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Abstract—!The research work presented in this paper deals 

with the fault analysis in hardware-implemented Spiking Neural 

Networks with special emphasis on circuits designed to perform 

unsupervised, on-line learning. The paper describes the benefits of 

such neuromorphic systems, the possibilities of their hardware 

integration, but more importantly, it underlines the main concerns 

related to their resilience face to different types of faults. An 

overview of pertinent fault models and a methodology for 

conducting fault injection campaigns is described and different 

scenarios of faulty behaviors occurring after/before the STDP 

learning are shown.  
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I.! INTRODUCTION 

The current explosion of digital data has led to a great 
interest for deep neural network platforms able to perform tasks 
such as recognition, classification, analytics and inference. 
Indeed, hardware implementation of neural networks is 
considered as strategic research and development topic for 
several large hardware-oriented companies such as Nvidia, 
IBM, Intel, as well as software-oriented companies such as 
Amazon, Facebook, Microsoft. Current deep learning hardware 
made of isolated memories and processing units (such as 
GPU/CPU/ASICs and Many-core accelerators), interconnected 
via communication buses, encounter serious challenges 
including long memory access latency, limited memory 
bandwidth, significant congestion at I/O, huge data 
communication energy and large leakage power consumption 
for storing and accessing huge quantity of network parameters 
in the volatile memory. Despite their recent success, Deep 
Neural Network (DNN) for image processing execution on Von-
Neumann machines consumes more energy for data movement 
to and from the cloud than for data computation [1].  

The above-mentioned power and memory bottlenecks have 
motivated the research on Neuromorphic Computing systems. 
The ambition of Neuromorphic chips is to get closer to bio-
inspired and even brain-inspired neuron and synapse 
computation models. Spiking Neural Networks (SNN) are an 
important class of bio-inspired computing paradigms offering 
promising solutions for on-chip cognitive applications. Leading 
projects in neuromorphic engineering that brought neuroscience 
and machine learning domains closer together have led to 
powerful brain-inspired chips able to simulate numerous spiking 
neurons to investigate new kinds of computer architectures 
(SyNAPSE [2], TrueNorth [3], Neurogrid [4], DYNAPs [5], 
Loihi  [6], and Braindrop [7]), or to help neuroscientists through 
the Human Brain Project (SpiNNaker [8]). These solutions are 
dedicated to low energy inference process, while performing 

computational tasks such as video-stream processing, data 
mining, etc. All above SNN implementations are designed using 
very distinct technologies, and their working principles and 
capabilities all differ. Products such as Loihi and SpiNNaker are 
using fully digital, core-based designs. Other proposals deal 
with mixed or even fully analog designs, in which the building 
blocks, e.g. spiking neurons and compatible synaptic circuits, 
are implemented using analog circuits. In these cases, hard 
wiring all spiking neurons through fan-in and out synapses 
appears inefficient and poor for network reconfiguration 
purposes. As an alternative, digital event-routing techniques 
have been proposed, such as address-event representation [9], 
which can provide efficient and reconfigurable network 
operation. On the other hand, digital neuromorphic prototypes 
deploy a fully digital circuit-based strategy for the neuron and 
synaptic model parameters and also for learning algorithms, 
providing a larger flexibility of network configuration. More 
advanced solutions are under study by academic research groups 
as a parallel effort. They focus on hybrid and heterogeneous 
architectures, targeting feedforward neural network but also 
more advanced models with less-well controlled learning rules 
(such as unsupervised or reinforcement learning, reservoir 
computing). In these cases, hardware architectures can rely 
either on formal coding to leverage the compatibility to well-
known deep software frameworks or on spike frequency coding 
to reach better energy efficiency [10] and to allow local learning 
rules thanks to the bio-inspired Spike Time Dependent Plasticity 
(STDP). Preliminary solutions have shown promising results 
[11-14]. Hardware level solutions include explorations of state-
of-the-art CMOS and emerging nanoelectronic technologies 
capable of mimicking the computational primitives of spiking 
neural networks where the most significant improvements come 
from the utilization of memristive arrays networks for synapse 
computation combined with CMOS implementations for 
neurons [15-17, 3]. This idea received considerable interest, 
however it has still to be demonstrated with regard to their 
scalability and performance metrics, but also face to large defect 
and variability rates and susceptibility to noise of the emerging 
technologies, which makes their realization difficult on large-
scale networks [18]. Emerging technologies are quite 
immatures, prone to important defect densities (induces by spot 
defects, dust, assemblage faults, imperfections of the circuit), or 
instabilities that affect their yield. Among the important number 
of faults that can be found in these technologies, they can be 
classified into two categories: soft faults and hard faults [19, 20]. 
Soft faults are caused by different cycle-to-cycle or device-to-
device variations that appear during the fabrication, but also in-
field during read/write operations [21]. Hard faults are provoked 
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by fabrication steps or they can be caused by the forming process 
or by continuous stress; they are more difficult to be prevented. 

