
Early Concolic Testing of Embedded Binaries with
Virtual Prototypes: A RISC-V Case Study∗

Vladimir Herdt1 Daniel Große1,2 Hoang M. Le1 Rolf Drechsler1,2

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{vherdt, grosse, hle, drechsle}@informatik.uni-bremen.de

ABSTRACT
Extensive testing of IoT SW is very important to prevent errors and
security vulnerabilities. In the SW domain the automated concolic
testing technique has been shown very effective.

In this paper we propose an approach for concolic testing of bina-
ries targeting RISC-V systems with peripherals. Our approach works
by integrating the Concolic Testing Engine (CTE) with the architecture
specific Instruction Set Simulator (ISS) inside of a Virtual Prototype
(VP). We provide a designated CTE-interface to integrate (SystemC-
based) peripherals into the concolic testing by means of SW mod-
els. This combination enables a high simulation performance at bi-
nary level with comparatively little effort to integrate peripherals with
concolic execution capabilities. Our approach has been effective in
finding several buffer overflow related security vulnerabilities in the
FreeRTOS TCP/IP stack.

1. INTRODUCTION
All predictions agree that the momentum already gained by the

Internet-of-Things (IoTs) will not stop, quite the contrary, i.e. a
paramount growth in both, the number of connected devices and the size
of the potential business is expected. From the development perspec-
tive of IoT devices several challenges arise which often manifest in con-
flicting requirements: high performance, low power, correctness, remote
accessibility, security and reliability, to just name a few. Among these,
correctness and security are of fundamental significance. Hence, exten-
sive testing of IoT SW is very important to prevent errors and security
vulnerabilities.

In the SW domain the automated concolic testing technique has been
shown very effective. Essentially, concolic testing successively explores
new paths through the SW program by solving symbolic constraints, that
are tracked alongside the concrete execution. This combination of con-
crete with symbolic execution enables an efficient exploration of a large
set of different program paths.

* This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project CONFIRM under
contract no. 16ES0565 and within the project SATiSFy under contract
no. 16KIS0821K, by the University of Bremen’s Central Research
Development Fund, and by the University of Bremen’s graduate school
SyDe, funded by the German Excellence Initiative.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06...$15.00
https://doi.org/10.1145/3316781.3317807

A full IoT solution consists of SW and HW. The traction coming
from open source SW recently reached open source HW. In particular,
RISC-V has started to become a game changer for IoT processors.
RISC-V is an open and free Instruction Set Architecture (ISA) [23].
Since 2015 the RISC-V ISA standard is maintained by the non-profit
RISC-V foundation [3] which has more than 200 members aiming
innovation. However, to the best of the authors knowledge, concolic
testing of binaries targeting RISC-V systems with peripherals has not
been considered yet.

Contribution: In this paper we propose such a concolic testing approach
for binaries targeting RISC-V systems with peripherals1. Our approach
works by integrating the Concolic Testing Engine (CTE) with the archi-
tecture specific Instruction Set Simulator (ISS) inside of a Virtual Proto-
type (VP). We provide a designated CTE-interface to integrate additional
peripherals through a SW-library that is linked with the RISC-V binary
under test into a combined RISC-V binary. Our CTE-interface consists
of a small set of interface functions, tailored for SystemC-based peripher-
als with TLM 2.0 communication [12, 18]. Our approach enables a high
simulation performance, by tightly integrating the concolic execution en-
gine with the VPs ISS for the specific target ISA, and at the same time
significantly reduces the implementation effort in adding concolic execu-
tion capabilities to each peripheral (since peripherals are executed as SW
on top of the VP and hence inherit the concolic execution capabilities of
the VP). Our experiments demonstrate the efficiency and applicability of
our approach in analyzing real-world embedded applications. We found
several buffer overflow related security vulnerabilities in the FreeRTOS
TCP/IP stack.
Related Work: Most of existing work on concolic testing and symbolic
execution has been focusing on testing non-embedded SW that does not
or only rarely interacts with HW. KLEE [6] and SAGE [11] are among
the pioneering work that has made the techniques really work for real-
world SW. While KLEE operates on the LLVM intermediate represen-
tation and requires the source code, SAGE works directly on the x86
binary. Operating on the binary level is important to achieve accurate
verification results, as binaries are code that will actually be deployed.
Thus, despite being more difficult due to the complexity of lower-level
constructs, concolic testing of binaries (mostly x86 and ARM to some ex-
tent) is increasingly being considered by subsequent work, e.g. S2E [8],
Mayhem [7] or Angr [22]. More recently, concolic/symbolic testing has
gained attention from the HW verification community, see e.g. [4,21] for
RTL and [14, 15, 19] for SystemC VPs.

