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Abstract

The testing time for a system-on-chip (SOC) is determined to a
large extent by the design of test wrappers and the test access mech-
anism (TAM). Wrapper/TAM co-optimization is therefore necessary
Sfor minimizing SOC testing time. We recently proposed an exact tech-
nique for co-optimization based on a combination of integer linear
programming (ILP) and exhaustive enumeration. However, this ap-
proach is computationally expensive for large SOCs, and it is lim-
ited to fixed-width test buses. We present a new approach for wrap-
per/TAM co-optimization based on generalized rectangle packing,
also referred to as two-dimensional packing. This approach allows
us to decrease testing time by reducing the mismatch between a core’s
test data needs and the width of the TAM to which it is assigned. We
apply our co-optimization technique to an academic benchmark SOC
and three industrial SOCs. Compared to the ILP-based technique,
we obtain lower or comparable testing times for two out of the three
industrial SOCs. Moreover, we obtain more than two orders of mag-
nitude decrease in the CPU time needed for wrapper/TAM co-design.

1 Introduction

Testing has emerged as a major bottleneck in plug-and-play
system-on-chip (SOC) design. In order to reduce design time, a large
number of embedded cores are often stitched into an SOC. The testing
of embedded cores is a formidable challenge. To facilitate the reuse
of test patterns provided by the core vendor, an embedded core must
be isolated from surrounding logic, and test access must be provided
from the I/O pins of the SOC. Test wrappers form the interface be-
tween cores and test access mechanisms (TAMs), while TAMS trans-
port test data between SOC pins and test wrappers [12]. Effective
test wrappers and TAMs are therefore important parts of an SOC test
infrastructure.

We address the problem of designing test wrappers and TAMs to
minimize SOC testing time. While optimized wrappers reduce test
application times for the individual cores, optimized TAMs lead to
more efficient test data transport on-chip. Since wrappers influence
TAM design, and vice versa, a co-optimization strategy is needed to
jointly optimize the wrappers and the TAM for an SOC.

Most prior research has either studied wrapper design and TAM
optimization as independent problems, or not addressed the issue of
sizing TAMs to minimize SOC testing time [1, 2, 8, 13]. Alternative
approaches that combine TAM design with test scheduling [5, 10, 15]
do not address the problem of wrapper design and its relationship to
TAM optimization.

Integrated wrapper/TAM co-optimization methodologies pre-
sented in the literature are based on fixed-width test buses [6, 7]. Re-
lated recent work combining TAM design with test scheduling is also
based on the use of fixed-width test buses [9]. However, the fixed-
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width test bus models of [6, 7, 9] preclude the design of more flexible
TAM architectures and the use of optimization algorithms for such
architectures that can explore a much larger solution space. Further-
more, such architectures generally lead to inefficient usage of TAM
wires. For example, in a design with a large number of cores and only
a small number of fixed-width test buses, cores with widely-varying
test data requirements are often assigned to the same test bus. Now,
it was shown in [6] that for a given core, the testing time varies with
TAM width as a “staircase” function. This implies that the testing time
does not decrease with increasing TAM width until a core-specific
threshold is exceeded. Hence if a core is connected to a TAM of width
w, the same testing time may actually be obtained using only w’ wires
(w' < w). The remaining w — w' wires, which could have been used
to transport test data for another core, are not efficiently utilized.

We present a new approach to wrapper/TAM co-optimization
based on a generalized version of rectangle packing. Rectangle pack-
ing is also referred to as two-dimensional packing in [4]. We first use
the wrapper design method presented in [6] to design a set of wrappers
for each core that eliminate the mismatch between the core’s test data
requirements and its TAM width. A test schedule is then determined
and an effective amount of TAM width is assigned to each core in the
test schedule. Finally, the wrapper corresponding to the TAM width
assigned to the core is chosen. Hence, instead of assigning cores to
a small number of fixed-width test buses for the entire schedule as
in [6], we achieve a more flexible partitioning of the total TAM width
among the cores. This partitioning is tailored to the test data needs of
the specific group of cores being tested at any interval in the sched-
ule. The efficient TAM design algorithm developed achieves over two
orders of magnitude reduction in the CPU time over the exact meth-
ods in [6]. This is especially important because it enables the TAM
designer to explore a significantly larger solution space than was pos-
sible in [6]. The flexible-width TAM architecture leads to a reduction
in the “real” costs of SOC test—testing time and on-chip hardware
(total TAM width).

