

optimal design candidates

Figure 7: Exploration for the attainable throughput. The ex-

ample shown is for VGG16 with Nknl = 14, Nд = 4 and

Freq = 200MHz. The constraint for logic utilization is 75%.

Cmem = C5 + (C6 · Svec +C7 · Nknl) · Ncu (10)

where C0 to C7 are platform-dependent constants which can be

determined by characterizing the target FPGA.

5.2 Exploration Flow

The proposed design space exploration flow is illustrated in Fig-

ure 5. The flow first analyzes the network structure of the tar-

get CNN, encodes the pruned model layer-by-layer according to

the proposed weight encoding scheme and determines the buffer

sizes of Dw and Dq . At the same, the ratio of the arithmetic in-

tensity between accumulate and multiply operations is analyzed

and Nд is determined to fit the minimum ratio (see last column in

Table 1). The Performance Model is then used to estimate the in-

ference throughput for different values of design parameter Nknl .

During this stage, preset values are assumed for parameters Svec
and Ncu . The optimal Nknl is selected in a way that normalized

performance boost is maximized as shown in Figure 6.

In the following stage, several rounds of fast compilation of the

design code (OpenCL kernels) are carried out for the target FPGA

device, and hardware resource utilization information, including

logic, DSP and on-chip memory, are collected. Design constants

which characterize the hardware cost of the accelerator are then

solved based on the resource information and the Resource Require-

ment Model.

In the final stage, the attainable performance is explored in a

Svec -Ncu design space by using the Performance Model as depicted

in Figure 7. Constraints of full utilization of the DSP and memory

resources are applied during exploration. However, a strict budget

on logic resource (such as 70%)may leads to failure in FPGA compi-

lation or large degradation in operating frequency. Therefore, sev-

eral design candidates with close logic utilization ratio are selected

for final implementation. Moreover, because pruned CNN models

are adopted in the design flow, the size of the encoded weight is

much smaller than original model (see Table 3). The external mem-

ory bandwidth spent on weight transmission is significantly re-

duced compared to previous works. By using the BandwidthModel,

we have verified that our design is compute-bound for most FPGA

devices.

6 RESULTS

6.1 Experimental Setup

We use the DE5-Net platform for performance evaluation. The on-

board FPGA is an Intel Stratix-V GXA7 device, which has 234,720

ALMs, 256 DSP blocks and 2560 M20K memory resources. DDR3

SDRAM is attached to the FPGA providing 12.8 GB/s external mem-

ory bandwidth.

A high-level-synthesis (HLS)-based FPGA design methodology

was adopted in hardware implementation. The proposed architec-

ture was modeled in OpenCL kernels and compiled by using the

Intel FPGA OpenCL SDK v17.1. FPGA executes all convolution and

FC layers, while the remaining layers, such as pooling, LRN and

softmax, are executed by the host program on CPU. By adopting

pipelined processing, the execution time of CPU were hidden by

FPGA. The proposed accelerator is evaluated by running inference

computation of two CNNs (AlexNet and VGG16) and the design pa-

rameters configured are summarized in Table 3. Both models were

pruned by the scheme proposed by Han et al. [7] and quantized

with 8-bit precision [6] with less than 1% accuracy drop compared

to the original model.

6.2 Comparison with State-of-the-Art

Table 2 summarizes the comparison with state-of-the-art FPGA ac-

celerators. As in other studies, throughput is calculated as the total

#OP for spatial convolution of the original model divided by the av-

erage inference time. Moreover, in order tomake a fair comparison,

we only use the number achieved by FPGA accelerator rather than

the whole system in the following discussion. Designs of [4, 12, 13]

are based on spatial convolution, while the works of [3, 10] use fre-

quency domain convolution.

The latest work of [3] uses a frequency domain convolution

scheme which gains 3.3× reduction in MAC operations for both

CNN models. For VGG16, the model pruning scheme adopted in

our design maintains a similar reduction rate of 3.06×. The im-

plemented accelerator achieves 1.55× speedup in throughput com-

pared to [3] as a result of being able to utilize 1.6× accumulators

to accelerate the convolution computation. Note that, although our

scheme quantizes the CNNmodel in 8-bit, the precision of the data-

path is of the same (16-bit) as [3]. For AlexNet, the pruning scheme

adopted by us only reduces the total MAC operations by 2.3× (30%

Table 2: Comparison with state-of-the-art FPGA CNN accelerators.

[13] [12] [4] [10] [3] [3] Proposed

SDConv SDConv SDConv FDConv FDConv FDConv ABM-SpConv

CNN Model AlexNet VGG16 VGG16 AlexNet AlexNet VGG16 AlexNet VGG16

FPGA Stratix-V Arria-10 Arria-10 Arria-10 Stratix-V Stratix-V Stratix-V Stratix-V

GXA7 GT1150 GX1150 GX1150 GXA7 GXA7 GXA7 GXA7

Freq. (MHz) 100 231 385 303 200 200 202 204

Model Precision (bit) 8-16 (fixed) 8-16 (fixed) 16 (fixed) 16 (float) 16 (fixed) 16 (fixed) 8 (fixed) 8 (fixed)

Logic Usage (ALM) 121K (52%) 313K (73%) – 246K (58%) 107K (46%) 107K (46%) 170K (73%) 160K (68%)

DSP Usage 256 (100%) 1500 (98%) 1378 (91%) 1476 (97%) 256 (100%) 256 (100%) 243 (95%) 240 (94%)

On-chip Memory (M20K) 1552 (61%) 1668 (61%) 1450 (53%) 2487 (92%) 1377 (73%) 1377 (73%) 2460 (96%) 2435 (95%)

Design Methodology RTL RTL RTL+OpenCL OpenCL RTL RTL OpenCL OpenCL

Throughput (GOP/s) 134.1 1171 1790 1382 663.51(780.62) 662.3(669.1) 699 1029

Perf. Density (GOP/s/DSP) 0.52 0.78 1.29 0.94 2.59 2.58 2.87 4.29

1 Performance achieved by FPGA accelerator.
2 Overall system performance.

Table 3: Design parameters and size of encoded weights.