For embedded SW, these approaches are not sufficient due to the much
stronger dependence of the SW on the underlying HW. This gave rise to
a number of specialized HW/SW symbolic (concolic) co-validation ap-
proaches that are related to ours. They mainly differ on how the underly-
ing HW is being integrated. [5, 16] use virtual peripheral models manu-
ally extracted from QEMU. [20] on the other hand integrates HW Verilog

1Please note, we use the RISC-V ISA as a case-study. Our pro-
posed methodology is applicable to other ISAs as well. Also, visit
www.systemc-verification.org for our most recent VP-based ap-
proaches.

models. Recently, [17] proposed a new formalism called instruction level
abstraction to formally model SW-visible behavior of HW. This enables
more scalable symbolic exploration but it is unclear whether the abstrac-
tion can be fully automated. These approaches operate at the source-code
level. FIE [10] is more similar to ours in the sense that it targets SW run-
ning on a specific HW platform. FIE brings a set of modifications to
KLEE to resemble an MSP430-based execution environment and opti-
mizations for more scalable concolic testing (e.g. memory smudging and
state pruning). However, it still requires the SW source code and can-
not handle inline assembly instructions that often can be found in low-
level embedded SW. Therefore, Inception [9] introduces an assembly to
LLVM-IR lifting approach. AVATAR [25] extends S2E to allow hybrid
binary concolic testing with physical devices.

Note that while we describe our approach in some details, we do not
claim the concolic testing technique to be our central contribution. Rather
it is the combination on how the concolic execution engine is integrated
with the VP with our method for integration of (SystemC-based) pe-
ripherals. By this means we provide a practical framework filling the
gap of concolic testing for embedded RISC-V binaries that is not possi-
ble with any existing framework. Conceivably, Angr – operating on the
VEX intermediate representation at binary level – can be extended to sup-
port RISC-V instructions. However, due to its focus on non-embedded
SW, extending Angr to the same extent of capability of handling RISC-
V binaries and peripherals would require a lot of effort. Furthermore,
based on its promises, RISC-V deserves a tailored platform that is more
lightweight and amenable to specific optimizations.

2. PRELIMINARIES

2.1 RISC-V
RISC-V is an open and free Instruction Set Architecture (ISA). The

ISA consists of a mandatory base integer instruction set (denoted RV32I,
RV64I or RV128I with corresponding register widths) and various op-
tional extensions denoted as single letters, e.g. M (integer multiplication
and division), C (compressed instructions), etc. Thus, RV32IMC denotes
a 32 bit core with M and C extension. The instruction set is very compact,
RV32I consists of 47 instructions and the M extension adds additional 8
instructions. All RV32IM instructions have a 32 bit width and use at
most two source and one destination register. The C extensions adds 16
bit encodings for common operations.

The RISC-V ISA also defines Control and Status Registers (CSRs),
which are registers serving a special purpose. For example the mtvec
(Machine Trap-Vector Base-Address) CSR stores the address of the
trap/interrupt handler. Furthermore, the ISA provides a small set of in-
structions for interrupt handling (wfi, mret) and interacting with the sys-
tem environment (ecall). For a comprehensive description of the RISC-V
ISA please refer to the official specifications [23, 24].

2.2 Concolic Testing
Overview: Concolic testing is a technique to successively explore new

paths through the SW program. It uses concolic values in place of pure
concrete ones. A concolic value is a pair with a concrete N and a sym-
bolic part x written as (N,x). The concrete part is always available. We
denote a concolic value to be symbolic, if the symbolic part x is also
available. Otherwise (x = /) we call it concrete. For concolic testing, in-
put variables (or memory regions in general) are marked to be symbolic.
Furthermore, a (symbolic) Execution Path Condition (EPC) and a list of
(symbolic) Trace Conditions (TCs) are tracked. After each execution, an
SMT solver checks each emitted TC for satisfiability. Each satisfiable
TC represents a new testcase (input). An input assigns concrete values
to symbolic variables (i.e. memory regions), thus preventing them being
assigned random values and guiding exploration towards a specific path.

Concolic testing starts by (concretely) executing a random path
through the SW program (i.e. all variables marked symbolic are sim-
ply assigned random values). During SW execution the symbolic input
constraints are propagated alongside the concrete execution. Let us con-
sider an example operation combining two operands A and B. In case one
operand A = (1,x0) has a symbolic value and the other B = (2,/) has not

SW

Peripheral
Models (for VP)

CTE Interface RISC-V
GCC

RISC-V
ELF

ISS Memory
Address Map

VP
(Initial State)

Input Input Input
(New Test)

Trace
(List of Conds.)

with symbolic
annotations

2. VP with Concolic Exec. 3. (Concolic) Exploration Engine 1. CTE SW-Library

clone VP
and exec.
input (clone to
keep initial state)

solve trace
conditions
(SMT solver)
to get inputs

Inputs map: Sym. Vars
to Concrete Values Start with

empty Input

SMT Solver

Concolic Data Types
and Operations

K
L
E
E

Figure 1: Concolic Testing Engine (CTE) architecture overview

B will be first converted to (2,2S), where 2S is an SMT expression repre-
senting the constant value 2. Thus, for example A+B would then result
in (3,x0 + 2S). In the following we often omit the S suffix in case the
context is clear and write 2S simply as 2.

At each branch instruction with symbolic condition s = (c,x), the path
condition EPC is extended and a trace condition TCi is emitted, either:
1) TCi = EPC∧¬x and then EPC := EPC∧x in case the branch is taken
(c evaluates to true in the concrete execution), or 2) TCi = EPC∧ x and
then EPC := EPC∧¬x, otherwise. For verification purposes, assume(s)
adds x to the current EPC to prune irrelevant paths and emits a TC in
case c is false. Assert(s) checks c and emits a TC = EPC∧¬x in case c
is true. Then EPC is extended with x.