The remainder of this paper is organized as follows. In Section 2,
we define the wrapper/TAM co-optimization problem and formulate it
as a generalized version of rectangle packing. In Section 3, we present
an efficient algorithm to obtain an effective wrapper/TAM architecture
and a test schedule that minimizes testing time. Finally, in Section 4,
we present experimental results on one academic SOC and three in-
dustrial SOCs. Compared to the ILP-based approach of [6], we obtain
lower testing times for two out of the three industrial SOCs. In addi-
tion, we obtain more than two orders of magnitude decrease in the
CPU time for wrapper/TAM co-design.

2 The rectangle packing problem

The wrapper/TAM co-optimization problem that we address in this
paper is as follows.
Problem P¢,_opt: Given the test set parameters for the cores and the
total TAM width W for the SOC, determine the TAM width and a
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Figure 1. TAM design using TAM width partitioning [6].

wrapper design for each core, and a test schedule for the SOC such
that (i) the total number of TAM wires utilized at any moment does
not exceed W, and (ii) the overall SOC test completion time is mini-
mized. O
The test parameters for each core include the number of primary in-
puts, primary outputs, bidirectional I/Os, test patterns, scan chains,
and scan chain lengths. Unlike in [1], we assume that the number and
lengths of scan chains are fixed.

To solve the wrapper/TAM design problems in [6], we modeled
TAMs as fixed width test buses. The total TAM width was partitioned
among a number of fixed-width test buses and each core was assigned
to one of these TAMs, as illustrated in Figure 1 for a generic SOC.
Since exact methods were used for optimization, solutions could be
obtained for up to only three test buses. Since large SOCs often con-
tain more than twenty cores, the inflexible TAM architecture of [6]
often led to the situation where a set of cores having widely-varying
test data requirements were assigned to the same test bus. This mis-
match between core test data needs and TAM width led to test sched-
ules with unnecessarily high SOC testing times. Although the overall
objective of the problems in [6] and Problem Pco—opt is the same
(the minimization of SOC testing time for a total TAM width), there
is a significant difference between the two TAM architecture models.
Hence, the new wrapper/TAM design problem formulation is also dif-
ferent. In the new approach, there is no explicit partition of the total
TAM width among fixed width TAMs to which cores must then be as-
signed. Instead, a more flexible TAM architecture is created in which
the total TAM width is partitioned effectively among the group of
cores being tested during any time interval in the schedule. This par-
tition is allowed to vary with time, such that the test data needs of each
group of cores are effectively addressed.

We next discuss the new wrapper/TAM design problem. Prob-
lem Peo—opt consists of three parts: wrapper design, TAM width as-
signment, and test scheduling. These subproblems must be solved in
conjunction to achieve the lowest testing time. We solved the prob-
lem of wrapper design for cores in [6] using an algorithm based on
the Best Fit Decreasing (BFD) heuristic for the Bin Packing problem.
The proposed Design_wrapper algorithm [6] has two optimization cri-
teria: (i) minimizing core testing time, and (ii) minimizing the TAM
width required for the test wrapper. These objectives are achieved by
balancing the lengths of the wrapper scan chains, and determining the
number of wrapper scan chains that are actually needed to minimize
testing time. Criterion (ii) is addressed by the algorithm since it has a
built-in reluctance to create a new wrapper scan chain, while assign-
ing core-internal scan chains to the existing wrapper scan chains.

