

Special Session: Reliability of Hardware-

Implemented Spiking Neural Networks (SNN)

Elena-Ioana Vatajelu, Giorgio Di Natale, Lorena Anghel
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), TIMA

Grenoble, France
{ioana.vatajelu, giorgio.di-natale, lorena.anghel}@univ-grenoble-alpes.fr

Abstract—!The research work presented in this paper deals

with the fault analysis in hardware-implemented Spiking Neural

Networks with special emphasis on circuits designed to perform

unsupervised, on-line learning. The paper describes the benefits of

such neuromorphic systems, the possibilities of their hardware

integration, but more importantly, it underlines the main concerns

related to their resilience face to different types of faults. An

overview of pertinent fault models and a methodology for

conducting fault injection campaigns is described and different

scenarios of faulty behaviors occurring after/before the STDP

learning are shown.

Keywords—fault modeling, fault tolerance, spiking neural

networks, emerging memories

I.! INTRODUCTION

The current explosion of digital data has led to a great
interest for deep neural network platforms able to perform tasks
such as recognition, classification, analytics and inference.
Indeed, hardware implementation of neural networks is
considered as strategic research and development topic for
several large hardware-oriented companies such as Nvidia,
IBM, Intel, as well as software-oriented companies such as
Amazon, Facebook, Microsoft. Current deep learning hardware
made of isolated memories and processing units (such as
GPU/CPU/ASICs and Many-core accelerators), interconnected
via communication buses, encounter serious challenges
including long memory access latency, limited memory
bandwidth, significant congestion at I/O, huge data
communication energy and large leakage power consumption
for storing and accessing huge quantity of network parameters
in the volatile memory. Despite their recent success, Deep
Neural Network (DNN) for image processing execution on Von-
Neumann machines consumes more energy for data movement
to and from the cloud than for data computation [1].

The above-mentioned power and memory bottlenecks have
motivated the research on Neuromorphic Computing systems.
The ambition of Neuromorphic chips is to get closer to bio-
inspired and even brain-inspired neuron and synapse
computation models. Spiking Neural Networks (SNN) are an
important class of bio-inspired computing paradigms offering
promising solutions for on-chip cognitive applications. Leading
projects in neuromorphic engineering that brought neuroscience
and machine learning domains closer together have led to
powerful brain-inspired chips able to simulate numerous spiking
neurons to investigate new kinds of computer architectures
(SyNAPSE [2], TrueNorth [3], Neurogrid [4], DYNAPs [5],
Loihi [6], and Braindrop [7]), or to help neuroscientists through
the Human Brain Project (SpiNNaker [8]). These solutions are
dedicated to low energy inference process, while performing

computational tasks such as video-stream processing, data
mining, etc. All above SNN implementations are designed using
very distinct technologies, and their working principles and
capabilities all differ. Products such as Loihi and SpiNNaker are
using fully digital, core-based designs. Other proposals deal
with mixed or even fully analog designs, in which the building
blocks, e.g. spiking neurons and compatible synaptic circuits,
are implemented using analog circuits. In these cases, hard
wiring all spiking neurons through fan-in and out synapses
appears inefficient and poor for network reconfiguration
purposes. As an alternative, digital event-routing techniques
have been proposed, such as address-event representation [9],
which can provide efficient and reconfigurable network
operation. On the other hand, digital neuromorphic prototypes
deploy a fully digital circuit-based strategy for the neuron and
synaptic model parameters and also for learning algorithms,
providing a larger flexibility of network configuration. More
advanced solutions are under study by academic research groups
as a parallel effort. They focus on hybrid and heterogeneous
architectures, targeting feedforward neural network but also
more advanced models with less-well controlled learning rules
(such as unsupervised or reinforcement learning, reservoir
computing). In these cases, hardware architectures can rely
either on formal coding to leverage the compatibility to well-
known deep software frameworks or on spike frequency coding
to reach better energy efficiency [10] and to allow local learning
rules thanks to the bio-inspired Spike Time Dependent Plasticity
(STDP). Preliminary solutions have shown promising results
[11-14]. Hardware level solutions include explorations of state-
of-the-art CMOS and emerging nanoelectronic technologies
capable of mimicking the computational primitives of spiking
neural networks where the most significant improvements come
from the utilization of memristive arrays networks for synapse
computation combined with CMOS implementations for
neurons [15-17, 3]. This idea received considerable interest,
however it has still to be demonstrated with regard to their
scalability and performance metrics, but also face to large defect
and variability rates and susceptibility to noise of the emerging
technologies, which makes their realization difficult on large-
scale networks [18]. Emerging technologies are quite
immatures, prone to important defect densities (induces by spot
defects, dust, assemblage faults, imperfections of the circuit), or
instabilities that affect their yield. Among the important number
of faults that can be found in these technologies, they can be
classified into two categories: soft faults and hard faults [19, 20].
Soft faults are caused by different cycle-to-cycle or device-to-
device variations that appear during the fabrication, but also in-
field during read/write operations [21]. Hard faults are provoked

2019 IEEE 37th VLSI Test Symposium (VTS)

!

978-1-7281-1170-4/19/$31.00 ©2019 IEEE

!

by fabrication steps or they can be caused by the forming process
or by continuous stress; they are more difficult to be prevented.