Concretization: Symbolic values (N,x) can be concretized, i.e. con-
verted to concrete values (N,/), by adding the constraint N = x to the
path condition EPC. This can be useful in case parts of the simulation
only support concrete values. Optionally, trace conditions can be emit-
ted to (try) generate different concrete values N (e.g. the minimum and
maximum possible values would be good candidates).

3. CONCOLIC TESTING ENGINE (CTE)
FOR RISC-V EMBEDDED BINARIES

CTE enables concolic testing of binaries targeting RISC-V systems
with peripherals. We start with an overview of CTE. Then, we present
our approach on integrating peripherals into CTE in more details and
finally show an example that illustrates how CTE interoperates with SW
in combination with peripherals.

3.1 Overview
Fig. 1 shows an overview on the architecture of CTE. Essentially, CTE

consists of three parts:
1) A SW-library that contains CTE-interface functions and a set of

peripheral models. The CTE functions allow to declare and reason about
symbolic variables and enable CTE to interface with peripheral models.

2) A VP that is operating with concolic, instead of concrete, data types.
The VP essentially consists of an ISS that executes instructions one after
another and a memory that stores code and data. Both, ISS and mem-
ory use concolic data types and propagate symbolic constraints during
program execution. The ISS supports the RISC-V RV32IMC ISA. Ad-
ditional peripherals are integrated into the simulation through the CTE
SW-library.

3) A concolic exploration engine that is successively exploring new
paths through the SW program (binary) by leveraging the VP and solving
constraints on symbolic variables using an SMT solver.

3.1.1 Initialization and Exploration
CTE of SW works as follows: First, the SW is compiled together with

the CTE SW-library into a RISC-V ELF (binary file). Variables, repre-
senting input data, are marked to be symbolic (using the CTE-interface
functions). Then, the (concolic execution) VP is instantiated and the
(combined) RISC-V ELF is loaded into the VPs memory. The explo-
ration engine then starts by assigning each symbolic variable a random
value (empty input) and then successively generates new inputs (based
on the observed constraints) to explore different paths through the SW
program. In particular it will try to generate new inputs in case of a sym-
bolic branch condition or assume or assert function. The VP is cloned

1 static uint32_t scaler = 25;
2 static uint32_t filter = 0;
3 static uint32_t data = 0;
4 #define SCALER_REG_ADDR 0x00
5 #define FILTER_REG_ADDR 0x04
6 #define DATA_REG_ADDR 0x08
7
8 void update () {
9 // overwrite data with new concolic bytes

10 CTE_make_symbolic (&data , sizeof(data), "d");
11 CTE_assume(data >= MIN_SENSOR_VALUE && data <=

MAX_SENSOR_VALUE);
12 data -= filter;
13
14 // PLIC receives interrupts , prioritize them and

calls a CTE -function to notify the VP
15 plic_process_interrupt (2 /* IRQ_NUMBER */);
16
17 // corresponds to simple thread wait in SystemC

(or just a method process)
18 CTE_notify (&update , scaler*CYCLES_PER_MS);
19 CTE_return ();
20 }
21
22 // corresponds to a simple TLM transaction
23 void transport(uint32_t addr , uint8_t *data ,

uint32_t size , _Bool is_read) {
24 CTE_assert (size == 4);// only access whole reg.
25 uint32_t *vptr = (uint32_t *)data;
26 uint32_t *reg = 0;
27
28 // pre -process actions
29 if (addr == SCALER_REG_ADDR) {
30 if (! is_read)
31 CTE_notify (&update , scaler*CYCLES_PER_MS);
32 reg = &scaler;
33 } else if (addr == DATA_REG_ADDR) {
34 reg = &data;
35 } else if (addr == FILTER_REG_ADDR) {
36 reg = &filter;
37 } else { assert (0 && "invalid addr"); }
38
39 if (is_read) *vptr = *reg;
40 else *reg = *vptr;
41
42 // post -process actions
43 if (addr == FILTER_REG_ADDR && !is_read)
44 if (filter >= MIN_SENSOR_VALUE)
45 filter = MIN_SENSOR_VALUE +1;
46
47 CTE_return ();
48 }

Figure 2: Simple sensor peripheral that illustrates the concept on peripheral modeling in combination with the CTE-interface.

each time before executing a new input to preserve the initial VP state and
allow exploration of different paths. CTE continues until all inputs have
been processed or a runtime check fails. CTE checks for SW assertion vi-
olations as well as some generic error sources: null pointer dereference,
access (read or write) of an illegal memory address and invalid jump tar-
get (either not properly aligned or a jump to an illegal instruction). In our
experimental evaluation we also check for overflows of heap allocated
memory in FreeRTOS (more details will follow later).

3.1.2 Peripheral Integration
To implement CTE for embedded binaries (targeting a specific ISA)

with peripherals, there are in general two fundamental choices with dif-
ferent trade-offs between execution performance and implementation ef-
fort: 1) Integrate concolic execution into every component of the VP,
i.e. including every peripheral. This fully specialized solution requires
significant effort (for each peripheral) but leads to the best performance.
2) Use a generic (x86) symbolic/concolic execution engine like S2E and
run the VP, which in turn simulates the embedded binary, inside of S2E.
This generic solution requires only little integration effort but has a sig-
nificant performance overhead, in particular due to running the (VPs) ISS
inside another simulator (S2E).