Here, we first introduce the notion of using rectangles to model
core tests, and then illustrate the flexibility in TAM design and test
scheduling provided by the proposed TAM model. The use of rectan-
gles for core test representation during test scheduling has previously
been studied in [3, 5, 11]. The Design_wrapper algorithm is used
to obtain the different test application times for each core for vary-
ing values of TAM width. A set of rectangles for a core can now
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Figure 2. Example rectangles for Core 6 in Philips SOC
p93791 (figure not drawn to scale).

Core A Core C
wrapper wrapper
A ¥ %7
W[ Core A Core C =2
=y =
2 < —
H) £
s Core B T
2y
B
¢ Core D ‘ ‘ Core C Core B Core D
SOC testing time———» wrapper wrapper

(a) (b)

Figure 3. An illustration of (a) rectangle splitting, and (b) the
corresponding TAM architecture.

be constructed, such that the height of each rectangle corresponds to
a different TAM width and the width of the rectangle represents the
core test application time for this value of TAM width. For example,
Figure 2 illustrates how the test application times for three different
TAM widths for Core 6 (from example SOC p93791 from Philips) can
be represented using rectangles. (The relevant details of SOC p93791
are presented in Section 4.)

We now formulate Problem Peo—opt as a generalized version of
the rectangle packing problem [4]. The rectangle packing problem is
described as follows. Given a collection of rectangles, and a bin of
fixed height and unbounded width, pack the rectangles into the bin,
such that no two rectangles overlap, and the width to which the bin
is filled is minimized. This problem can be generalized as follows.
Consider an SOC having N cores, and let R; be the set of rectangles
for core i, 1 < ¢ < N. Now, Problem Pgrp (generalized rectangle
packing) can be stated as follows.

Problem Pgrp: Given the collection {R1, Ra, ..., Ry} of rectan-
gles for an SOC, select one rectangle R;; € R; from each set R;,
1 <4 < N, and pack the selected rectangles into a bin of fixed height
and unbounded width, such that no two rectangles overlap, and the
width to which the bin is filled is minimized. Furthermore, during
packing, each rectangle selected is allowed to be split vertically into
several non-adjacent pieces, each having the same co-ordinates on the
horizontal axis. a

In Problem Pgrp, during packing, the rectangle selected for a
core can be vertically split into several non-adjacent rectangles hav-
ing the same width, as illustrated for Core C in Figure 3(a). This is
because it is possible to assign a group of non-contiguous TAM wires
to a single core, using fork-and-merge of TAM wires as illustrated
in Figure 3(b). All the pieces of the split rectangle must, however,
have the same co-ordinates on the horizontal axis. Recall that in [4],
rectangles are considered to be indivisible entities.

Problem Pgrp relates to Problem Peo—opt as follows; see Fig-
ure 4. The height of the rectangle selected for a core corresponds to
the TAM width assigned to the core, while the rectangle width cor-
responds to its testing time. The height of the bin corresponds to the
total SOC TAM width, and the width to the which the bin is ultimately
filled corresponds to the system testing time that is to be minimized.
The unfilled area of the bin corresponds to the idle time on TAM wires
during test. Furthermore, the distance between the left edge of each
rectangle and the left edge of the bin corresponds to the begin time of
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Figure 5. TAM design using generalized rectangle packing.

each core test. Thus, a one-to-one correspondence exists between the
packed bin and the final test schedule.

Problem Pgrp can be shown to be A"P-hard by a restriction argu-
ment. A special case of Parp, in which the cardinality of each set R;,
1 < i < N equals one, and no rectangles are allowed to be split di-
rectly corresponds to the rectangle packing problem in [4]. Since the
rectangle packing problem was shown to be NP-hard in [4] (by re-
striction to Bin Packing), Parp is also NP-hard. Furthermore, since
Problem Pco—opt is equivalent to Problem Pgrp, Problem Peo—_opt
is N'P-hard.

We now illustrate the flexibility in TAM design oftered by the pro-
posed approach; see Figure 5. The generalized rectangle packing al-
gorithm is used to determine the precise partition of the total TAM
width among a group of cores during any interval in the schedule to
minimize the testing time of the overall schedule. Note the increased
flexibility in the test schedule of Figure 5 over Figure 1.

