
Small-Delay-Fault ATPG with Waveform Accuracy

Matthias Sauer∗ Alexander Czutro∗ Ilia Polian† Bernd Becker∗

∗ Albert-Ludwigs-University Freiburg
Georges-Köhler-Allee 051

79110 Freiburg, Germany

{ sauerm | aczutro | becker }
@informatik.uni-freiburg.de

† University of Passau
Innstraße 43

94032 Passau, Germany

ilia.polian@uni-passau.de

Abstract—The detection of small-delay faults is traditionally
performed by sensitizing transitions on a path of sufficient length
from an input to an output of the circuit going through the
fault site. While this approach allows efficient test generation
algorithms, it may result in false positives and false negatives as
well, i.e. undetected faults are classified as detected or detectable
faults are classified as undetectable. We present an automatic
test pattern generation algorithm which considers waveforms and
their propagation on each relevant line of the circuit. The model
incorporates individual delays for each gate and filtering of small
glitches. The algorithm is based on an optimized encoding of the test
generation problem by a Boolean satisfiability (SAT) instance and is
implemented in the tool WaveSAT. Experimental results for ISCAS-
85, ITC-99 and industrial circuits show that no known definition of
path sensitization can eliminate false positives and false negatives
at the same time, thus resulting in inadequate small-delay fault
detection. WaveSAT generates a test if the fault is testable and is
also capable of automatically generating a formal redundancy proof
for undetectable small-delay faults; to the best of our knowledge
this is the first such algorithm that is both scalable and complete.

I. INTRODUCTION

Small-delay faults (SDF) are common in nanoscale technolo-
gies. They are caused by defect mechanisms such as resistive
opens and resistive shorts in the signal interconnects and in the
power-distribution network of the circuit. They can also be a
consequence of marginal parameter shifts of transistors in logic
gates. Considerable effort has been spent to better understand
modeling and simulation of SDFs [1] and automatic test pattern
generation (ATPG) approaches to detect them [2], [3], [4], [5],
[6], [7]. High coverage of SDFs is essential to maintain the
quality of integrated circuits. The concept of primitive faults [8],
[9] is used to reduce the number of target faults needed for high
fault coverages.

An SDF is associated with an affected logic gate g within
the circuit. It has a size s and an affected transition (rising or
falling). If this transition occurs at the output of g, it is delayed
by δ + s where δ is the nominal delay of g. In general, the
application of a test pair (v1, v2) triggers multiple transitions
at different lines of the circuit1, including its outputs [10]. We
denote the complete set of transitions on a line l, including the
times of these transitions, by the term waveform on l under test

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. IEEE/ACM International Conference on Computer-Aided Design
(ICCAD) 2012, November 5-8, 2012, San Jose, California, USA Copyright c©
2012 ACM 978-1-4503-1573-9/12/11... $15.00

1The subsequent discussion assumes combinational circuits. The basic test
application procedure is applicable, under restrictions, to sequential and scan
circuits. The introduced algorithm can easily be adapted for these circuit types.

pair (v1, v2). An SDF is detected by (v1, v2) if, for an output
o, the waveforms on o under (v1, v2) differ at the observation
point tobs for the faulty and the fault-free circuit.

The detection of an SDF at gate g with size s necessitates
the existence of a sensitized path from an input i to an output
o of the circuit going through g and having an accumulated
fault-free delay greater than or equal to tobs − s. Intuitively, a
sensitized path is composed of gates with off-path input(s) set to
values which allow the propagation of transitions from the on-
path input(s) to the output of the gate. Consequently, a transition
launched at i can reach gate g; the SDF will result in different
waveforms for the faulty and the fault-free circuit; and these
differences could propagate through the remainder of the path
from g to o and may be observed.