We aim to combine the benefits of both approaches and alleviate their
respective major disadvantages. Our approach enables a high simula-
tion performance, by tightly integrating the concolic execution engine
with the VPs ISS for the specific target ISA (RISC-V in our case). This
avoids the (very significant) additional interpretation layer in the ISS,
which arguably is the component with the greatest performance impact.
At the same time we integrate peripherals into the VP by providing SW
models of the peripherals. Thus, peripherals are compiled to the RISC-
V instruction set and normally executed on our VP alongside the actual
binary that is tested. This has the major benefit, that the peripherals are
executed with concolic data types and hence propagate symbolic con-
straints without further modification. While this involves a small (cur-
rently manual) transformation step to obtain an appropriate peripheral
SW model (we use an existing SystemC model as starting point), it is
much less effort than integrating concolic execution capabilities directly
into the (SystemC-based) peripheral. Hence, our approach enables a fast
simulation performance with comparatively little implementation effort.

In the following we start with an example that demonstrates our main
modeling concepts for peripherals and then present how peripherals are
accessed from SW and interoperate with the concolic exploration engine.

3.2 Peripheral Modeling Concepts
For illustration of our peripheral modeling concepts, Fig. 2 shows a

simple sensor peripheral. It provides three (memory mapped) 32 bit reg-

isters: data holds the most recent generated sensor data, scaler controls
how fast new sensor data is generated, and filter is applied on the gen-
erated data. Register access is provided through the transport function,
which roughly corresponds to a TLM b_transport function2. New sensor
data is periodically generated by the update function (Line 8). Therefore,
the data register is overwritten with a new symbolic value (Line 10) and
constrained to stay in the sensor range (Line 11). An interrupt is trig-
gerd by calling the PLIC peripheral (a RISC-V specific Platform Level
Interrupt Controller, implementation not shown) in Line 15. PLIC will
prioritize incoming interrupts and eventually notify the ISS using the
CTE_trigger_irq function. CTE_notify instructs the VP to call the func-
tion (address provided as first argument) after the specified number of ex-
ecution cycles has passed (second argument). In case the function already
has a pending notification, it will be reset. To handle notifications, the VP
has a simple timing model that assigns each RISC-V instruction a fixed
number of cycles, which are added up during simulation. CTE_notify
allows to model simple processes. Currently, we only support concrete
delay arguments to CTE_notify. In case a symbolic argument is used, it
will be concretized. CTE_return returns execution control back to the
SW program, which is interrupted in order to enter peripheral functions
(transport and update). We present more details on this in the following
(sub-)section. Finally, we provide the CTE_get_cycles function to obtain
the current number of simulation cycles from the ISS to model the RISC-
V specific CLINT (Core Local INTerruptor) peripheral. CLINT triggers
periodic (configurable) timer interrupts and allows the SW to obtain the
current simulation time.

3.2.1 Software Side
Fig. 3 shows an example SW that is accessing the sensor peripheral

(shown in Fig. 2). The SW first installs an interrupt handler to listen for
the sensor interrupt (Line 11). Then, it initializes the sensor (Lines 14-
15) using memory mapped I/O and waits for the sensor interrupt (which
indicates new data). The filter register is assigned a symbolic value, while
scaler is assigned a concrete one. Finally, the SW retrieves the sensor
data value and checks its validity (Lines 20-21).

To handle memory mapped accesses, the VP has an address map that
contains specific non-overlapping address ranges for the memory and ev-
ery peripheral. This address map information is obtained from a config-
uration file. Every memory access transaction, i.e. RISC-V load/store

2It is easily possible to write a transport wrapper that stores the ar-
guments in a tlm_generic_payload and then calls the real transport
function to avoid modifying the peripheral. An optional delay param-
eter could also be passed in and returned back to the VP through the
CTE-interface.

1 uint32_t*SENSOR_SCALER_REG_ADDR =(uint32_t *)0x10000000;
2 uint32_t*SENSOR_FILTER_REG_ADDR =(uint32_t *)0x10000004;
3 uint32_t*SENSOR_DATA_REG_ADDR =(uint32_t *)0x10000008;
4
5 volatile _Bool sensor_has_data = 0;
6 void sensor_irq_handler () {
7 has_sensor_data = 1;
8 }
9

10 int main() {
11 register_interrupt_handler (2 /* IRQ_NUMBER */,

sensor_irq_handler);

12 uint32_t filter;
13 CTE_make_symbolic (&filter ,sizeof(filter),"f");
14 *SENSOR_FILTER_REG_ADDR = filter;
15 *SENSOR_SCALER_REG_ADDR = 50;
16
17 while (! sensor_has_data) { // check for sensor
18 asm volatile ("wfi"); // wait for any irq
19 }
20 uint32_t n = *SENSOR_DATA_REG_ADDR;
21 CTE_assert (n <= MAX_SENSOR_VALUE);
22 return 0;
23 }

Figure 3: Example SW that is accessing the sensor peripheral (shown in Fig. 2).