Most of Conventional Deep Neural Networks rely on
supervised back propagation learning rule, involving millions of
training parameters (weights), requiring millions of labeled data
to get to acceptable accuracy, which explain the memory data
transfer issues. State of the art researches include multiple
solutions such as synaptic data quantization and compression,
massive pruning strategies, to name just a few current findings.
They lead to maximum sparse DNN implementations,
eventually, in their attempts to significantly reduce the memory
access [22]. However, such optimized implementations restrict
the structure of the network and have very poor or close-to-zero
reusability, while targeting the best accuracy for a given
application. Paper [23] reports that for hard training applications
(e.g. difficult classification problems) or network
implementations close to the minimum, achieving sufficient
accuracy is obtained either thought massive replication of deep
layers (close to Triple Modula Redundancy capability), or with
massive fault tolerant training, leading to the situation where the
smallest initial size gain of the network cannot compensate for
the increased number of training replications required or the
extra hardware layers necessary in hard classification tasks.

On the other side, Spiking Neural Networks using STDP bio-
inspired learning rules are suitable solutions not only for off-line
learning and inference, but they can learn the structure of input
patterns in an unsupervised manner, and thus, are real
alternatives for on-chip learning. Paper [24] discuss that
unsupervised STDP, fully-connected SNN manage to retain
functionality even with 50% massive variability of the synaptic
memristive parameters. This paper show that faulty neurons
have stronger impact on the neural network’s behavior than
faulty synapses. In addition, it is shown that the on-line learning
algorithm used in SNNs is efficiently mitigating the effect of
synapse variability on the network robustness.

This work is concerned with the analysis of faults in
hardware-implemented Spiking Neural Networks, with special
emphasis on circuits designed to perform non-supervised, off-
line learning and using nonvolatile emerging memory
technologies. The rest of the paper is structured as follows. In
Section II we describe the operation principle of SNNs with on-
line, unsupervised learning (using STDP algorithm). underlining
the benefits of such neuromorphic systems. The circuit and
architecture under study are described in Section III. In Section
IV we present an overview of pertinent fault models while
Section V describes methodologies for conducting fault
injection campaigns and scenarios of faulty operation occurring
after/before the STDP learning. In addition, based on a
comprehensive fault analysis, we will present a set of
system/circuit design techniques that allow network
optimization with respect to accuracy/size/power consumption
targets. Section VI concludes the paper.

II.! SPIKING NEURAL NETWORKS

The Spiking Neural Networks (SNN) have a high level of
realism in the neural simulation and are the most energy efficient
neural networks. They also have a good ability for on-line
learning. Spike Timing Dependent Plasticity (STDP) is the
popular way to implement un-supervised learning in SNN.
SNNs with STDP typically consist of a layer of input neurons
and a layer of output neurons. Each input neuron is individually

connected by synapses to all the output neurons making this a
fully connected neural network. In SNNs, the information is
transmitted by spike signals. Spikes emitted by the input neuron
are modulated by the synaptic weights and produce a signal at
the input of each output neuron. The activation and consequent
spiking of the output neuron is dependent on its intrinsic
functionality. One of the most common implementations of
spiking neurons today is the integrate and fire neuron [25].
Usually the input layers of neurons translate stimuli as
asynchrounous voltage spikes according to different coding
schemes, such Poissonian way, for example, where the time
constant is proportional to the input quantity. For example, in a
pattern recognition network, the spike train is generated with a
rate proportional to the corresponding pixel intensity. To
illustrate how the SNN operate, we present an illustration of
operation principle of the spiking neural network in Fig. 1
(adapted from [26]). Four spiking input signals (x1 ÷ x4) with
their specific weights (w1 ÷ w4) are connected to one neuron. The
output signal is obtained by integrating the weighted input
signals and firing when an activation threshold is reached (detail
at the bottom of Fig 1).

Fig. 1 – Schematic illustration of the operation of a Spiking Neural Network

Fig. 2 – Schematic illustration of synaptic Spike Time Dependent Plasticity

 Spike Timing Dependent Plasticity (STDP) is the popular
way to implement un-supervised on-line learning in SNNs.
Training a neural network translates in ajusting its sinaptic
weights such that the network perfoms the desired functionality.
In the chosen training procedure, the strength of a synapse is
modified when the corresponding output neuron spikes. The
synaptic strength (weight) modification is based on the temporal
corerlation between the the input spike and the resulting output
spike [27]. This model explains how the synapse strength
increases when the pre-spike (spike coming from the input
neuron) triggers the output neuron spike (post-spike) in a very
short timing window. In Fig. 2, the STDP-related exponential
sinaptic weight potentiation is illustrated by the states 1÷4.
Smaller timing difference between output and input results in
stronger potentiation. Alternately, the synaptic potentiation is
decreased for larger time difference between the post neuron
spike and pre-neuron spike. This process is called depression
and is illustrated by the state 5 in figure 2. Higher timing
difference between input and output results in stronger
depression. The non-linear update of the synaptic weights ensure
gradual modification of the strenghths towards the maximum or
minimum values.

x1
x2

x3

x4

w1

w4

y

t

y

Input signals Synaptic weights

Spiking Neuron

Output signals

In

Out Δt

ΔW

Potentiation

Depression
1 2 3 4 5

1

2
3

4

5

a) Input-Output setting b) Synaptic weight STDP

t

t

!

!

 In this work we focus on a two-layer fully-connected neural
network, where all neurons in the input layer are connected to
all neurons in the output layer. The network is designed to solve
the MNIST database [42]. It is constructed with spiking neurons,
performing leaky integrate-and-fire (LIF) function and
conductive synapses implemented on resistive devices. This
network is designed for pattern recognition, the connectivity
corresponding to feed-forward architecture in which the output
neurons are implemented with lateral inhibition. This means that
when an output neuron spikes, it sends inhibitory signals to all
the other output neurons of the same layer, thus reseting their
states before they could spike. The network is built such that
synapses connected between all inputs and one output neuron
will “learn” a certain pattern. Multiple output neurons are
designed such that the network learn to recognise multiple
patterns. Theoreticaly, the network will learn as many pattern as
the output neurons. Lateral inhibition is very important for these
networks since it guarantees that the same pattern is not learned
by multiple neurons or that the probability of such occurence is
low, increasing the efficency of the learning process. It
guarantees that one and only one neuron learns a certain pattern
at a time, therfore, allowing the network to learn different
patterns. This behavior asures high pattern coverage
contributing to high nework efficiency during inference.