Pareto-optimal points. We achieve a significant reduction in
computation time and improvement in TAM wire utilization over the
method in [6] by noting that not all rectangles having values of TAM
width between 1 and W, where W is the total SOC TAM width, need
to be considered. It was shown in [6] that for a given core, the testing
time varies with TAM width as a “staircase” function. From the values
of testing time for different TAM widths for Core 6 of SOC p93791,
illustrated in Figure 6, we see that the testing time decreases only
when the TAM width exceeds core-specific thresholds. These thresh-
old points are known as pareto-optimal points, and are formally de-
fined as follows. A solution to the wrapper design problem for Core ¢
can be expressed as a 2-tuple (wj,T;(w;)), where w; is the TAM
width supplied to the wrapper and T;(w; ) is the testing time of Core 4
with the given wrapper. A solution (w;, T;(w;)) is Pareto-optimal
if and only if there does not exist a solution (wg, T;(wy)), such that
wy < wj and T;(wg) < Ti(wj), where at least one of the inequali-
ties is strict. Intuitively, the steps at which the testing time decreases
are the Pareto-optimal points, and only rectangles corresponding to
Pareto-optimal TAM width values need to be considered. For exam-
ple, in Figure 6, a TAM width of 46 results in a testing time of 115850
cycles, while all TAM widths from 47 up to 64 result in the same test-
ing time of 114317 cycles. Hence 47 is a Pareto-optimal TAM width,
and rectangles of height between 48 and 64 can be ignored. The stair-
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Figure 6. Relationship between testing time and TAM width
for Core 6 in Philips SOC p93791.

Data structure Schedule

. widthy (1) /* preferred TAM width for Core ¢ */

. width(z) /* TAM width assigned to Core ¢ */

. begin(z) /* begin time of Core i */

. end(i) /* end time of Core i */

. scheduled(i) /* boolean indicates Core ¢ has been scheduled */

. complete(z) /* boolean indicates test for Core ¢ has completed */

AN AW =

Figure 7. Data structure for the test schedule.

case nature of the testing time variation with TAM width for cores is
thus exploited to reduce the TAM width assigned to cores to the min-
imal value required to achieve a specific testing time. The extra TAM
wires can be used for other cores in the SOC, thereby yielding a more
efficient test schedule.

3 TAM optimization and test scheduling

In this section, we detail the algorithm that we have developed to
solve Problem P.o—op+ modeled as Problem Pgrp. Our algorithm
first identifies a small value of “preferred TAM width” width, (4) for
each core, such that the core’s testing time is within a small percent-
age of its testing time at a maximum allowable TAM width W, q4.
(In this paper, Wiae is chosen to be 64.) The test for each Core ¢
is then scheduled using widthy(i) bits, as long as there are enough
TAM wires available. If the number of available TAM wires is insuf-
ficient to schedule any new tests, the resulting idle time is filled using
several heuristics that insert tests to minimize the idle time. After the
first currently-running test completes, the number of available TAM
wires is incremented, and the algorithm repeats the scheduling pro-
cess for the remaining tests. Next, we explain the rationale behind
the heuristic decision-making in our algorithm, and show how these
decisions minimize system testing time. We elaborate on each step of
the algorithm in the following paragraphs.

Data structure. The data structure in which we store the TAM
width and testing time values for the cores of the SOC is presented
in Figure 7. This data structure is updated with the begin times, end
times, and assigned TAM widths for each core as the test schedule is
developed.