I0: � F=(31, f0)−−−−−→ if(F ≥ 16) : T
F=(17,/),D=(4,d0)−−−−−−−−−−→ assume(D ≥ 16∧D ≤ 64) : F

I2 : � F=(23, f0)−−−−−→ if(F ≥ 16) : T
F=(17,/),D=(45,d0)−−−−−−−−−−−→ assume(D ≥ 16∧D ≤ 64) : T

D=(28,d0−17)−−−−−−−−→ assert(D ≤ 64) : T

I3 : � F=(21, f0)−−−−−→ if(F ≥ 16) : T
F=(17,/),D=(16,d0)−−−−−−−−−−−→ assume(D ≥ 16∧D ≤ 64) : T

D=(UINT_MAX,d0−17)−−−−−−−−−−−−−→ assert(D ≤ 64) : F
Figure 4: Example concolic execution paths through the SW and peripheral shown in Fig. 3 and Fig. 2.

instruction, is matched against the address ranges and then routed ac-
cordingly. This step involves a global-to-local address translation. For
example executing a RISC-V SW (store word) instruction with address
0x10000004 (Line 14 in Fig. 3), and assuming the sensor is mapped
to e.g. the range (0x10000000, 0x1000ffff), then the access address is
translated to 0x4 and routed to the sensors transport function. This step
involves a context switch to the peripheral SW and then back to the main
SW. In the following we provide more details on this step.

3.2.2 Context Switching: SW and Peripheral
To switch execution context from the SW to a peripheral function FN,

the VP (actually the ISS) saves its current execution context (i.e. register
values and program counter) to an internal stack. Then, the program
counter is simply set to the address of FN. To return, the previously stored
execution context is re-stored. Therefore, we introduced the CTE_return
function3. Using a stack to save the execution context allows peripherals
to access other peripherals memory through a memory mapped access.

Arguments between the VP and the SW peripherals are passed through
registers and a (transaction) data array placed in memory (to hold larger
arguments). The transport function takes four arguments: the (local) ac-
cess address, the number of bytes to access, a data pointer (uint8_t*), and
a boolean flag indicating the access type (read/write). The data pointer
is setup to point to the data array. These four arguments are stored in the
VP registers (a0 to a3, following the RISC-V function calling conven-
tion) prior to switching context to the transport function. The address of
the transport function for each peripheral as well as the data array is ob-
tained (during VP initialization) by parsing the ELF symbols (i.e. given
a name of a symbol, it is possible to obtain its address).

3.3 Concolic Testing Example
This section illustrates how CTE interoperates with SW and peripher-

als. Fig. 4 shows the relevant execution paths for our sensor SW example.
It shows the input, updates to the filter (F in Fig. 4) and data (D in Fig. 4)
variables and instructions generating trace conditions.

CTE starts without input constraints (I0 = {}), thus assigning each
symbolic variable a random value and therefore exploring a random
path through the SW program. We assume for this first run that
filter and data are (randomly) assigned the concolic values (31, f0)
and (4,d0) in Line 13 and Line 10, respectively. Furthermore, for
this example we define the constants MIN_SENSOR_VALUE=16 and
MAX_SENSOR_VALUE=64. The first trace condition TC1 =¬(f0 ≥ 16)
is generated by the branch execution in Line 44, due to the memory
mapped write of the symbolic filter value in the SW (Line 14). The sec-
ond trace condition TC2 = (f0 ≥ 16)∧ (d0 ≥ 16∧d0 ≤ 64) is generated
by the assume function in Line 11, due to the symbolic data value, while

3Though, in general it is also possible to automatically infer the end of
FN by e.g. monitoring function calls and returns.

the main SW waits for an interrupt (Line 18). Thus, the assume function
evaluates to false and this path ends.

Both trace conditions are satisfiable, resulting in e.g. the two new
inputs I1 = { f0 = 1,d0 = 25} and I2 = { f0 = 23,d0 = 45} (obtained by
using the SMT solver), respectively. It depends on the search strategy of
the exploration engine, which input is considered next. For this example,
we continue with I2. Until the assume function (Line 11) it follows the
same path as the initial execution. However, different concrete values
are assigned at the CTE_make_symbolic functions based on I2. Thus,
this time the assume function evaluates to true and execution continues.
Please note, no trace conditions have been generated until now to avoid
re-exploration of the first execution path (and its descendants, i.e. I1).
Next, filter is applied to the generated data (Line 12) and an interrupt
is triggered (Line 15). The main SW will leave the interrupt waiting
loop, fetch the data register value (Line 20) and check the assertion in
Line 21. The concrete part of the condition evaluates to true, the assert
generates a trace condition TC3 = (f0 ≥ 16)∧¬(d0 −17 ≤ 64) and this
path ends. TC3 is satisfiable with e.g. I3 = { f0 = 23,d0 = 16}. With I3
the data register in Line 12 will underflow and thus the assert in Line 21
is violated. This is due to an incorrect filter value assigned in Line 45. It
should use minus one instead of plus one. This example also shows that
it is important to integrate the peripheral logic into the testing approach
to avoid missing relevant behavior of the overall system.

4. EXPERIMENTS
We have implemented our proposed CTE for concolic testing of bina-

ries targeting RISC-V systems with peripherals. As symbolic backend
we use KLEE v1.4.0 with STP solver v2.3.1. We evaluate CTE in two
steps: First, we evaluate the performance of our approach in Section 4.1.
Then, we apply CTE to test the FreeRTOS TCP/IP stack. Our approach
has been effective in finding various security vulnerabilities.