III.!CIRCUIT IMPLEMENTING A SPIKING NEURAL NETWORK

In the last few years extensive research has been carried out
to explore the most suitable design for neural networks. The
shallow and deep networks implementations are studied for
different applications. For instance, in [28-37] a wide range of
designs are presented each with its benefits and shortcomings,
all trying to reach the same goal, an embeddable design for
spiking neural networks. The designs for deep SNNs target
complex applications implementing multi-level perceptrons or
convolutional networks. They are usually based on supervised
learning. On the other hand, designs for shallow SNNs target
small scale applications and use on-line learning. The neural
algorithms and high level architectures are usually
comprehensively described, however, little to no-details are
given on how the synaptic weight is controlled for inference
and learning and how the circuit is built.

In this work, we use an STDP-capable shallow SNN,
describing all elements that must be part of the implementation,
without focussing on the real transistor level details [38]. This
level of detail is mandatory if a complete fault analysis and
modeling has to be performed. In order to get the best
evaluation of hardware implemented SNNs efficiency neuron-
synapse functional modules have to be designed in such a way
that their input/output characteristics provide the learning and
processing capability required by application. Additionally, the
network connectivity has to allow for high integration with
strong and reliable reconfiguration and adaptation mechanisms.

Significant benefits can be gained by adopting emerging
resistive technologies for neuromorphic computation, i.e.,
sinaptic weight implementation. A resistive element with
bidirectional and continuous conductance tuning capability is
considered as a natural electrically- controlled synaptic device.
In addition, the synaptic behavior can be emulated by parallel
connected bi-stable resistive elements.

Fig. 3 sketches the connectivity between neurons and
synapses in a single-layer (shallow) SNN. Here NIN represents

the set of input spiking neurons, S represents synapses and NOUT
represents the set of output spiking neurons. NIN neurons are
used to generate the information to be treated by the network.
The implementation of these neurons depends on the used
encoding procedure, i.e., temporal coding or rate coding. NOUT
neurons implement a leaky integrate-and-fire function. It
accumulates input spike signals, it integrates them and fires
when an activation potential is reached. The NOUT neurons are
inter-connected in a one-to-all fashion to assure the lateral
inhibition. The synapse modulates the input signal and ensures
that the learning conditions are met.

Fig. 3 – Architecture of the considered circuit

The synapse and its control circuit are illustrated in Fig. 4.
Several works propose using resistive-based synaptic devices in
a crossbar array (without access device) to meet minimum area
footprint. However, such implementations requites prohibitive
large currents to drive the synaptic array. For this reason, in the
presented design, an access transistor behaving like a switch is
used to access each synapse. This switch isolates the synapse
from the rest of the network, such as when there is no activity
on its connected neurons, there should be no activity on the
synapse. Whenever input and/or output neuron is active, the
synapse has to be activated and spikes should be allowed to pass.
This behavior is guaranteed by OR-ing enable signals generated
by the neurons. Therefore, the switch is closed if either one of
the connected neurons is activated. This allows information
transport from the input to the output neuron, but it also allows
combining input and output spikes for synaptic weight
modulation during learning.

Fig. 4 – Synapse architecture

The PPre signal represents the presynaptic spike, it comes
from an input neuron and carries the input information. The
PPost is the postsynaptic spike, comes from an output neuron
and carries the learning information. The PPre and PPost signal
values should be chosen such that the synaptic behavior is
correct in both learning and inference operation modes. A PPre
signal should not be able to modify the synaptic weight on its
own. On the contrary, the PPost signal should be able to modify

NOUT

NIN

N

N N

N

N

N

S S S

S S S

S S S

Lateral

Inhibition

…

…

…

…… …

…

…

…

Synapse

W
e
ig
h
t

Output

Neuron

E
n
a
b
le

Input

Neuron Enable

PPost

PPre

!

!

the synaptic weight. The generation of these pulses is done by a
leaky integrate-and-fire neuron. One neuron receives
information from all neurons from the previous layer of the
network, modulated by the corresponding synaptic weight. This
information is accumulated until it reaches a certain level, at
which point the neuron sends signal towards the next layer. The
functional structure of a neuron is illustrated in Fig. 5.

Fig. 5 – Neuron architecture

The integration function is performed by an operational
amplifier and capacitor C. The output of this amplifier is
compared against a threshold Vth, and once the threshold is
achieved, a pulse generator is activated. The main functionality
of the pulse generator is to yield the postsynaptic spike (the
PPost pulse), to give feedback for the synaptic weight
modulation, and to provide the presynaptic spike (PPre pulse)
which is feedforward to the next network layer. In addition to
this information-carrying signal, the pulse generator has to
provide the Enable signals to control (i) the switch S1 to activate
the neuron’s refractory period, (ii) the switch S2 to activate the
synaptic weight modulation (learning), or to allow (iii) the
passing of the modulated presynaptic spike (W*PPre, with W
being the synaptic weight). In addition, the pulse generator gives
the Enable signals controlling the OR gate of the synapse
(Synapse_Enable) and the Disable signals inhibiting
neighboring neurons (Lateral Inhibition).