Preferred TAM widths. The pseudocode for our algorithm
TAM _schedule_optimizer is presented in Figure 8. In Line 1, we com-
pute the collection of Pareto-optimal rectangles as described in Sec-
tion 2. In Line 2, we calculate the preferred TAM width values for
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Procedure TAM _schedule_optimizer(C, W, d, p)

Procedure Initialize(C, d, p)

1 Compute collection R of rectangles using Design_wrapper;
2 Initialize(C, d, p);
3 Set w_avail = W; current_time = 0,
4 While C # 0{
5 Ifw-avail > 0{
6 If Core ¢ € C can be found, such that
widthy (i) < w-avail AND T;(widthy(4)) is maximum{

7 IfC—{i} = 0{

8 Set width(i) = w, where w is the highest Pareto-optimal

width for i, such that w < w_avail;}

9 Else{ width(i) = widthy(i);

10 Update(s);} }

11 Else{ /* find a core that can use the resulting idle TAM wires */

12 Find next_time = end(z), such that
end(i) > this_time AND end(%) is minimum;

13 If Core ¢ can be found, such that scheduled(i) = 0 AND
T;(w-avail) + this_time < next_time AND
Ti(w_avail) + this_time is maximum{

14 Set width(i) = w, where w is the highest Pareto-optimal

width for ¢, such that w < w_avail;

15 Update(3); }

16 Else{

17 If Core ¢ can be found, such that begin(i) = this_time AND
Ti(width(i)) — T; (width(i) + w_avail) is maximum;{

18 Set width(i) = w, where w is the highest Pareto-optimal

width, such that w < width(i) + w_avail;

19 Update(); }

20 Else{ /* declare TAM wires w_avail idle until next_time */

21 Set w_idle = w_avail; w_avail = 0;}}}}

22 Else{

23 Calculate next_time = end(i), such that
end(i) > this_time AND end(%) is minimum;

24 Set this_time = next_time;

25 For every Core %, such that end(i) = this_time{

26 Increment w_avail = w_avail + width(i);

27 Set complete(i) = 1;}}}

28 Return Schedule;

Figure 8. Algorithm for solving Pco—opt-

each core from the input percent value p. Recall that the core test-
ing time varies with TAM width w as a staircase function that drops
rapidly at first for small values of w and less rapidly after that. For
example, for Core 6 in p93791 (Figure 6), at w = 10 the testing
time reaches within 10% of its value at w = 64, and at w = 15, the
testing time is within 5% of its value at w = 64. However, the high-
est Pareto-optimal value of TAM width is w = 47. Hence, instead of
attempting to assign the highest Pareto-optimal width to a core, a con-
siderable savings in system TAM width can be realized by assigning
a pre-calculated preferred value of width, such that the testing time of
the core reaches within a small percent value p of its testing time at
W = Winaz. This value of p is usually between 1 and 10.

In subroutine Inifialize (Figure 9), we initialize widthy (i) to the
Pareto-optimal TAM width that will provide the closest testing time
to the calculated value of time T;,, that is within p% from T;(Wiaz ).
(We use T;(w) to denote the testing time of Core ¢, when provided
with a TAM width of w.) In Lines 4 and 5 of Initialize, we make
an allowance for width,(i) to be set to the highest Pareto-optimal
TAM width wy, if the difference between the value of widthy (i) from
Line 3 and the value of wy, is less than the input difference value d.
This heuristic aids significantly in minimizing system testing time, es-
pecially when it is beneficial to assign a few (< d) extra TAM wires
to a bottleneck core in the system, while the other cores receive TAM
widths corresponding to p. For example, when using p = 2 for ex-
ample SOC p34392 from Philips (presented in Section 4), we noticed
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1 For each Core i € C{

2 Calculate Tip = Ti(Wmam) =+ % X (Tl(l) — Ti(Wmaz));
3 Set widthy (i) = w, such that T;(w) — Tjp is minimum;

4 Calculate highest Pareto-optimal width wyp,;

5 Ifwp —widthp(i) < d then widthy (i) = wp;}

Figure 9. Preferred widths initialization subroutine.