Most of Conventional Deep Neural Networks rely on 
supervised back propagation learning rule, involving millions of 
training parameters (weights), requiring millions of labeled data 
to get to acceptable accuracy, which explain the memory data 
transfer issues. State of the art researches include multiple 
solutions such as synaptic data quantization and compression, 
massive pruning strategies, to name just a few current findings. 
They lead to maximum sparse DNN implementations, 
eventually, in their attempts to significantly reduce the memory 
access [22]. However, such optimized implementations restrict 
the structure of the network and have very poor or close-to-zero 
reusability, while targeting the best accuracy for a given 
application. Paper [23] reports that for hard training applications 
(e.g. difficult classification problems) or network 
implementations close to the minimum, achieving sufficient 
accuracy is obtained either thought massive replication of deep 
layers (close to Triple Modula Redundancy capability), or with 
massive fault tolerant training, leading to the situation where the 
smallest initial size gain of the network cannot compensate for 
the increased number of training replications required or the 
extra hardware layers necessary in hard classification tasks.  

On the other side, Spiking Neural Networks using STDP bio-
inspired learning rules are suitable solutions not only for off-line 
learning and inference, but they can learn the structure of input 
patterns in an unsupervised manner, and thus, are real 
alternatives for on-chip learning. Paper [24] discuss that 
unsupervised STDP, fully-connected SNN manage to retain 
functionality even with 50% massive variability of the synaptic 
memristive parameters. This paper show that faulty neurons 
have stronger impact on the neural network’s behavior than 
faulty synapses. In addition, it is shown that the on-line learning 
algorithm used in SNNs is efficiently mitigating the effect of 
synapse variability on the network robustness. 

This work is concerned with the analysis of faults in 
hardware-implemented Spiking Neural Networks, with special 
emphasis on circuits designed to perform non-supervised, off-
line learning and using nonvolatile emerging memory 
technologies. The rest of the paper is structured as follows. In 
Section II we describe the operation principle of SNNs with on-
line, unsupervised learning (using STDP algorithm). underlining 
the benefits of such neuromorphic systems. The circuit and 
architecture under study are described in Section III. In Section 
IV we present an overview of pertinent fault models while 
Section V describes methodologies for conducting fault 
injection campaigns and scenarios of faulty operation occurring 
after/before the STDP learning. In addition, based on a 
comprehensive fault analysis, we will present a set of 
system/circuit design techniques that allow network 
optimization with respect to accuracy/size/power consumption 
targets. Section VI concludes the paper. 

II.! SPIKING NEURAL NETWORKS 

The Spiking Neural Networks (SNN) have a high level of 
realism in the neural simulation and are the most energy efficient 
neural networks. They also have a good ability for on-line 
learning. Spike Timing Dependent Plasticity (STDP) is the 
popular way to implement un-supervised learning in SNN. 
SNNs with STDP typically consist of a layer of input neurons 
and a layer of output neurons. Each input neuron is individually 

connected by synapses to all the output neurons making this a 
fully connected neural network. In SNNs, the information is 
transmitted by spike signals. Spikes emitted by the input neuron 
are modulated by the synaptic weights and produce a signal at 
the input of each output neuron. The activation and consequent 
spiking of the output neuron is dependent on its intrinsic 
functionality. One of the most common implementations of 
spiking neurons today is the integrate and fire neuron [25]. 
Usually the input layers of neurons translate stimuli as 
asynchrounous voltage spikes according to different coding 
schemes, such Poissonian way, for example, where the time 
constant is proportional to the input quantity. For example, in a 
pattern recognition network, the spike train is generated with a 
rate proportional to the corresponding pixel intensity. To 
illustrate how the SNN operate, we present an illustration of 
operation principle of the spiking neural network in Fig. 1 
(adapted from [26]). Four spiking input signals (x1 ÷ x4) with 
their specific weights (w1 ÷ w4) are connected to one neuron. The 
output signal is obtained by integrating the weighted input 
signals and firing when an activation threshold is reached (detail 
at the bottom of Fig 1). 