Today’s SDF ATPGs select one or multiple paths through the
SDF location and then attempt to sensitize these paths according
to a sensitization condition. There exists a hierarchy of alternative
sensitization conditions including hazard-free robust, robust,
strong non-robust, weak non-robust, and functional sensitization
[11], [12]. Timed characteristic functions (TCF) [13] are used
to define bounds on arrival times to generate sufficient delays.
Implementations such as [14] improve accuracy, but they are
poorly scalable and cannot identify glitches.

None of the above-mentioned ATPG methods is accurate in
enforcing conditions that are both necessary and sufficient for
SDF detection. Such an inaccuracy can have detrimental effects
on SDF coverage.

In this paper, we present an SDF ATPG algorithm that
does not rely on the explicit notion of path sensitization or
TCF. Instead, it directly considers the relationships between the
possible waveforms on different lines of the circuit. For a given
SDF, a set of consistent waveforms on all circuit lines required
for detection is generated. The test pair is derived from the
waveforms on the inputs (which are only allowed to switch
once, at time 0). If no test pair is found, this constitutes the
formal proof of untestability within the model assumptions. The
proposed waveform-based method is related to unrolling [15],
[16] the circuit, but uses further optimizations to create a more
compact and yet accurate circuit representation.

The algorithm, implemented in the tool WaveSAT, relies on
encoding the ATPG problem as a Boolean satisfiability instance.
Waveforms are represented by a series of Boolean variables
which contain logical values at discrete points of time (20
ps resolution is used for experiments). Efficient encoding of
waveforms as SAT-instances is developed and combined with
several optimizations in order to achieve scalability. Realistic
model assumptions on small glitch filtering are added at limited
cost. Experiments systematically quantify the inaccuracy obtained

30

 1 4

A

B

 0

 5 8

 2 6 9

 5 8 10

 0

f

g1

g2 g3

g4

g5

 3

 3 6

tobs =7

 3

 4

 1

 2 3

 1/4

Fig. 1. Waveform accurate example of a small-delay fault at line B

when using conventional path-oriented SDF ATPG for different
sensitization conditions.

Our experiments show, that path-oriented SDF ATPG methods
result in double-digit percentages of incorrectly classified faults
for many benchmark circuits. This includes faults that are missed
even though a path of sufficient length through the fault location
has been sensitized, and faults reported undetectable but for which
a valid test pair exists. The breakdown of mis-classifications to
these two groups varies depending on the sensitization condition
used, such as robust or non-robust sensitization. Our algorithm
WaveSAT achieves, for the first time, accurate resolution of all
faults within the timing model assumptions, including invalidation
by glitches and glitch filtering. It also yields formal proofs of
SDF untestability and allows an accurate definition of SDF fault
coverage metrics [17].

The remainder of the paper is organized as follows. The under-
lying timing model of the circuit and the relevant sensitization
information are formally introduced in the next section. WaveSAT
is presented in Section III. Experimental results are reported in
Section IV. Section V concludes the paper.

II. PRELIMINARIES

A. Timing model
We assume discrete time, with each time point t0, . . . , tT

corresponding to a specific time given as integer-valued time
units. For simplicity, we will just refer to the time (points) by
0, . . . , T . Consequently, all gates have delays expressed in integer
time units. Although our framework can distinguish between
rising and falling delays, we used identical delays for rising
and falling transitions in the experiments for simplicity. When
simulating the test pair (v1, v2), all inputs are assumed to switch
from v1 to v2 simultaneously at time 0. We assume that each line
stabilized its logical value under v1 before time 0. Every line l in
the circuit assumes a logical value l(k) ∈ {0, 1} for each time k.
The set of values l(0), . . . , l(T) is called the fault-free waveform
on line l for test pair (v1, v2). For convenience, we may refer to
the stable value of l under v1 (before the application of v2) by
l(0).