4.1 Performance Evaluation
We evaluate the performance of our CTE by comparing against: 1) a

generic symbolic execution solution using S2E, and 2) a VP supporting
RISC-V binaries [13]. The ISS in VP is similar to that in CTE but only
supports concrete execution. Hence, VP uses DMI for memory access
and native (C++ uint32_t) data types for instruction execution (instead
of a custom concolic data type that propagates a concrete and symbolic
value for each instruction). Furthermore, VP is using normal SystemC
peripherals. For the S2E solution, we run VP simulating the RISC-V
binary on top of S2E, thus allowing symbolic execution of RISC-V bi-
naries with little implementation overhead (only a small interface layer
is required to propagate the make_symbolic, assume and assert functions
from the RISC-V binary through the VP into S2E).

Table 1 shows the results. All runtimes are provided in seconds. It is
separated into 11 columns. The columns show, in order from left to right,

Table 1: Experiment results – timeout (T.O.) set to 7200 seconds (2 hours)

Benchmark #instr
LOC Sim. Time (sec.) CTE Statistics

C ASM VP S2E CTE FoI S2E stime #paths #queries

qsort 52,343,639 212 1126 1.83 122.33 3.87 31.6x / 1 /
sha512 75,997,581 175 1132 2.71 136.90 4.62 29.6x / 1 /
dhrystone 238,000,584 273 515 8.42 421.60 19.70 21.4x / 1 /
freertos-sensor 21,348,342 217 18230 1.35 107.37 2.19 49.0x / 1 /
counter/s 642,710 31 79 / 1264.21 41.74 30.3x 37.82 452 904
fibonacci/s 683,970 37 170 / 394.14 1.90 197.5x 0.15 22 41
qsort/s 58,648 219 1192 / T.O 32.90 >218x 32.58 121 600
freertos-sensor/s 301,697,668 241 18329 / 422.78 38.66 10.9x 1.60 463 968

the benchmark name (column: Benchmark), number of instructions exe-
cuted (column: #instr), number of lines (LOC) in C and RISC-V assem-
bly (columns: C and ASM), the simulation time in seconds on the VP,
S2E and our CTE (columns: VP, S2E and CTE), and relevant statistics
for our CTE: factor of improvement (FoI) compared to S2E (column: FoI
S2E), time in seconds spent with solver queries (column: stime), num-
ber of different paths explored (column: #paths) and number of solver
queries (column: queries).

Table 1 is separated into two halves. The upper half shows bench-
marks that only operate on concrete values, while the lower half shows
benchmarks including symbolic values (hence exploring multiple execu-
tion paths). For symbolic benchmarks, the reported number of instruc-
tions is combined over all paths. As benchmarks we use qsort from the
newlib C library, a standard dhrystone implementation, sha512 performs
a checksum computation, counter involves counting related constraints,
fibonacci uses a recursive implementation (function call intensive) and
freertos-sensor embeds a sensor application into FreeRTOS tasks. The /s
name suffix denotes that the benchmark uses symbolic values.

Comparing our CTE approach with VP, it can be observed that the
overhead of using concolic execution is around a factor of 2.2x. The over-
head of running the VP inside of S2E is between 21x and 49x compared
to CTE on our benchmark set. The main reason is the additional interpre-
tation overhead in the ISS component of the VP. With symbolic values,
the overhead of S2E compared to CTE is even more pronounced. Speed-
ups of multiple orders of magnitude can be observed. The (symbolic)
state space representation is more heavy-weight and complex in S2E.
Furthermore, the additional abstraction layer leads to increased number
of forks in the symbolic execution engine. In one case (freertos-sensor/s)
we observed only an improvement of 10.9x. The reason is that CTE ex-
plores all paths from the beginning instead of forking an active execution.
This leads to significant overhead in re-initializing the FreeRTOS mem-
ory image. This inefficiency can be solved by cloning the CTE execution
state after initialization is finished and then start the exploration engine
from this point. Our evaluation shows that an ISA specific symbolic exe-
cution engine can provide significant speed-ups compared to a generic
symbolic execution engine (in particular optimizations of the ISS are
important). At the same time, our approach requires considerable less
implementation effort compared to a fully specialized symbolic execu-
tion engine, by integrating SW models of peripherals instead of adding
symbolic execution capabilities to every periperal.

4.2 Testing the FreeRTOS TCP/IP Stack
To evaluate the effectiveness of our tool we have analyzed the TCP/IP

stack of FreeRTOS v10.0.0 in combination with the RISC-V port of the
FreeRTOS kernel. Essentially, we inject a single (small) packet with
symbolic size and content into the TCP stack and check for generic exe-
cution errors (including FreeRTOS assertions) and heap buffer overflows.

4.2.1 Test Setup
IP packets are processed in FreeRTOS inside the platform independent

IP-task. The IP-task requires a driver to receive (send) packets from (to)
the network card. The FreeRTOS documentation provides a generic port-
ing guide [2] to create a new driver and connect it with the IP-task. Using
the generic driver code, it is only necessary to implement three additional
glue functions: 1) ReceiveSize, 2) ReceiveData, and 3) SendData.