 

Fig. 1 – Schematic illustration of the operation of a Spiking Neural Network 

 

Fig. 2 – Schematic illustration of synaptic Spike Time Dependent Plasticity 

 Spike Timing Dependent Plasticity (STDP) is the popular 
way to implement un-supervised on-line learning in SNNs. 
Training a neural network translates in ajusting its sinaptic 
weights such that the network perfoms the desired functionality. 
In the chosen training procedure, the strength of a synapse is 
modified when the corresponding output neuron spikes. The 
synaptic strength (weight) modification is based on the temporal 
corerlation between the the input spike and the resulting output 
spike [27]. This model explains how the synapse strength 
increases when the pre-spike (spike coming from the input 
neuron) triggers the output neuron spike (post-spike) in a very 
short timing window. In Fig. 2, the STDP-related exponential 
sinaptic weight potentiation is illustrated by the states 1÷4. 
Smaller timing difference between output and input results in 
stronger potentiation. Alternately, the synaptic potentiation is 
decreased for larger time difference between the post neuron 
spike and pre-neuron spike. This process is called depression 
and is illustrated by the state 5 in figure 2. Higher timing 
difference between input and output results in stronger 
depression. The non-linear update of the synaptic weights ensure 
gradual modification of the strenghths towards the maximum or 
minimum values. 
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 In this work we focus on a two-layer fully-connected neural 
network, where all neurons in the input layer are connected to 
all neurons in the output layer. The network is designed to solve 
the MNIST database [42]. It is constructed with spiking neurons, 
performing leaky integrate-and-fire (LIF) function and 
conductive synapses implemented on resistive devices. This 
network is designed for pattern recognition, the connectivity 
corresponding to feed-forward architecture in which the output 
neurons are implemented with lateral inhibition. This means that 
when an output neuron spikes, it sends inhibitory signals to all 
the other output neurons of the same layer, thus reseting their 
states before they could spike. The network is built such that 
synapses connected between all inputs and one output neuron 
will “learn” a certain pattern. Multiple output neurons are 
designed such that the network learn to recognise multiple 
patterns. Theoreticaly, the network will learn as many pattern as 
the output neurons. Lateral inhibition is very important for these 
networks since it guarantees that the same pattern is not learned 
by multiple neurons or that the probability of such occurence is 
low, increasing the efficency of the learning process. It 
guarantees that one and only one neuron learns a certain pattern 
at a time, therfore, allowing the network to learn different 
patterns. This behavior asures high pattern coverage 
contributing to high nework efficiency during inference. 

III.!CIRCUIT IMPLEMENTING A SPIKING NEURAL NETWORK 

In the last few years extensive research has been carried out 
to explore the most suitable design for neural networks. The 
shallow and deep networks implementations are studied for 
different applications. For instance, in [28-37] a wide range of 
designs are presented each with its benefits and shortcomings, 
all trying to reach the same goal, an embeddable design for 
spiking neural networks. The designs for deep SNNs target 
complex applications implementing multi-level perceptrons or 
convolutional networks. They are usually based on supervised 
learning. On the other hand, designs for shallow SNNs target 
small scale applications and use on-line learning. The neural 
algorithms and high level architectures are usually 
comprehensively described, however, little to no-details are 
given on how the synaptic weight is controlled for inference 
and learning and how the circuit is built.  

In this work, we use an STDP-capable shallow SNN, 
describing all elements that must be part of the implementation, 
without focussing on the real transistor level details [38]. This 
level of detail is mandatory if a complete fault analysis and 
modeling has to be performed. In order to get the best 
evaluation of hardware implemented SNNs efficiency neuron-
synapse functional modules have to be designed in such a way 
that their input/output characteristics provide the learning and 
processing capability required by application. Additionally, the 
network connectivity has to allow for high integration with 
strong and reliable reconfiguration and adaptation mechanisms.  

Significant benefits can be gained by adopting emerging 
resistive technologies for neuromorphic computation, i.e., 
sinaptic weight implementation. A resistive element with 
bidirectional and continuous conductance tuning capability is 
considered as a natural electrically- controlled synaptic device. 
In addition, the synaptic behavior can be emulated by parallel 
connected bi-stable resistive elements.  