The SDF f = (g, s) affects the output of gate g and delays
all transitions on this output by s time units (s ∈ N). We do not
distinguish between slow-to-rise and slow-to-fall SDFs. Applying
test pair (v1, v2) in the presence of SDF f induces on each
line l the faulty waveform lf (0), . . . , lf (T). f is detected by
(v1, v2) if there is at least one output o which assumes different
values in absence and in presence of the fault at time tobs, i.e.,
o(tobs) �= of (tobs). Figure 1 shows a circuit with two inputs A

and B, five gates (delays in time units are depicted to the left
of the gates) and fault (f, 3). Fault-free and faulty waveforms
(indicated by grey color) are shown for all lines. The fault is
detected at g5 and not detected at g3.

B. Path sensitization
Conventional ATPG approaches work by finding and sensi-

tizing a path through the SDF location g. A path through gate
g is a sequence of gates g1, . . . , gk, such that g1 is an input of
the circuit, gk is an output of the circuit, one of the gates is
the target gate g, and the output of gj−1 drives an input of gj
for all 1 < j ≤ k. This input of gj is called on-path input, all
other inputs are called off-path inputs. Currently, we consider
BUF, INV, AND, NAND, OR and NOR gates (more complex
gates such as XOR gates must be mapped to these gates). The
controlling value cv of a gate determines its output value when
applied to one input; its opposite is the non-controlling value
ncv2. The delay of the path is the sum of the delays of its gates
(a somewhat more complex definition is necessary if slow-to-
rise and slow-to-fall delays are distinguished). The slack of the
path is the difference between tobs and the delay of the path.
It represents the total amount of time the path may be delayed
without leading to a fault effect.

Intuitively, a path is sensitized by a test pair (v1, v2) if the
delay somewhere along the path results in a delay being visible
at its output. Hence, an SDF (g, s) is detected by (v1, v2) if
a path through g with slack of s or less has been sensitized
by this test pair. As we will see, the formal definition of path
sensitization leads to a detection concept which does not match
the more accurate definition of detection from Section II-A.

The path g1, . . . , gk is formally defined to be sensitized by
test pair (v1, v2) according to a sensitization condition, if (v1, v2)
launches a transition at g1 and the sensitization condition holds
for all side-inputs of all gj with 0 < j < k. In this paper,
we consider hazard-free robust, robust, strong non-robust, weak
non-robust, restricted functional and functional sensitization [11],
[12].

To define the sensitization condition, it is necessary to dis-
tinguish between stable and unstable values. Stable values are
guaranteed to be present at a logic line throughout the application
of (v1, v2). Using the definition of waveforms, line l assumes
the stable value of 0 if l(0) = l(1) = · · · = l(T) = 0. (We write
l = S0; S1 is defined accordingly). An unstable value guarantees
that a signal eventually settles to this value upon application of
the test pair: stable 1 at l corresponds to l(T) = 1. We write l
= U1, which subsumes S1, a rising transition, a glitch from 1 to
0 and back to 1, and further, more complex waveforms settling
to 1. U0 is the corresponding definition for unstable 0.

The path is sensitized according to the hazard-free robust
condition if all off-path inputs of all gates have stable non-
controlling values. Each extra delay along the path is guaranteed
to propagate to the output. The same property can be shown
for the relaxed robust condition: Off-path inputs of (N)AND
gates have stable non-controlling value S1 if the on-path input
has a falling transition and U1 if the on-path input has a rising
transition. Off-path inputs of (N)OR gates have S0 (U0) if the
on-path input has a rising (falling) transition.

The weak non-robust condition requires that each off-path
input stabilizes to the non-controlling value U0 or U1. Note that

2The value of cv equals 0 for AND and NAND gates and 1 for OR and NOR
gates; ncv is 0 for OR and NOR gates and 1 for AND and NOR gates.