Design Parameter Weight Size (MB)

Nknl Ncu Nд Svec Df Dw Dq Original Encoded

AlexNet 14 3 4 20 1152 1024 128 61 11.9
VGG16 14 3 4 20 1568 2048 128 138 26.4

lower than that of [3]), but our scheme still improves the inference

throughput by 5.4%.

When compared with design that implements spatial convolu-

tion [13] on the same device, we achieve considerably 3.8× im-

provement in throughput when normalized by frequency. To com-

pare with [4], [12] and [10] that are implemented on a different

type of FPGA device, we further normalize the performance by

the number of DSPs used. It is clear that our design shows over 3×

advantage in performance density than all three designs.

7 RELATED WORK

Study of [1] presented an energy-efficient accelerator that deployed

sparse convolutional neural networks on a Artix-7 FPGA. Tech-

niques presented in this work were resource utilization and power

optimization orientated. The CNN model evaluated was of low

complexity (0.44 GOP) and the performance achieved was only

31.79 GOP/s. In [8], the authors reported an design framework

which mapped sparse CNNs onto FPGA accelerator. The reported

performance was 271.6 GOP/s on a Zynq VC706 FPGA without

further information disclosed on resource utilization and working

frequency. The work of [2] presented an algorithm-hardware co-

design scheme to improve the efficiency of sparse convolutional

layers executed in hardware. A structurally pruned AlexNet model

was accelerated on a Virtex VC707 board and only the execution

efficiency (64.5%) was disclosed, which was also lower than ours

(87% for VGG16 and 81% for AlexNet). For the first time, we present

a sparse-convolution-based FPGA accelerator for high-throughput

CNN inference that surpasses the performance of state-of-the-art

design on the same device.

8 CONCLUSIONS

This work presented the first high-throughput FPGA accelerator

design which targeted efficient implementation of sparse convo-

lutional neural network. A new sparse convolution scheme along

with an efficient hardware architecture were developed. By trans-

forming the design space of FPGA-based accelerator from MAC-

bound to accumulator-bound, our design successfully achieved 1.55×

throughput improvement over the best frequency-domain-convol-

ution-based accelerator on the same FPGA device.

ACKNOWLEDGMENTS

Thisworkwas partially supportedbyNNSF of China GrantsNO.61-

574013, 61532005, 61702286, 61503300and theNSF of Tianjin NO.18-

JCYBJC15600.

REFERENCES
[1] A. Page et al. 2017. SPARCNet: AHardwareAccelerator for Efficient Deployment

of Sparse Convolutional Networks. J. Emerg. Technol. Comput. Syst. (2017).
[2] B. Li et al. 2018. Running sparse and low-precision neural network: When algo-

rithm meets hardware. In ASP-DAC 2018.
[3] H. Zeng et al. 2018. A Framework for Generating High Throughput CNN Imple-

mentations on FPGAs. In FPGA 2018.
[4] J. Zhang et al. 2017. Improving the Performance of OpenCL-based FPGA Accel-

erator for Convolutional Neural Network. In FPGA 2017.
[5] K. Simonyan et al. 2014. Very Deep Convolutional Networks for Large-Scale

Image Recognition. CoRR abs/1409.1556 (2014). arXiv:1409.1556
[6] P. Gysel et al. 2018. Ristretto: A Framework for Empirical Study of Resource-

Efficient Inference in Convolutional Neural Networks. IEEE Trans. Neural Net-
works and Learning Systems 29, 11 (Nov 2018), 5784–5789.

[7] S. Han et al. 2015. Deep Compression: Compressing Deep Neural Network
with Pruning, Trained Quantization and Huffman Coding. CoRR abs/1510.00149
(2015). http://arxiv.org/abs/1510.00149

[8] S. Li et al. 2017. An FPGA Design Framework for CNN Sparsification and Accel-
eration. In FCCM 2017.

[9] T. Yang et al. 2017. Designing Energy-Efficient Convolutional Neural Networks
Using Energy-Aware Pruning. In CVPR 2017.

[10] U. Aydonat et al. 2017. An OpenCL™Deep Learning Accelerator on Arria 10. In
FPGA 2017.

[11] V. Sze et al. 2017. Efficient Processing of Deep Neural Networks: A Tutorial and
Survey. Proc. IEEE (2017).

[12] X. Wei et al. 2017. Automated Systolic Array Architecture Synthesis for High
Throughput CNN Inference on FPGAs. In DAC 2017.

[13] Y. Ma et al. 2016. Scalable and modularized RTL compilation of Convolutional
Neural Networks onto FPGA. In FPL 2016.