Procedure Update(i)

1 Let ¢ be the core to be updated in the test schedule;
2 Set begin(i) = current_time;

3 Set end(i) = current_time + T;(width(i));

4 Set scheduled(i) = 1;

5Ifi € Cthen C=C —{i};

Figure 10. The data structure update algorithm.

that Core 18 was assigned width,(18) = 9 bits, leading to a testing
time of T15(9) = 622163 cycles. The testing time for the SOC was
also found to be 622163 cycles, from which we noted that Core 18 is
the bottleneck core for p34392. A further study of the testing time—
TAM width characteristics of Core 18 revealed that its highest Pareto-
optimal TAM width is 10 bits, at which the testing time for Core 18
reaches its minimum value of 544579 cycles. Hence, providing an ex-
tra TAM wire to Core 18 reduced its testing time as well as the overall
SOC testing time to T1g(10) = 544579 cycles. Thus the minimum
testing time for SOC p34392 could be achieved using the heuristic in
Lines 4 and 5 of Initialize with d = 1.

In our current approach, we consider incrementing the preferred
TAM width by d only if it leads to the highest Pareto-optimal width.
A more sophisticated heuristic that increments the preferred TAM
width by d to lead to Pareto-optimal widths other than the highest,
can potentially improve our current method; this needs further inves-
tigation. Additionally, note that the use of parameters p and d lead
only to Pareto-optimal preferred TAM widths. Non-Pareto-optimal
widths are not considered.

Assigning preferred TAM widths to cores. Next, Line 3 ini-
tializes the main rectangle packing loop. While executing the main
While loop (Line 4), if there are w_avail > 0 TAM wires available
for assignment, Lines 6 to 10 will assign the TAM wires to the Core ¢
with the longest testing time T; (widthy (7)) that can be found with the
condition width,(i) < w_avail. Furthermore, if (in Line 7) Core i
is found to be the last core in C being scheduled, it will be assigned
its highest Pareto-optimal width w, such that w < w_avail in Line 8.
This heuristic minimizes the testing time time for Core ¢ at no addi-
tional expense of TAM width, since it is the last core being scheduled
and can thus receive all the available width without depriving other
cores of TAM width. We found this heuristic to be useful in reducing
the testing time of the last scheduled core in several cases, thereby
reducing the testing time of the entire SOC. However, if Core ¢ is not
the last core to be scheduled, it is assigned its preferred widthy (%)
TAM wires in Line 9. Line 10 updates the test schedule data structure
as outlined in Figure 10.

Rectangle insertion in idle time. If there is no core found
in Line 6, rather than let the w_avail TAM wires remain idle,
TAM _schedule_optimizer attempts to insert the rectangle for some un-
scheduled core into the available time, as illustrated in Figure 11. In
Line 12, we find next_time, i.e., the end time for the first test that is
expected to end after this_time. Since there will be an increment to
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Figure 12. Increasing TAM width to fill idle time.

w_avail at next_time, we are interested in filling the idle time only
until next_time. Filling in time beyond next_time is not prudent,
because this can lead to inefficient test scheduling by assigning the
few w_avail TAM wires to a large core that could instead benefit from
a wider TAM width later on in the schedule. The heuristic in Line 13
attempts to find the core that fills in the most time until next_time,
thereby minimizing the potential idle time. Lines 14 and 15 schedule
the test for the core.

Increasing TAM widths to fill idle time. If no rectangle is
available to fill in the idle time, then the heuristic in Line 17 is
used to determine which of the cores currently scheduled to begin at
this_time will benefit the most, in terms of testing time decrease,
from an extra w_avail TAM wires. If such a core can be found,
then its currently-assigned width(i) TAM wires are increased to the
highest Pareto-optimal width less than width(i) + w_-avail. This
heuristic is illustrated in Figure 12. In Figure 12, after Cores 2 and 3
have been assigned their preferred widths, no other core’s preferred
width is small enough to fit in the idle time above the rectangle for
Core 3. Furthermore, there is no core available, for which a rectan-
gle can be made to fit in the idle time, such that its end time is less
than next_time. Therefore, Core 2 is selected to have its width in-
creased to width(2) + w-avail. Note from Figure 12 that the width
of a core (e.g., Core 1) whose begin time lies before this_time can-
not be increased at this_time, because its test has already begun with
width(i) TAM wires. This requirement for Core 7 is ensured by the
first argument to the AND condition in Line 17.