Fig. 3 sketches the connectivity between neurons and 
synapses in a single-layer (shallow) SNN. Here NIN represents 

the set of input spiking neurons, S represents synapses and NOUT 
represents the set of output spiking neurons. NIN neurons are 
used to generate the information to be treated by the network. 
The implementation of these neurons depends on the used 
encoding procedure, i.e., temporal coding or rate coding. NOUT 
neurons implement a leaky integrate-and-fire function. It 
accumulates input spike signals, it integrates them and fires 
when an activation potential is reached. The NOUT neurons are 
inter-connected in a one-to-all fashion to assure the lateral 
inhibition. The synapse modulates the input signal and ensures 
that the learning conditions are met.   

 

Fig. 3 – Architecture of the considered circuit 

The synapse and its control circuit are illustrated in Fig. 4. 
Several works propose using resistive-based synaptic devices in 
a crossbar array (without access device) to meet minimum area 
footprint. However, such implementations requites prohibitive 
large currents to drive the synaptic array. For this reason, in the 
presented design, an access transistor behaving like a switch is 
used to access each synapse. This switch isolates the synapse 
from the rest of the network, such as when there is no activity 
on its connected neurons, there should be no activity on the 
synapse. Whenever input and/or output neuron is active, the 
synapse has to be activated and spikes should be allowed to pass. 
This behavior is guaranteed by OR-ing enable signals generated 
by the neurons. Therefore, the switch is closed if either one of 
the connected neurons is activated. This allows information 
transport from the input to the output neuron, but it also allows 
combining input and output spikes for synaptic weight 
modulation during learning.  

 

Fig. 4 – Synapse architecture 

The PPre signal represents the presynaptic spike, it comes 
from an input neuron and carries the input information. The 
PPost is the postsynaptic spike, comes from an output neuron 
and carries the learning information. The PPre and PPost signal 
values should be chosen such that the synaptic behavior is 
correct in both learning and inference operation modes. A PPre 
signal should not be able to modify the synaptic weight on its 
own. On the contrary, the PPost signal should be able to modify 
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the synaptic weight. The generation of these pulses is done by a 
leaky integrate-and-fire neuron. One neuron receives 
information from all neurons from the previous layer of the 
network, modulated by the corresponding synaptic weight. This 
information is accumulated until it reaches a certain level, at 
which point the neuron sends signal towards the next layer. The 
functional structure of a neuron is illustrated in Fig. 5.  

 

Fig. 5 – Neuron architecture 

The integration function is performed by an operational 
amplifier and capacitor C. The output of this amplifier is 
compared against a threshold Vth, and once the threshold is 
achieved, a pulse generator is activated. The main functionality 
of the pulse generator is to yield the postsynaptic spike (the 
PPost pulse), to give feedback for the synaptic weight 
modulation, and to provide the presynaptic spike (PPre pulse) 
which is feedforward to the next network layer. In addition to 
this information-carrying signal, the pulse generator has to 
provide the Enable signals to control (i) the switch S1 to activate 
the neuron’s refractory period, (ii) the switch S2 to activate the 
synaptic weight modulation (learning), or to allow (iii) the 
passing of the modulated presynaptic spike (W*PPre, with W 
being the synaptic weight). In addition, the pulse generator gives 
the Enable signals controlling the OR gate of the synapse 
(Synapse_Enable) and the Disable signals inhibiting 
neighboring neurons (Lateral Inhibition).  

IV.!SNN FAULT MODELING 

In respect to network reliability, it’s commonly assumed that 
neural networks have a built-in fault-tolerance property due to 
their parallel structures, or fault-tolerant training algorithms. 
Several research works focusing on the fault-tolerance of 
artificial neural networks (ANNs) have been performed in early 
‘90s, then almost forgotten for a good number of years [24]. It 
has been brought again into the light due to the possibility to 
integrate neural networks in embedded systems, where the fault 
tolerance and the eventual graceful degradation need to be 
preserved, in critical and long term mission applications, where 
the system failure has a crucial impact or when the system 
cannot be easily maintained. Several papers have been published 
on boosting fault tolerance of hardware implemented neural 
accelerators [21], and even on the effect of fabrication-induced 
variability of memristive devices on the behavior of deep 
networks [39] and SNNs [24, 40]. They show that faulty neurons 
have stronger impact on the neural network’s behavior than 
faulty synapses. In addition, they show that the on-line learning 
algorithm used in SNNs is efficiently mitigating the effect of 
synapse variability or the input noise on the network robustness.  