31

A

B f

g1

g2 g3

g5

 3

 1/4

 4

 1

 2 3

I1 I1I1 S1
0  +
I1

IA SA
0  +

I1S1
3  +

SASAIA SA
0  +
SA

V1V2I2 S2
3  +
V3

IB SB
0  +

If Sf
4  +

I4S4
8  + I4 I4I4 S4

3  +
I4 I4 I4

V1V2I2 S2
3  +
V3S2S2

V4V5I3 S3
5  +
V6V7V8

I4 I4I4 S4
4  +
I4 I4

SfSfIf Sf
4  +
SfSf

V9V10I5 S5
5  +
V11V12

 0

 0

 5 8

 3

 3 6

tobs = 7

 1 4 2 6 9

 5 8 10

Fig. 2. Example SAT encoding

this may imply that no transition takes place on some gates of
the path. For instance, path B − f − g4 − g5 in Figure 1 has
one off-path input (the lower input of g5) which has a falling
transition (U0), but the output of g5 stabilizes to 1 under both
v1 and v2. In the example, a glitch is generated at the output
which allows fault detection, but it is easy to construct paths for
which weak non-robust sensitization leads to no transitions at all.
Therefore, the strong non-robust condition requires, in addition,
that the outputs of all gates on the path must settle to opposite
values under v1 and v2. Path B − f − g4 − g3 in Figure 1 is
sensitized according to this definition. The figure illustrates that
strong non-robust sensitization of a path through the fault location
does not guarantee fault detection even though the cumulated
delay of the sensitized path (10) exceeds the observation time
(7).

The functional sensitization condition requires that the off-path
inputs of a (N)AND-gate assume the value U1 if the transition of
the on-path input is rising and that the off-path inputs of a (N)OR-
gate assume U0 if the transition of the on-path input is falling.
Obviously, the chances to detect a fault using this definition are
marginal. Similar to the strong non-robust condition, we add a
requirement that a transition must be present on the output of
each gate and call the resulting definition restricted functional
sensitization.

C. Relationship

As Figure 1 shows, fault detection is possible, but not
guaranteed, by sensitizing paths according to definitions other
than hazard-free robust or robust. On the other hand, it is possible
that there are no robustly sensitizable paths through the fault
location g, but that non-robustly or functionally sensitizable paths
exist. Even if robustly sensitizable paths can be obtained, they
may be rather short and therefore not suited for detection of SDF
sizes less than their slack; at the same time, longer paths with
weaker sensitization conditions may exist.

If conventional SDF ATPG based on robust sensitization is
unable to generate a test pair for a given SDF, it will classify it as
untestable. This means coverage loss if the SDF was detectable.
For example, in Figure 1 no hazard free robustly sensitizable
path through the fault location exists but the fault is detectable.
On the other hand, using a weaker definition may or may not
result in a test pair that detects the fault. From the point of view
of a conventional path-based ATPG, path B − g4 − g3 in Figure

1 is advantageous over path B − g4 − g5 because it has both,
a stricter sensitization condition (strong non-robust vs. weak
non-robust) and a smaller slack, but the fault is only detected
using the second path. This is because conventional ATPG is
not aware of exact timing on the off-path inputs. Even if the
test pair generated by such ATPG is validated using an accurate
simulator and determined not to detect the fault, there is no way
to know whether the fault is undetectable or whether there is a
different test pair which would detect the fault.

In the following, we present an ATPG algorithm WaveSAT
which accurately models the timing of all on-path and off-path
inputs and is able to generate test pairs that detect the fault
whenever they exist. The notion of detection is based on the
definition from II-A and does not incorporate any explicit path
sensitization conditions.

III. SDF TEST GENERATION ALGORITHM WAVESAT

For a given SDF f = (g, s), WaveSAT generates a Boolean
satisfiability (SAT) instance If . If is satisfiable if and only if a
pair of assignments to the circuit’s primary inputs exists that leads
to a faulty value at an observable output at observation time tobs.
This instance is passed to a SAT-solver which will either return
a solution which contains the test pair or proves unsatisfiability
(and therefore fault redundancy within the model’s assumptions).