IV.!SNN FAULT MODELING

In respect to network reliability, it’s commonly assumed that
neural networks have a built-in fault-tolerance property due to
their parallel structures, or fault-tolerant training algorithms.
Several research works focusing on the fault-tolerance of
artificial neural networks (ANNs) have been performed in early
‘90s, then almost forgotten for a good number of years [24]. It
has been brought again into the light due to the possibility to
integrate neural networks in embedded systems, where the fault
tolerance and the eventual graceful degradation need to be
preserved, in critical and long term mission applications, where
the system failure has a crucial impact or when the system
cannot be easily maintained. Several papers have been published
on boosting fault tolerance of hardware implemented neural
accelerators [21], and even on the effect of fabrication-induced
variability of memristive devices on the behavior of deep
networks [39] and SNNs [24, 40]. They show that faulty neurons
have stronger impact on the neural network’s behavior than
faulty synapses. In addition, they show that the on-line learning
algorithm used in SNNs is efficiently mitigating the effect of
synapse variability or the input noise on the network robustness.

The diversity of neural networks and architectures need to
be analyzed face to general fault models, but also to specific
implementation-driven models. The efficiency of a neural
network is based on the inherent redundancy in data used for
training. Indeed, in this type of network, each output neuron with

its corresponding synapses “learns” a single input pattern. The
error rate the network is dependent on the accuracy of the input
pattern (it translates to the size of the input layer) and the number
of learned patters (it translates to the size of the output layer) on
which the output of the network can be extrapolated.

In this section, we present fault models that will enable fault
injection campaigns and that will allow identifying scenarios of
faulty operations, happening before and after the STDP learning.
In this work, we consider only permanent faults caused by
manufacturing defects and aging-related phenomena. Due to the
fact that there are a large number of SNN circuit
implementations, and the number keeps growing, we chose to
define realistic fault models, without the need of the full
knowledge of the hardware implementation. Thus, we define a
functional set of possible faults that can affect the elements
belonging to the SNN, neurons and synapses. In particular, we
define how the inputs and outputs of the functional interface of
the neurons and synapses (as described in section III) can be
affected by the faults, while considering the hardware root
causes that can lead to those faults. These faults are similar to,
for instance, the stuck-at, where the fault is defined at the
interface of a logic gate, without the knowledge of the actual
transistor-level implementation of the gate, but still being
representative of the majority of physical defects that may
appear at the transistor level. To the best of our knowledge, this
is the first attempt to defining a taxonomy of possible faults in
the elements implementing SNNs.

A.! Modeling of synaptic faults

We define the following fault models:

•! Dead Synapse Fault (DSF), defined as a synaptic connection
that does not allow information transfer from input to output
neuron. This is a permanent fault, representative of defects
strongly affecting the non-volatile resistive or magnetic
memory element (such as breakdown) or faults affecting
either the switch or the OR gate in such a way that the switch
is always opened.

•! Degraded Plasticity Fault (DPF), defined as a synaptic
weight that is not able to store the whole range of possible
values. This fault is representative of defects affecting the
non-volatile resistive or magnetic element (such as aging-
related effects). This fault model is a permanent, parametric
fault, and has three parameters, i.e., the minimum and
maximum weight that can be reached by the synapse, and the
number of conductive levels.

•! Synapse-Stuck-At-0 and Synapse-Stuck-At-1 (SSA0,
SSA1), defined as a synaptic weight that stores permanently
either the minimum or the maximum weight (these two faults
are two extreme cases of the above-defined DPF).

B.! Modeling of neuronal faults

We define the following fault models:

•! Dead Neuron Fault (DNF), defined as a neuron that does not
fire under any conditions. This permanent fault is
representative of defects affecting any element within the
neuron that would prevent the pulse generator to generate
spikes.

•! Input/Output Stuck Lateral Inhibition Fault (ISLIF, OSLIF),
defined as a neuron that is not able to receive the lateral
inhibition information from other neurons (ISLIF) or not

-

+ =

Vth

Pulse

Generator

PPre

PPost

P
P

o
s
t

E
n

a
b

le
C

S1

S2

Lateral
Inhibition

Synapse_Enable

!

!

able to transmit such an information (OSLIF). These are also
considered as permanent faults.

•! Input/Output Delayed Spike Fault (IDSF and ODSF) defined
as a spike (as PPost for the input, and as PPre for the output)
that happens with a delay or an anticipation, compared to the
correct behavior. This fault is representative of defects
affecting the time constant of the integrator, or the
comparator within the neuron, leading to an anticipated or
delayed triggering of the spike. This particular fault is a
parametric, delay fault type.

•! Input/Output Delayed Synapse Activation Fault (IDSAF and
ODSAF), defined as a synaptic activation that happens with
a delay or an anticipation. This fault is similar to the
IDSF/ODSF, but it affects the signal enabling the synapse
activation. IDSAF is pertaining to output Neurons, while
ODSAF is pertaining to input Neurons. These faults can be
random transient or intermittent faults.

•! Input/Output Delayed Lateral Inhibition Fault (IDLIF and
ODLIF), defined as a lateral inhibition signal that happens
with a delay or an anticipation. These delay faults can also
be random or intermittent type.

V.! FAULT INJECTION

This section describes the methodology used for fault
injection in the SNN and presents a summary of the results
obtained as a consequence of such fault injection.

A.! Fault simulator

In order to perform the fault simulations, we have used two
different simulators. The first tool is Brian, an open-source
Python-based simulator dedicated to spiking neural networks
[41]. The tool is aimed at minimizing users' development time,
and it has the main drawback of incurring in very long execution
times. For this reason, we have developed an in-house simulator
that allows simulating the full behavior of the SNN described in
Section III, while minimizing the execution time. Our tool does
not use floating point operations used for synaptic weight
computation, and it does not solve non-linear or differential
equations used at neuron level, thus increasing significantly its
efficiency. In addition, the Brian tool is not ready for fault
injection campaigns, while our tool is versatile and enables
massive fault injection and analysis campaigns of all fault
models presented in Section IV. Brian tool has been used to (i)
validate our own tool; (ii) allow us to quickly set up the first
experiments. The full description of Brian can be found in
[40,41]. The full description of our tool is given below. The main
data structures are sketched in Fig. 6. They can be described as
follows.