Finally, if the heuristic in Line 17 fails to find a core whose width
can be increased, the w_awvail TAM wires are declared idle in Line 21.
The value of w_avail is set to 0 and the loop beginning at Line 4 is
repeated. When w_avail is found to be O in Line 5, the execution
proceeds to Line 22 where the process of updating this_time and
w-avail is begun. Line 23 updates this_time to next_time, Line 26
increases w-avail by the width of all cores ending at the new value
of this_time, and Line 27 sets complete(i) to 1 for all cores whose
test has completed at this_time. The resulting test schedule is output
in Line 28.

4 Experimental results

In this section, we present experimental results for four bench-
mark SOCs: d695 (an academic benchmark from Duke University),
p22810, p34392, and p93791 (industrial SOCs from Philips). These
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SOC d695 SOC p22810
Method New Method New
in [6] method of [6] method

T £ Thnew AT T £ Tnew AT
w (cc) (sec) (cc) (%) (cc) (sec) (cc) (%)

16 42568 16 43723 w271 462210 11 452639 207
24 28292 40 30317 +7.16 361571 24 307780 -14.88
32 21566 67 23021 +6.75 312659 49 246150 2127
40 17901 105 18459 +3.12 278359 60 197293 -29.12
48 16975 159 15698 -7.52 268472 84 167256 -37.70

56 13207 210 13415 +1.57 266800 80 145417 -45.50
64 12941 290 11604 -10.33 260638 122 136941 -47.46

Table 1. Results for d695 and p22810.

four SOCs are part of the ITC’02 SOC test benchmarking initia-
tive [14]. The number (e.g., 93791) in each SOC name is a measure of
its test complexity. This naming convention is described in [6]. The
four SOCs were orginally introduced as d695, p21241, p31108, and
p93791, respectively in [6] and [7]. However, in [6, 7], test data for
the interconnect circuitry in the SOCs was not included. The intercon-
nect test data has since been added, and the SOCs have been renamed;
the SOCs are available at [14].

The experimental results were obtained using a Sun Ultra 10 with
a 333 MHz processor and 256 MB memory.

Example SOCs. SOC d695 consists of ISCAS benchmark cir-
cuits [6]. SOC p22810 contains 6 memory cores and 22 scan-testable
logic cores. SOC p34392 contains 15 memory cores and 4 scan-
testable logic cores. SOC p93791 contains 18 memory cores and 14
scan-testable logic cores.

Table 1 presents results of wrapper/TAM co-optimization for
SOCs d695 and p22810. We considered all possible integer values
of the parameters p and d in the range 1 < p < 10,0 < d < 4,
and tabulated the best results. The symbols 7 and £ are used to rep-
resent the SOC testing time (expressed in clock cycles) and the com-
putation time (expressed in seconds), respectively, of the ILP-based
algorithm [6]. The symbol Tpe. represents the SOC testing time (ex-
pressed in clock cycles) of the new rectangle packing algorithm. The
percentage change in testing time using the new method is calculated
using the formula AT (%) = T"LT_T x 100. The computation time
of the new algorithm is less than 1 second in each case; hence these
times are not mentioned in Table 1. (Note that the CPU time for the
ILP solver used in [6] does not increase monotonically with W)

The testing times for d695 obtained using the proposed method are
comparable to the testing times obtained using the ILP-based method
in [6]. For p22810, however, the new method yields a significantly-
lower SOC testing time. This is because the problem instance size is
larger and the Philips SOC has a larger number of cores; thus our rect-
angle packing heuristics have more room for rectangle manipulation
and height-width optimization in this case. The values of £ shown for
p22810 in Table 1 are for two TAMs. This is because the ILP models
for p22810 were particularly intractable, and the ILP method [6] did
not run to completion for three or more TAMs, even after two days of
execution. The CPU time of our new algorithm is several orders of
magnitude lower than the CPU times required by the method in [6];
the execution speed-up factor can in fact be estimated from the values
of £ in Table 1, since the new algorithm takes less than 1 second to
execute in each case.