Essentially, to receive a packet, the driver waits for a network card in-
terrupt. Then, it asks the network card for the number of received bytes
(ReceiveSize function), allocates a buffer on the heap large enough to
hold ReceiveSize bytes, and asks the network card to store the data in the
buffer (ReceiveData function). Finally, the allocated buffer is delivered
to the (platform independent) IP-task for further processing. We model
the network card as a peripheral (as described Section 3.2). Inside the
peripheral we store a packet buffer of 512 bytes with symbolic content.
Furthermore, we define a symbolic integer variable N and add the as-
sumption N ≤ 512 in the peripheral. The driver glue functions access our
peripheral using memory mapped I/O. Our model simply ignores outgo-
ing packets, returns N when asked for ReceiveSize and copies N bytes
into the data pointer provided by ReceiveData.

In the (SW) main function, we create and initialize the FreeRTOS net-
work (IP-task) and driver processing task and start the FreeRTOS sched-
uler (available from the FreeRTOS kernel). Then we create and bind a
TCP socket in listening mode to ensure that the IP-task does not drop
TCP packets (which is the case if no initialized TCP socket is available).
Finally, we start the actual symbolic testing by calling the init function of
our peripheral, which in turn will trigger an interrupt notifying the driver
to receive and process a packet. Interrupts are processed using our PLIC
peripheral. Timer interrupts for the FreeRTOS scheduler processing are
generated using our CLINT peripheral.

Please note, the IP-task is non-terminating and will wait for new pack-
ets from the driver indefinitely. Thus, we added a switch to stop simula-
tion after one packet has been processed, to allow CTE to explore other
paths as well (alternatively we could bound the search depth in CTE).

4.2.2 Heap Buffer Overflow Detection
To check for heap buffer overflows, we provide wrappers for the

FreeRTOS memory management functions pvPortMalloc (allocate mem-
ory) and vPortFree (free memory). We use the linker options -
Wl,–wrap=pvPortMalloc -Wl,–wrap=vPortFree with GCC to automat-
ically redirect all accesses of pvPortMalloc to our wrapper func-
tion __wrap_pvPortMalloc. The original function is available as
__real_pvPortMalloc (vPortFree handled in same way).

Fig. 5 shows our wrapper functions. The pvPortMalloc wrapper allo-
cates a larger than requested memory block, by adding additional bytes
(protected zones) before and after the requested memory block. These
protected zones are registered in CTE (Line 9). CTE will monitor all
load/store operations and trigger a simulation error in case of a write (or
read) access inside of the zones. CTE generates trace conditions in case
of a symbolic memory address. The vPortFree wrapper unregisters the
two corresponding protected zones from CTE (Line 15), which does also
check for double free and non-allocated blocks, and then calls the real
vPortFree function of FreeRTOS.

4.2.3 Test Results
We run CTE until we find the first error. We then repeatedly fix the

error and re-run CTE, until no more error is found. We have set 4 hours
(14400 seconds) as time limit to terminate the analysis. Table 2 presents
the errors that we have found. All errors are related to buffer overflows
of heap allocated memory and can therefore lead to serious security vul-
nerabilities. Besides a description, Table 2 shows additional relevant in-
formation similar to Table 1.

1 #define PROT_ZONE_SIZE 512 //in bytes
2
3 void *__wrap_pvPortMalloc(size_t xWantedSize) {
4 size_t xSize = xWantedSize + 2* PROT_ZONE_SIZE;
5 // call the real FreeRTOS pvPortMalloc function
6 uint8_t *p=(uint8_t *) __real_pvPortMalloc(xSize);
7 if (p == NULL) return NULL;
8 void *addr = (void *)(p + PROT_ZONE_SIZE);
9 CTE_register_protected_memory(addr ,

xWantedSize , PROT_ZONE_SIZE);

10 return addr;
11 }
12
13 void __wrap_vPortFree(void *pv) {
14 CTE_assert(pv != NULL);
15 CTE_free_protected_memory(pv);
16 void *pv_real = ((uint8_t *)pv) - PROT_ZONE_SIZE;
17 // call the real FreeRTOS vPortFree function
18 __real_vPortFree(pv_real);
19 }

Figure 5: Wrappers for the real FreeRTOS pvPortMalloc and vPortFree memory management functions.

Table 2: Errors found in testing the FreeRTOS TCP/IP stack implementation – time in seconds
Error description time stime #paths #queries #instr

1: A malformed IP packet header length causes an integer overflow which leads to a
memmove operation with a size close to UINT_MAX. 0.52 0.13 7 30 1,106,862

2: Multiple buffer overflows accessing (read) non-existing fields in the DNS and NBNS
packet parser.

4.52 0.58 62 155 10,256,275

3: Buffer overflow (write) in the DNS reply generator, due to missing packet length
checks, causing heap corruption.

4.94 0.50 90 207 14,946,642

4: Various buffer overflows (read), during TCP options checking, due to missing buffer
length checks (in case of malformed packets).

10.90 2.55 108 346 20,148,331

5: Integer overflow in length calculation causes NBNS processing code to allocate a
large reply buffer and fill it by reading beyond a much smaller input buffer. 380.92 33.00 6,135 15,495 1,025,290,638

6: NBNS processing code allocates not enough memory to hold the complete reply
message for some malformed UDP packet sizes, leading to a buffer overflow. 456.88 36.23 8,055 20,171 1,343,648,874

It can be observed that our concolic analysis, despite currently being
without sophisticated state-of-the-art search heuristics, is already very ef-
fective in finding errors. Some of the detected errors require very specific
inputs that are hard to find without formal methods. Note that these er-
rors/vulnerabilities were present within the FreeRTOS TCP/IP stack for a
long time already. At the time of writing, it appears that other researchers
might also have discovered these errors [1]. These have been fixed only
very recently in the newest FreeRTOS Version (v10.1.0). Despite being
assigned CVEs (detailed list in [1]), neither the errors nor how they have
been found are disclosed.