The diversity of neural networks and architectures need to 
be analyzed face to general fault models, but also to specific 
implementation-driven models. The efficiency of a neural 
network is based on the inherent redundancy in data used for 
training. Indeed, in this type of network, each output neuron with 

its corresponding synapses “learns” a single input pattern. The 
error rate the network is dependent on the accuracy of the input 
pattern (it translates to the size of the input layer) and the number 
of learned patters (it translates to the size of the output layer) on 
which the output of the network can be extrapolated. 

In this section, we present fault models that will enable fault 
injection campaigns and that will allow identifying scenarios of 
faulty operations, happening before and after the STDP learning. 
In this work, we consider only permanent faults caused by 
manufacturing defects and aging-related phenomena. Due to the 
fact that there are a large number of SNN circuit 
implementations, and the number keeps growing, we chose to 
define realistic fault models, without the need of the full 
knowledge of the hardware implementation. Thus, we define a 
functional set of possible faults that can affect the elements 
belonging to the SNN, neurons and synapses. In particular, we 
define how the inputs and outputs of the functional interface of 
the neurons and synapses (as described in section III) can be 
affected by the faults, while considering the hardware root 
causes that can lead to those faults. These faults are similar to, 
for instance, the stuck-at, where the fault is defined at the 
interface of a logic gate, without the knowledge of the actual 
transistor-level implementation of the gate, but still being 
representative of the majority of physical defects that may 
appear at the transistor level. To the best of our knowledge, this 
is the first attempt to defining a taxonomy of possible faults in 
the elements implementing SNNs. 

A.! Modeling of synaptic faults 

We define the following fault models: 

•! Dead Synapse Fault (DSF), defined as a synaptic connection 
that does not allow information transfer from input to output 
neuron. This is a permanent fault, representative of defects 
strongly affecting the non-volatile resistive or magnetic 
memory element (such as breakdown) or faults affecting 
either the switch or the OR gate in such a way that the switch 
is always opened. 

•! Degraded Plasticity Fault (DPF), defined as a synaptic 
weight that is not able to store the whole range of possible 
values. This fault is representative of defects affecting the 
non-volatile resistive or magnetic element (such as aging-
related effects). This fault model is a permanent, parametric 
fault, and has three parameters, i.e., the minimum and 
maximum weight that can be reached by the synapse, and the 
number of conductive levels. 

•! Synapse-Stuck-At-0 and Synapse-Stuck-At-1 (SSA0, 
SSA1), defined as a synaptic weight that stores permanently 
either the minimum or the maximum weight (these two faults 
are two extreme cases of the above-defined DPF). 

B.! Modeling of neuronal faults 

We define the following fault models: 

•! Dead Neuron Fault (DNF), defined as a neuron that does not 
fire under any conditions. This permanent fault is 
representative of defects affecting any element within the 
neuron that would prevent the pulse generator to generate 
spikes. 

•! Input/Output Stuck Lateral Inhibition Fault (ISLIF, OSLIF), 
defined as a neuron that is not able to receive the lateral 
inhibition information from other neurons (ISLIF) or not 
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able to transmit such an information (OSLIF). These are also 
considered as permanent faults. 

•! Input/Output Delayed Spike Fault (IDSF and ODSF) defined 
as a spike (as PPost for the input, and as PPre for the output) 
that happens with a delay or an anticipation, compared to the 
correct behavior. This fault is representative of defects 
affecting the time constant of the integrator, or the 
comparator within the neuron, leading to an anticipated or 
delayed triggering of the spike. This particular fault is a 
parametric, delay fault type. 

•! Input/Output Delayed Synapse Activation Fault (IDSAF and 
ODSAF), defined as a synaptic activation that happens with 
a delay or an anticipation. This fault is similar to the 
IDSF/ODSF, but it affects the signal enabling the synapse 
activation. IDSAF is pertaining to output Neurons, while 
ODSAF is pertaining to input Neurons. These faults can be 
random transient or intermittent faults. 

•! Input/Output Delayed Lateral Inhibition Fault (IDLIF and 
ODLIF), defined as a lateral inhibition signal that happens 
with a delay or an anticipation. These delay faults can also 
be random or intermittent type. 

V.! FAULT INJECTION 

This section describes the methodology used for fault 
injection in the SNN and presents a summary of the results 
obtained as a consequence of such fault injection. 