Table 2 presents results of wrapper/TAM co-optimization for
SOCs p34392 and p93791. The values of 7 shown for p34392 are for
three TAMs. (For four TAMs, the ILP method of [6] did not provide
a solution even after two days of CPU time.) For p34392, we reach
the optimum (lower bound) testing time of 544579 cycles at W = 32.
This lower bound corresponds to the time taken to test the bottleneck
core, Core 18, when it is supplied with a TAM width equal to its high-
est Pareto-optimal point. An expression for this lower bound on the
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SOC p34392 SOC p93791
Method New Method New
of [6] method of [6] method
T £ Tnew AT T £ Tnew AT
w (cc) (sec) (cc) (%) (cc) (sec) (cc) (%)
16 998733 222 1023820 +2.51 1771720 25 1851135 +4.48
24 720858 325 759427 +5.35 1187990 50 1248795 +5.12
32 591027 1576 544579 -7.86 887751 85 975016 +9.83
40 544579 1081 544579 0.00 698583 130 794020 +13.66
48 544579 6198 544579 0.00 599373 210 627934 +4.77
56 544579 11331 544579 0.00 514688 270 568436 +10.44
64 544579 1125 544579 0.00 460382 440 511286 +11.06
Table 2. Results for p34392 and p93791.
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Test schedule using new rectangle packing algorithm

Figure 13. Test schedules for p34392 using [6] and the new
method (figures not drawn to scale).

system testing time for an SOC was derived in [2]. The ILP-based
method requires a total TAM width of 40 to reach this lower bound.
Note that the values of £ do not increase monotonically with W be-
cause the time taken by the ILP tool to solve the N/P-hard problems
in [6] varies significantly with the problem instance; different width
partitions for the same W value result in widely-varying CPU times.
In Figure 13, we present the test schedules obtained for p34392 for
W = 32 to further illustrate the difference between the way TAM
width is allocated to cores by the method of [6], and by the new algo-
rithm. The numbers between 1 and 19 in the rectangles of Figure 13
denote cores.

The new testing times for p93791 (the largest example SOC having
the most cores) are on average 8% higher than the testing times ob-
tained using the method in [6]. A careful study of the test schedules of
Table 1 and the number of I/Os, test patterns and scan chain lengths of
the cores in p93791 reveals that the vast differences between the test
data requirements of the cores make it difficult for the proposed al-
gorithm to optimize the system testing time using only a single value
of p for all cores. We therefore added an additional heuristic to our
algorithm to better allocate TAM resources to cores based on their test
data volume. Rectangles for cores that have higher test data volume
are packed using a lower value of p. Significantly, this new heuris-
tic resulted in a further decrease in testing time for W = 32. The
new values of Trew and AT for W = 32 are as follows. W = 32:
Tnew = 940916, AT = +5.99%. The new decreased testing time
for W = 32 motivates further investigation into how the value of p
affects testing time for each core, and how it should be tailored to
the test data needs of each individual core for larger SOCs such as
p93791.

5 Conclusion

We have presented a new technique based on rectangle packing for
wrapper/TAM co-optimization and test scheduling for SOCs. TAM

Proceedings of the 20 th IEEE VLSI Test Symposium (VTS’02)
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widths have been tailored to the test data needs of cores through the
use of Pareto-optimal points. We have also presented several heuris-
tics that minimize the idle time on TAM wires, thereby leading to a
fast and efficient algorithm for TAM width allocation and test schedul-
ing. The new algorithm based on generalized rectangle packing is
scalable for large industrial SOCs and completes in less than a sec-
ond of CPU time. This represents several orders of magnitude im-
provement over exact methods for TAM optimization presented in
earlier work. In addition, for two out of the three large SOCs, we
obtained lower testing times for several values of WW. Finally, the
selection of the p,d values and the specific idle-time filling heuris-
tics used for each execution of the algorithm can be included as user-
programmable options in an industrial CAD tool implementation.
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