5. CONCLUSION
In this paper we proposed an approach for concolic testing of bina-

ries targeting RISC-V systems with peripherals. We embed the Concolic
Testing Engine (CTE) into the core VP and integrate peripherals through
a SW-library. This enables high execution performance by specializing
the ISS for the target architecture and at the same time significantly re-
duces implementation effort in adding concolic execution capabilities to
each peripheral. Our approach has been very effective in finding buffer
overflow related errors in the FreeRTOS TCP/IP stack, which demon-
strate the applicability and efficiency of our approach in analyzing real-
world embedded applications. For future work we plan to: 1) Investigate
using C++ peripheral models with a more comprehensive abstraction
layer to avoid the current peripheral transformation step. 2) Integrate
support for timers/interrupts with symbolic notification times to enable
checking for timing/ordering related errors. 3) Evaluate different search
heuristics to select inputs that increase code coverage more quickly.

6. REFERENCES
[1] FreeRTOS TCP/IP stack vulnerabilities put a wide range of devices at risk of

compromise: From smart homes to critical infrastructure systems.
https://blog.zimperium.com/freertos-tcpip-stack-
vulnerabilities-put-wide-range-devices-risk-compromise-smart-
homes-critical-infrastructure-systems.

[2] Porting FreeRTOS+TCP to a different microcontroller.
https://www.freertos.org/FreeRTOS-
Plus/FreeRTOS_Plus_TCP/Embedded_Ethernet_Porting.html.

[3] RISC-V Foundation. https://riscv.org/.
[4] A. Ahmed, F. Farahmandi, and P. Mishra. Directed test generation using concolic

testing on RTL models. In DATE, pages 1538–1543, 2018.
[5] S. Ahn and S. Malik. Automated firmware testing using firmware-hardware

interaction patterns. In CODES+ISSS, pages 25:1–25:10, 2014.

[6] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In OSDI, pages 209–224,
2008.

[7] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing mayhem on binary
code. In IEEE S & P, pages 380–394, 2012.

[8] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: a platform for in-vivo multi-path
analysis of software systems. In ASPLOS, pages 265–278, 2011.

[9] N. Corteggiani, G. Camurati, and A. Francillon. Inception: System-wide security
testing of real-world embedded systems software. In USENIX Security, pages
309–326, 2018.

[10] D. Davidson, B. Moench, T. Ristenpart, and S. Jha. FIE on firmware: Finding
vulnerabilities in embedded systems using symbolic execution. In USENIX
Security, pages 463–478, 2013.

[11] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz testing. In
NDSS, 2008.

[12] D. Große and R. Drechsler. Quality-Driven SystemC Design. Springer, 2010.
[13] V. Herdt, D. Große, H. M. Le, and R. Drechsler. Extensible and configurable

RISC-V based virtual prototype. In FDL, pages 5–16, 2018.
[14] V. Herdt, H. M. Le, D. Große, and R. Drechsler. Compiled symbolic simulation for

SystemC. In ICCAD, pages 52:1–52:8, 2016.
[15] V. Herdt, H. M. Le, D. Große, and R. Drechsler. Verifying SystemC using

intermediate verification language and stateful symbolic simulation. TCAD, 2018.
[16] A. Horn, M. Tautschnig, C. G. Val, L. Liang, T. Melham, J. Grundy, and

D. Kroening. Formal co-validation of low-level hardware/software interfaces. In
FMCAD, pages 121–128, 2013.

[17] B. Huang, S. Ray, A. Gupta, J. M. Fung, and S. Malik. Formal security verification
of concurrent firmware in SoCs using instruction-level abstraction for hardware. In
DAC, pages 91:1–91:6, 2018.

[18] IEEE. IEEE Standard SystemC Language Reference Manual. IEEE Std. 1666, 2011.
[19] B. Lin, K. Cong, Z. Yang, Z. Liao, T. Zhan, C. Havlicek, and F. Xie. Concolic

testing of SystemC designs. In ISQED, pages 1–7, 2018.
[20] R. Mukherjee, M. Purandare, R. Polig, and D. Kroening. Formal techniques for

effective co-verification of hardware/software co-designs. In DAC, pages 35:1–35:6,
2017.

[21] S. Pinto and M. S. Hsiao. RTL functional test generation using factored concolic
execution. In ITC, pages 1–10, 2017.

[22] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Krügel, and G. Vigna. SOK: (state of) the art of
war: Offensive techniques in binary analysis. In IEEE S & P, pages 138–157, 2016.

[23] A. Waterman and K. Asanović. The RISC-V Instruction Set Manual; Volume I:
User-Level ISA. SiFive Inc. and CS Division, EECS Department, University of
California, Berkeley, 2017.

[24] A. Waterman and K. Asanović. The RISC-V Instruction Set Manual; Volume II:
Privileged Architecture. SiFive Inc. and CS Division, EECS Department, University
of California, Berkeley, 2017.

[25] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti. AVATAR: A framework to
support dynamic security analysis of embedded systems’ firmwares. In NDSS, 2014.