•! inN: this array represents the set of input neurons. For each

neuron, we store the time when the last spike occurred
(lastSpike). This information is required to calculate the

STDP function;

•! spike: this array contains the list of input spikes that have

to be processed. When program reads the input data-set or
the benchmark to be used, an entry in the array is created for
each input spike. The entry is composed of the timing of the
spike and the index of the input neuron to which the spike
has to be applied;

•! outN: this array represents the set of output neurons. For

each neuron, we store: the accumulator (a variable

storing the quantity of information arriving to the output
neuron); the inhibition (a variable storing the

information of the duration for which the neuron is
inhibited); the lastSpike (time when the last spike

occurred to calculate the STDP function);

•! S: this matrix contains the values of the weight of every

single synapse.

Fig. 6 – Data structure of the proposed in-house simulator

The main algorithm of the simulator is described in Fig. 7. It
applies the input signal to the corresponding input neurons,
which generate the input spikes. Each spike is defined by the
time the spike occurs (expressed as an integer variable) and the
index of the input neuron that is going to propagate the spike

within the network. For each input spike, the corresponding
lastSpike variable of the input neuron is updated

accordingly (line 4 in the code). Then, the spike is propagated
through the corresponding synapses and the value of the weight
is added to the related output neuron (line 10), only if the output
neuron is not inhibited. In the last step, if the accumulator of an
output neuron crossed the threshold, it generates the output
spike. In this case, all other output neurons are reset and their
inhibition period is set to the current simulation time plus a
constant (Refractory-Period). Moreover, the variable

lastSpike of the output neuron that spiked is updated to the

current simulation time. Finally, the weights of all the synapses
connected to the output neuron that spiked are updated. This
update is executed according to the potdep function, which

implements a digitalized version of the synaptic Spike Time
Dependent Plasticity function (as shown in Fig. 2).

Starting from the behavioral model of the SNN under study,
we have investigated how the network behaves under different
scenarios such as: defective or dead neuron, defective or dead
synapse. We have evaluated the functional accuracy of the SNN
during inference and learning in our attempts to answer
questions such as: which one is more detrimental to the
functionality of a Neural Network (NN): defective neuron or
defective synapse? How many of these critical components have
to fail such that the entire network fails? In which state does a
certain defect matter the most: learning or inference? Our in-
house fault injection simulator allowed the thorough analysis
that we will report in section V.B.

! !"#$%&'()

!"#

*"++",-

.

$%&#

*"++",-

.

! "//010!"$2+

! '34'5'$'23

! !"#$%&'()

.

.

.

.

.

.. ...

'(

*1"$+'6- !7)'84$
.

9$'1):;'3<)6=

9$'1):;'3<)6=

.

)*!+,(

*"++",-

!

!

Fig. 7 – Basic algorithm implemented by the in-house simulator

B.! Results

All simulations have been performed on a workstation with
four Intel® Core™2 Quad CPUQ8400 running at 2.66GHz,
with 4GB of main memory.

We have implemented a spiking neural network with
learning strategy based on spike-timing dependent plasticity.
The network is designed to solve the MNIST database [42], i.e.,
to be trained to recognize hand written digits. This data base has
60000 examples for the network training and 10000 examples
for testing the network. Each example consists in the image of a
hand-written digit. The hand-written digit is a 28x28 pixels
image in grey-scale (256 tones of grey from white to black). The
information carried by each image is transmitted to network in
the form of spikes. The spike encoding is performed by
frequency encoding of each pixel’s tone of grey. With this
encoding, the black pixels carry no information, while the white
pixels carry the maximum amount of information, i.e.,
maximum frequency (255 spikes per time unit). Each image is
presented to the network for 10 time units. In order to respond
to the requirements of this data base, the network is designed
with 784 input neurons, one for every image pixel. The input
neurons are connected in a one-to-all fashion (as illustrated in
Fig. 3) to the output neurons. We have performed an initial study
to assess the efficiency of the implemented training strategy, by
using different sizes of the output layer. The results are shown
in Fig. 8.

Fig. 8 – STDP-based SNN recognition rate as a function of the size of the
output layer

As expected, the network precision is higher with the size of
the output layer is large, as more patterns are learned. However,
this increase is not linear and it becomes less significative as the
number of neurons increases. For example, when the output
layer size increases from 400 neurons to 600 neurons, the
recognition rate is increasing by 1% only. In addition, the
simulation time becomes more significative, as the number of
computations performed during learning increases. Thus, for the
future analysis presented in this paper we are using the network
with 400 output neurons (with 313600 synaptic connections)
since the simulation time is manageable and the network
accuracy is high enough.

Further to that, fault injection campaign is performed, for
different scenarios of fault occurrence assuming clustered faults
or unclustered (randomly or deterministically distributed) faults.
The functionality of the network has been evaluated and the
severity of the fault occurrence related to its frequency and
location has been assessed. The fault injection scenarios are
illustrated in Fig. 9. It should be noted that in this work we only
consider the case where either neurons (input or output) or
synapses are faulty. The scenario where a combination of such
faults occurs is not considered, being one direction of future
research. Another assumption used in this work is that all faulty
components are suffering from the same fault (unique fault
model is used in this analysis). In addition, all faults have the
same magnitude. The scenario where a combination of such
faults may occur (with different magnitudes) is not considered
and is part of our future research. These assumptions limitations
come from the complexity of the problem that may lead to
extreme exploration space for complete analysis. These setups
are applied of the network HW implementation where the
synapses are placed in a grid, controlled column-wise by output
neurons and row-wise by input neurons and where the neurons
are placed in rows/columns around the synaptic array. This
present setup is sufficient to demonstrate the relevance of the
proposed fault models in the operation of the targeted SNN.