A.! Fault simulator 

In order to perform the fault simulations, we have used two 
different simulators. The first tool is Brian, an open-source 
Python-based simulator dedicated to spiking neural networks 
[41]. The tool is aimed at minimizing users' development time, 
and it has the main drawback of incurring in very long execution 
times. For this reason, we have developed an in-house simulator 
that allows simulating the full behavior of the SNN described in 
Section III, while minimizing the execution time. Our tool does 
not use floating point operations used for synaptic weight 
computation, and it does not solve non-linear or differential 
equations used at neuron level, thus increasing significantly its 
efficiency. In addition, the Brian tool is not ready for fault 
injection campaigns, while our tool is versatile and enables 
massive fault injection and analysis campaigns of all fault 
models presented in Section IV. Brian tool has been used to (i) 
validate our own tool; (ii) allow us to quickly set up the first 
experiments. The full description of Brian can be found in 
[40,41]. The full description of our tool is given below. The main 
data structures are sketched in Fig. 6. They can be described as 
follows. 

•! inN: this array represents the set of input neurons. For each 

neuron, we store the time when the last spike occurred 
(lastSpike). This information is required to calculate the 

STDP function; 

•! spike: this array contains the list of input spikes that have 

to be processed. When program reads the input data-set or 
the benchmark to be used, an entry in the array is created for 
each input spike. The entry is composed of the timing of the 
spike and the index of the input neuron to which the spike 
has to be applied; 

•! outN: this array represents the set of output neurons. For 

each neuron, we store: the accumulator (a variable 

storing the quantity of information arriving to the output 
neuron); the inhibition (a variable storing the 

information of the duration for which the neuron is 
inhibited); the lastSpike (time when the last spike 

occurred to calculate the STDP function); 

•! S: this matrix contains the values of the weight of every 

single synapse. 

 

Fig. 6 – Data structure of the proposed in-house simulator 

The main algorithm of the simulator is described in Fig. 7. It 
applies the input signal to the corresponding input neurons, 
which generate the input spikes. Each spike is defined by the 
time the spike occurs (expressed as an integer variable) and the 
index of the input neuron that is going to propagate the spike 

within the network. For each input spike, the corresponding 
lastSpike variable of the input neuron is updated 

accordingly (line 4 in the code). Then, the spike is propagated 
through the corresponding synapses and the value of the weight 
is added to the related output neuron (line 10), only if the output 
neuron is not inhibited. In the last step, if the accumulator of an 
output neuron crossed the threshold, it generates the output 
spike. In this case, all other output neurons are reset and their 
inhibition period is set to the current simulation time plus a 
constant (Refractory-Period). Moreover, the variable 

lastSpike of the output neuron that spiked is updated to the 

current simulation time. Finally, the weights of all the synapses 
connected to the output neuron that spiked are updated. This 
update is executed according to the potdep function, which 

implements a digitalized version of the synaptic Spike Time 
Dependent Plasticity function (as shown in Fig. 2).  

Starting from the behavioral model of the SNN under study, 
we have investigated how the network behaves under different 
scenarios such as: defective or dead neuron, defective or dead 
synapse. We have evaluated the functional accuracy of the SNN 
during inference and learning in our attempts to answer 
questions such as: which one is more detrimental to the 
functionality of a Neural Network (NN): defective neuron or 
defective synapse? How many of these critical components have 
to fail such that the entire network fails? In which state does a 
certain defect matter the most: learning or inference? Our in-
house fault injection simulator allowed the thorough analysis 
that we will report in section V.B. 
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Fig. 7 – Basic algorithm implemented by the in-house simulator 

B.! Results 

All simulations have been performed on a workstation with 
four Intel® Core™2 Quad CPUQ8400 running at 2.66GHz, 
with 4GB of main memory.  

We have implemented a spiking neural network with 
learning strategy based on spike-timing dependent plasticity. 
The network is designed to solve the MNIST database [42], i.e., 
to be trained to recognize hand written digits. This data base has 
60000 examples for the network training and 10000 examples 
for testing the network. Each example consists in the image of a 
hand-written digit. The hand-written digit is a 28x28 pixels 
image in grey-scale (256 tones of grey from white to black). The 
information carried by each image is transmitted to network in 
the form of spikes. The spike encoding is performed by 
frequency encoding of each pixel’s tone of grey. With this 
encoding, the black pixels carry no information, while the white 
pixels carry the maximum amount of information, i.e., 
maximum frequency (255 spikes per time unit). Each image is 
presented to the network for 10 time units. In order to respond 
to the requirements of this data base, the network is designed 
with 784 input neurons, one for every image pixel. The input 
neurons are connected in a one-to-all fashion (as illustrated in 
Fig. 3) to the output neurons. We have performed an initial study 
to assess the efficiency of the implemented training strategy, by 
using different sizes of the output layer. The results are shown 
in Fig. 8. 