In this analysis, we assume two main scenarios: (i) the faults
are injected during learning (full learning process and
subsequent inference are conducted under the faulty network
scenario), (ii) the faults are injected during the inference (the
learning is performed on a fault-free network and the inference
is performed under the faulty network scenario). To simplify the
description and to present a clear comparison between the two
scenarios, the fault injection campaign is identical whether it is
performed at the beginning of the learning process or just during
the inference. Due to the versatility of the neural network, the
nature of the faults (type and magnitude) and their location is
found to affect the pattern recognition precision of the neural
network. In these experiments, fault modeling and fault injection
campaign for the SNNs with on-line unsupervised learning (i.e.,
STDP) differs from the fault modeling and fault injection in
traditional computing architectures due to the strong connection
between the architecture and the application running on it. Due
to the large size of the exploration space, in this paper we will
present only a few selected results. As a matter of fact, we
present the analysis of the network’s behavior during learning
and inference when the worst-case faults are injected. The worst
case identified faults, are neuron and synapse death (DNF and
DNS), since they represent a complete negation of the desired
behavior.

1. foreach spike as (time, index)

2. // It updates the lastSpike timing for the input

3. // neuron that generated the spike

4. inN[index].lastSpike = time

5.

6. // It updates the accumulators of the corresponding

7. // neurons (if the neuron is not inhibited)

8. foreach outNeurons as o

9. if (outN[o].inhibition < time)

10. outN[o].accumulator += S[index][o].weight

11.

12. // If the accumulator of an output neuron

13. // overpasses the threshold, it fires the spike

14. foreach outNeurons as o

15. if (outN[o].accumulator > threshold)

16. // for all the output neurons

17. // the inhibition time is set

18. // and the accumulator is reset

19. foreach outNeurons as o2

20. outN[o2].inhibition = time + RefractoryPeriod

21. outN[o2].accumulator = 0

22. // For the neruon that spiked,

23. // the lastSpike information is updated

24. outN[o].lastSpike = time

25. // For all synapses connected to the

26. // neuron that spiked, the weight is updated

27. foreach inNeurons as i

28. S[i][o].weight += potdep (inN[i].lastSpike, time)

94% 93%

74% 70% 65% 63% 58%

0%

20%

40%

60%

80%

100%

400 200 150 100 50 30

Number of neurons in the output layer

R
ec

o
g

n
it

io
n

 r
at

e

600

!

!

First, we show how DNFs affect the recognition accuracy of
the SNN under study. If the faults are injected during the
learning phase, their location is irrelevant, since dead neurons
equivalates to smaller size output layer. Indeed, the results show
the same accuracy whether the network is simulated with dead
neurons or by eliminating them from the network all together, as
well as their corresponding synaptic connections. However,
when DNFs are injected during the inference phase, their
location is somehow relevant and the accuracy of the pattern
recognition is dependent on the patterns learned by each dead
neuron. In Fig. 10 we represent the average values, together with
the minimum and maximum values of the recognition rates
obtained when DNFs are injected at inference. We have
observed that the range of these values increases at the number
of injected DNFs increases. This is due to the fact that depending
the location of the injected fault the recognition accuracy of one
or multiple digits in the data base can be affected. In addition, it
is very important to note that the injection of DNFs in the output
layer during inference is less critical (has less effect on the SNN
recognition rate) than the injection of DNFs in the output layer
during learning. It is worth noting also that one DNF in the
output layer has the equivalent effect as full-column DSF.
Indeed, if all synapses in a column of the synaptic array are
affected by DSFs, the corresponding output neuron is not
connected to any of the input neurons, hence it is like it is
affected by a DNF itself.

Fig. 9 – The schematic illustration of the fault injection campaign: a) fault
free scenario, b), c), d) faulty synapse: - full or partial column affected by

faults, full or partial row affected by faults, one or multiple random faults in the
synaptic array; e), f), g) h) faulty neurons: - cluster of input neurons affected by

faults, cluster of output neurons affected by faults, one or multiple random

faulty input neurons, one or multiple random faulty output neurons.

Fig. 10 – STDP-based SNN recognition rate as a function of the number of

output neurons affected by DNF

A second analysis shows how DSFs affect the recognition
accuracy of the SNN under study. We consider here 2 scenarios,
random distribution of DSFs and DSFs affecting full synaptic
row. Results show that random distribution of the DSFs has
lesser impact on the recognition rate than row-wise clustered
faults. Injecting DSFs on a full row of the SNN is equivalent to

injecting one DNF on the corresponding input neuron. This
translates in losing the information carried by 1-pixel of the
input images. Therefore, one outcome of our experiments is to
understand to which extent the location of these faults can be
important. For simplicity, in Fig. 11 we illustrate the accuracy
of the SNN under random DSFs injection during learning and
inference, for different fault densities. The simulations were
repeated 50 times to assure that different locations of the injected
faults are considered. The figure includes the average values of
the achieved recognition rate together with the corresponding
maximum and minimum values. We have observed that if less
that 10% of the synapses are affected by DSF, the SNN accuracy
is not significantly affected. For larger fault densities, we
observed that the accuracy decreases rapidly. In addition, results
show that the network manages to learn around these faults. The
study show higher network accuracy if the DSFs are injected
during learning than in the case where DSFs are injected during
inference.

Fig. 11 – STDP-based SNN recognition rate as a function of the number of

synapses randomly affected by DNF

VI.!CONCLUSIONS AND FUTURE WORK

In this work, for the first time, we present a taxonomy of
fault models relevant to the operation of hardware-implemented
Spiking Neural Networks, with special emphasis on circuits
designed to perform non-supervised, off-line learning. We have
described the benefits of such neuromorphic systems, the
possibilities of their HW integration. We have described the
main concerns related to the SNNs robustness and have
presented an overview of pertinent fault models and
methodologies for conducting a fault injection campaign. We
have demonstrated that the accuracy of a SNN is detrimentally
affected by the faulty behavior of both synapses and neurons.
We have shown that the network is less robust if the faults are
injected during the learning process and high fault density is
required for a noticeable decrease in recognition rate.

This analysis represents a preliminary study of the fault
tolerance of SNNs. Further evaluations are necessary to be able
to evaluate, with high confidence the reliability of a SNN.
Multiple fault injection scenarios need to be further performed
to have a full picture of the network accuracy: different
locations, different fault magnitudes should be studied as well
as plausible clustering scenarios and combinations between
synaptic and neural faults. In addition, the network should be
evaluated under different application scenarios (or data bases
with same dimensionality) to evaluate the fault effects also
independently of the application.

REFERENCES

[1]! Z. Liu et al. “A Deep Neural Network Favorable JPEG-Based Image

Compression Framework”, in the Proceedings of DAC’18, Design

Automation Conference 2018.

50%

60%

70%

80%

90%

100% Faulty inference Faulty learning

20 100 200 300

Number of faulty neurons in the output layer (DNF considered)

S
N

N
 R

ec
o

g
n

it
io

n
 r

at
e

0

0%

20%

40%

60%

80%

100% Faulty inference Faulty learning

10% 30% 50% 75%

Percentage of faulty synapses randomly distributed (DSF considered)

S
N

N
 R

ec
o

g
n

it
io

n
 r

at
e

0

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

Fault location: synapse or neuron Fault-free element

(a) (c) (b)

(h) (g) (f) (e)

(d)

!

!

[2]! Andrew S. Cassidy et al. “Cognitive computing building block: A

versatile and efficient digital neuron model for neurosynaptic cores”. In

International Joint Conference on Neural Networks (IJCNN). IEEE, 2013.

[3]! Paul A. Merolla et al. “A million spiking-neuron integrated circuit with a

scalable communication network and interface”. Science,

345(6197):668–673, 2014.

[4]! D. Khodagholy, J. N Gelinas, T. Thesen, W. Doyle, O. Devinsky, G. G

Malliaras, G. Buzsáki, “NeuroGrid: recording action potentials from the

surface of the brain,” Nature Neuroscience volume 18, pages 310–315

2015.

[5]! S. Moradi, N. Qiao, F. Stefanini, G. Indiveri, “A scalable multicore

architecture with heterogeneous memory structures for dynamic

neuromorphic asynchronous processors (DYNAPs)”, in IEEE

Transactions on Biomedical Circuits and Systems, 2017.

[6]! M. Davies et al., “Loihi: A Neuromorphic Manycore Processor with On-

Chip Learning,” in IEEE Micro, vol. 38, no. 1, pp. 82-99, 2018.

[7]! A. Neckar, et al. “Braindrop: A Mixed-Signal Neuromorphic Architecture

With a Dynamical Systems-Based Programming Model,” Proceedings of

the IEEE 107 (2019): 144-164.

[8]! Xin Jin et al. “Modeling Spiking Neural Networks on SpiNNaker”.

Computing in Science and Engg., 12(5):91–97, September 2010.

[9]! A. Di Mauro, F. Conti, L. Benini, “An Ultra-Low Power Address-Event

Sensor Interface for Energy-Proportional Time-to-Information

Extraction,” Proceedings of the 54th Annual Design Automation

Conference 2017.

[10]! L. Khacef et al. “Confronting machine-learning with neuroscience for

neuromorphic architectures design,” In International Joint Conference on

Neural Networks (IJCNN), 2018.

[11]! G. Burr et al., “Neuromorphic computing using non-volatile memory,”

Advances in Physics: X, 2(1):89–124, 2017.

[12]! P.U. Diehl et al., “Unsupervised learning of digit recognition using spike-

timing-dependent plasticity,” IEEE Trans in Neural Networks and

Learning Systems, 2015.

[13]! T. Masquelier et al. “Unsupervised learning of visual features through

spike timing dependent plasticity,” Plos computational biology, 2007.

[14]! G.Srinivasan, et al “Spike Timing Dependent Plasticity Based Enhanced

Self-Learning for Efficient Pattern Recognition in Spiking Neural

Networks,” International joint Conference on Neural Networks, IJCNN,

2017.

[15]! S. H. Jo et al. Nanoscale Memristor Device as Synapse in Neuromorphic

Systems. Nano Lett. 10, 1297–1301, 2010.
[16]! A. Sengupta et al. Magnetic Tunnel Junction Mimics Stochastic Cortical

Spiking Neurons. Sci. Rep. 6, 30039, 2016.
[17]! A. Sengupta et al. Hybrid Spintronic-CMOS Spiking Neural Network

with On-Chip Learning: Devices, Circuits, and Systems. Phys. Rev.

Applied 6, 064003, 2016.
A. Joubert et al. Hardware spiking neurons design: Analog or digital? In

The 2012 International Joint Conference on Neural Networks (IJCNN),

pages 1–5, June 2012.

[18]! R.Degraeve e tal.,“Causes and consequences of thestochastic aspect of

filamentary RRAM,” Microelectronic Engineering, vol. 147, pp. 171–

175, 2015.