 

Fig. 8 – STDP-based SNN recognition rate as a function of the size of the 
output layer 

As expected, the network precision is higher with the size of 
the output layer is large, as more patterns are learned. However, 
this increase is not linear and it becomes less significative as the 
number of neurons increases. For example, when the output 
layer size increases from 400 neurons to 600 neurons, the 
recognition rate is increasing by 1% only. In addition, the 
simulation time becomes more significative, as the number of 
computations performed during learning increases. Thus, for the 
future analysis presented in this paper we are using the network 
with 400 output neurons (with 313600 synaptic connections) 
since the simulation time is manageable and the network 
accuracy is high enough.  

Further to that, fault injection campaign is performed, for 
different scenarios of fault occurrence assuming clustered faults 
or unclustered (randomly or deterministically distributed) faults. 
The functionality of the network has been evaluated and the 
severity of the fault occurrence related to its frequency and 
location has been assessed. The fault injection scenarios are 
illustrated in Fig. 9. It should be noted that in this work we only 
consider the case where either neurons (input or output) or 
synapses are faulty. The scenario where a combination of such 
faults occurs is not considered, being one direction of future 
research. Another assumption used in this work is that all faulty 
components are suffering from the same fault (unique fault 
model is used in this analysis). In addition, all faults have the 
same magnitude. The scenario where a combination of such 
faults may occur (with different magnitudes) is not considered 
and is part of our future research. These assumptions limitations 
come from the complexity of the problem that may lead to 
extreme exploration space for complete analysis. These setups 
are applied of the network HW implementation where the 
synapses are placed in a grid, controlled column-wise by output 
neurons and row-wise by input neurons and where the neurons 
are placed in rows/columns around the synaptic array. This 
present setup is sufficient to demonstrate the relevance of the 
proposed fault models in the operation of the targeted SNN.  

In this analysis, we assume two main scenarios: (i) the faults 
are injected during learning (full learning process and 
subsequent inference are conducted under the faulty network 
scenario), (ii) the faults are injected during the inference (the 
learning is performed on a fault-free network and the inference 
is performed under the faulty network scenario). To simplify the 
description and to present a clear comparison between the two 
scenarios, the fault injection campaign is identical whether it is 
performed at the beginning of the learning process or just during 
the inference. Due to the versatility of the neural network, the 
nature of the faults (type and magnitude) and their location is 
found to affect the pattern recognition precision of the neural 
network. In these experiments, fault modeling and fault injection 
campaign for the SNNs with on-line unsupervised learning (i.e., 
STDP) differs from the fault modeling and fault injection in 
traditional computing architectures due to the strong connection 
between the architecture and the application running on it. Due 
to the large size of the exploration space, in this paper we will 
present only a few selected results. As a matter of fact, we 
present the analysis of the network’s behavior during learning 
and inference when the worst-case faults are injected. The worst 
case identified faults, are neuron and synapse death (DNF and 
DNS), since they represent a complete negation of the desired 
behavior.  

1. foreach spike as (time, index)

2. // It updates the lastSpike timing for the input

3. // neuron that generated the spike

4. inN[index].lastSpike = time

5.

6. // It updates the accumulators of the corresponding

7. // neurons (if the neuron is not inhibited)

8. foreach outNeurons as o

9. if (outN[o].inhibition < time)

10. outN[o].accumulator += S[index][o].weight

11.

12. // If the accumulator of an output neuron

13. // overpasses the threshold, it fires the spike

14. foreach outNeurons as o

15. if (outN[o].accumulator > threshold)