[19]! E. I. Vatajelu, P. Prinetto, M. Taouil, S. Hamdioui, “Challenges and

Solutions in Emerging Memory Testing”, IEEE TETC, 2017.

[20]! L.Xia, et al.,“Technological exploration of RRAM crossbar arrayf or

matrix-vector multiplication,” Journal of Computer Science and

Technology, vol. 31, 2016.

[21]! S. Han et al. Learning both weights and connections for efficient neural

network. NIPS, 2015.

[22]! E. B. Tchernev, R. G. Mulvaney, D. S. Phatak, “Investigating the Fault

Tolerance of Neural Networks,” Neural Comput.,!17, 7, pp. 1646-1664,

2005.

[23]! D. Querlioz, O. Bichler, P. Dollfus and C. Gamrat, “Immunity toice

Variations in a Spiking Neural Network with !Memristive Nanodevices,”

in IEEE Transactions on Nanotechnology, 2013.

[24]! G. Indiveri, “A low-power adaptive integrate-and-fire neuron circuit,”

Proceedings of the International Symposium on Circuits and Systems

(ISCAS), 2003.

[25]! J. Vreeken, “Spiking neural networks, an introduction,” Inst. Inf. Comput.

Sci., Utrecht University, Utrecht, The Netherlands, Tech. Rep. UU-C

S2003-008, 2002.

[26]! D.V. Buonomano, T.P. Carvalho, “Spike-Timing-Dependent Plasticity

(STDP),” Editor(s): Larry R. Squire, Encyclopedia of Neuroscience,

Academic Press, pp 265-268, 2009.

[27]! S. Mitra, S. Fusi and G. Indiveri, “Real-Time Classification of Complex

Patterns Using Spike-Based Learning in Neuromorphic VLSI,” in IEEE

Transactions on Biomedical Circuits and Systems, vol. 3, no. 1, pp. 32-

42, Feb. 2009.
[28]! E. Chicca, F. Stefanini, C. Bartolozzi and G. Indiveri, “Neuromorphic

Electronic Circuits for Building Autonomous Cognitive Systems,”

in Proceedings of the IEEE, vol. 102, no. 9, pp. 1367-1388, Sept. 2014
[29]! S. Moradi and G. Indiveri, “An Event-Based Neural Network

Architecture With an Asynchronous Programmable Synaptic Memory,”

in IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 1,

pp. 98-107, Feb. 2014.
[30]! Y. Nishitani, Y. Kaneko and M. Ueda, “Supervised Learning Using

Spike-Timing-Dependent Plasticity of Memristive Synapses,” in IEEE

Transactions on Neural Networks and Learning Systems, vol. 26, no. 12,

pp. 2999-3008, Dec. 2015.
[31]! A. Sengupta, M. Parsa, B. Han and K. Roy, “Probabilistic Deep Spiking

Neural Systems Enabled by Magnetic Tunnel Junction,” in IEEE

Transactions on Electron Devices, vol. 63, no. 7, pp. 2963-2970, July

2016.
[32]! P. Wijesinghe, A. Ankit, A. Sengupta and K. Roy, “An All-Memristor

Deep Spiking Neural Computing System: A Step Toward Realizing the

Low-Power Stochastic Brain,” in IEEE Transactions on Emerging Topics

in Computational Intelligence, vol. 2, no. 5, pp. 345-358, Oct. 2018.
[33]! N. Zheng and P. Mazumder, “Learning in Memristor Crossbar-Based

Spiking Neural Networks Through Modulation of Weight-Dependent

Spike-Timing-Dependent Plasticity,” in IEEE Transactions on

Nanotechnology, vol. 17, no. 3, pp. 520-532, May 2018.
[34]! N. Rathi, P. Panda and K. Roy, “STDP-Based Pruning of Connections

and Weight Quantization in Spiking Neural Networks for Energy-

Efficient Recognition,” in IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 38, no. 4, pp. 668-677, April 2019
[35]! C. Lee, G. Srinivasan, P. Panda and K. Roy, “Deep Spiking Convolutional

Neural Network Trained with Unsupervised Spike Timing Dependent

Plasticity,” in IEEE Transactions on Cognitive and Developmental

Systems, 2019.
[36]! A. Agrawal, A. Ankit and K. Roy, “SPARE: Spiking Neural Network

Acceleration Using ROM-Embedded RAMs as In-Memory-Computation

Primitives,” in IEEE Transactions on Computers, 2019.
[37]! L. Anghel, G. Di Natale, B. Miramond, E. I. Vatajelu, E. Vianello,

“Neuromorphic Computing - From Robust Hardware Architectures to

Testing Strategies,” 26th IFIP IEEE International Conference on Very

Large Scale Integration, Verona, 2018.

[38]! S. Kim, P. Howe, T. Moreau, A. Alaghi, L. Ceze and V. Sathe, "MATIC:

Learning around errors for efficient low-voltage !neural network

accelerators,” DATE, Dresden, 2018.

[39]! E. I. Vatajelu, L. Anghel, “Fully-Connected Single-Layer STT-MTJ-

based Spiking Neural Network under Process Variability,” ACM/IEEE

International Symposium on Nanoscale Architectures (NANOARCH),

2017.

[40]! D. Goodman, R. Brette, “Brian: a simulator for spiking neural networks

in python,” Front. Neuroinform. 2:5, 2008

[41]! Brian 2 The spiking neural simulator. On line:
https://brian2.readthedocs.io/en/stable/introduction/index.html

[42]! Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning

applied to document recognition." Proceedings of the IEEE, 86(11):2278-

2324, November 1998

!

!