16. // for all the output neurons

17. // the inhibition time is set

18. // and the accumulator is reset

19. foreach outNeurons as o2

20. outN[o2].inhibition = time + RefractoryPeriod

21. outN[o2].accumulator = 0

22. // For the neruon that spiked,

23. // the lastSpike information is updated

24. outN[o].lastSpike = time

25. // For all synapses connected to the

26. // neuron that spiked, the weight is updated

27. foreach inNeurons as i

28. S[i][o].weight += potdep (inN[i].lastSpike, time)
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First, we show how DNFs affect the recognition accuracy of 
the SNN under study. If the faults are injected during the 
learning phase, their location is irrelevant, since dead neurons 
equivalates to smaller size output layer. Indeed, the results show 
the same accuracy whether the network is simulated with dead 
neurons or by eliminating them from the network all together, as 
well as their corresponding synaptic connections. However, 
when DNFs are injected during the inference phase, their 
location is somehow relevant and the accuracy of the pattern 
recognition is dependent on the patterns learned by each dead 
neuron. In Fig. 10 we represent the average values, together with 
the minimum and maximum values of the recognition rates 
obtained when DNFs are injected at inference. We have 
observed that the range of these values increases at the number 
of injected DNFs increases. This is due to the fact that depending 
the location of the injected fault the recognition accuracy of one 
or multiple digits in the data base can be affected. In addition, it 
is very important to note that the injection of DNFs in the output 
layer during inference is less critical (has less effect on the SNN 
recognition rate) than the injection of DNFs in the output layer 
during learning. It is worth noting also that one DNF in the 
output layer has the equivalent effect as full-column DSF. 
Indeed, if all synapses in a column of the synaptic array are 
affected by DSFs, the corresponding output neuron is not 
connected to any of the input neurons, hence it is like it is 
affected by a DNF itself. 

 

 

 

 

 

 

 

 

Fig. 9 – The schematic illustration of the fault injection campaign: a) fault 
free scenario, b), c), d) faulty synapse: - full or partial column affected by 

faults, full or partial row affected by faults, one or multiple random faults in the 
synaptic array; e), f), g) h) faulty neurons: - cluster of input neurons affected by 

faults, cluster of output neurons affected by faults, one or multiple random 

faulty input neurons, one or multiple random faulty output neurons.   

 

Fig. 10 – STDP-based SNN recognition rate as a function of the number of 

output neurons affected by DNF 

A second analysis shows how DSFs affect the recognition 
accuracy of the SNN under study. We consider here 2 scenarios, 
random distribution of DSFs and DSFs affecting full synaptic 
row. Results show that random distribution of the DSFs has 
lesser impact on the recognition rate than row-wise clustered 
faults. Injecting DSFs on a full row of the SNN is equivalent to 

injecting one DNF on the corresponding input neuron. This 
translates in losing the information carried by 1-pixel of the 
input images. Therefore, one outcome of our experiments is to 
understand to which extent the location of these faults can be 
important. For simplicity, in Fig. 11 we illustrate the accuracy 
of the SNN under random DSFs injection during learning and 
inference, for different fault densities. The simulations were 
repeated 50 times to assure that different locations of the injected 
faults are considered. The figure includes the average values of 
the achieved recognition rate together with the corresponding 
maximum and minimum values. We have observed that if less 
that 10% of the synapses are affected by DSF, the SNN accuracy 
is not significantly affected. For larger fault densities, we 
observed that the accuracy decreases rapidly. In addition, results 
show that the network manages to learn around these faults. The 
study show higher network accuracy if the DSFs are injected 
during learning than in the case where DSFs are injected during 
inference.  

 

Fig. 11 – STDP-based SNN recognition rate as a function of the number of 

synapses randomly affected by DNF 

VI.!CONCLUSIONS AND FUTURE WORK 

In this work, for the first time, we present a taxonomy of   
fault models relevant to the operation of hardware-implemented 
Spiking Neural Networks, with special emphasis on circuits 
designed to perform non-supervised, off-line learning. We have 
described the benefits of such neuromorphic systems, the 
possibilities of their HW integration. We have described the 
main concerns related to the SNNs robustness and have 
presented an overview of pertinent fault models and 
methodologies for conducting a fault injection campaign. We 
have demonstrated that the accuracy of a SNN is detrimentally 
affected by the faulty behavior of both synapses and neurons. 
We have shown that the network is less robust if the faults are 
injected during the learning process and high fault density is 
required for a noticeable decrease in recognition rate.  

This analysis represents a preliminary study of the fault 
tolerance of SNNs. Further evaluations are necessary to be able 
to evaluate, with high confidence the reliability of a SNN. 
Multiple fault injection scenarios need to be further performed 
to have a full picture of the network accuracy: different 
locations, different fault magnitudes should be studied as well 
as plausible clustering scenarios and combinations between 
synaptic and neural faults. In addition, the network should be 
evaluated under different application scenarios (or data bases 
with same dimensionality) to evaluate the fault effects also 
independently of the application.  
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