The SAT-instance encodes all logical and temporal relation-
ships within the circuit, in presence and in absence of the fault.
This is conceptually similar to instances used in traditional
SAT-based ATPG [18], [19]. However, traditional SAT-based
ATPGs only consider the Boolean functionality of the circuit.
In contrast, we encode the accurate (discretized) timing of the
circuit, including the details of all waveforms, in the same SAT-
instance. Intuitively, the value of each line in each time unit is
described by at least one variable in the CNF. This necessitates
using several optimizations to keep the number of extra variables
low by identifying trivial portions of the waveforms.

A. SAT encoding

For each gate output g in the circuit, two Boolean variables Ig
(initialization value) and Sg (stabilization value) are defined first.
For a test pair (v1, v2), Ig is the value to which the output of g
stabilizes under v1 (i.e., before the transition is launched) and
Sg is the value to which the output of g stabilizes under v2. If A
is the circuit’s primary input, IA is A’s value under v1 and SA

32

is A’s value under v2. For all other gates g, Ig and Sg can be
understood as the result of timing-unaware symbolic simulation
of v1 and v2 respectively.

Let EAT (g) be the earliest arrival time and LST (g) be the
latest stabilization time of any transition launched upon applica-
tion of (v1, v2) at the output of gate g. Recall that we use dis-
cretized time points 0, 1, . . . , T . Therefore EAT (g), LST (g) ∈
{0, 1, . . . , T}.

At all times before the first possible transition at g, i.e., t ≤
EAT (g), the output of g still assumes its value under v1, namely
Ig. At all times t ≥ LST (g), its logical value is Sg. In the
simplest case (LST (g)− EAT (g) = 1), g switches only once,
at time i = EAT (g), meaning that the waveform of g’s output
consists of values Ig for times 0, . . . , i and values Sg for times
i+1, . . . , T . For such gates, the waveform is completely described
by Ig, Sg and the transition time i. Figure 2 shows such an
encoding, e.g. for gate g1. The time shift indicated by “3+”
specifies that the transition takes place at time 3. Moreover,
waveforms of this simple shape are always present at the primary
inputs of the circuit with transition time 0.

The output waveform of a gate g’s output is symbolically
constructed from the waveforms of its inputs. Let us first consider
the case that all waveforms at the inputs are of simple shape. To
be able to combine these waveforms, they must first be aligned
in time, i.e., start and end at the same time units t∗ and t∗∗.
This is achieved by padding as illustrated by gate g2 in Figure
2. Its first input g1 has waveform [I1;S1] shifted by 3, while its
second input has waveform [IA;SA] shifted by 0. The alignment
is performed by replacing g1’s waveform by [I1; I1; I1; I1;S1]
and g2’s waveform by [IA;SA;SA;SA;SA], both shifted by 0
(t∗ = 0, t∗∗ = 3). The semantic of g1’s waveform is: it assumes
value I1 at time unit 0, keeps it for time units 1, 2 and 3, and
switches to Sg at time unit 4, which is identical to the original
semantics. Note that no additional Boolean variables need to be
introduced for performing the shifting.

The waveforms on inputs and outputs of the gates may contain
multiple transitions. To model such transitions accurately, new
variables Vi are introduced when required. The output waveform
of gate g contains a mixture of I , V and S variables, always
starting with variable Ig and ending with variable Sg. These
variables are calculated from input waveforms aligned to start at
t∗ and end at t∗∗. Ig describes the value at the output of g at time
t∗ +D(g) and before, where D(g) is the delay of g. Similarly,
Sg describes this value at time t∗∗ +D(g) and thereafter. These
values do not depend on the timing of the circuit and can hance be
obtained by a timing-unaware encoding of g’s Boolean function.
The values assumed between t∗ +D(g) and t∗∗ +D(g) depend
on the exact shape of the input waveforms. They are represented
by the new V variables. Note that different gates are assigned
individual sets of V variables that do not interfere with each
other.

Consider gate g2 in Figure 2. For this NOR-gate, D(g2) = 3,
t∗ = 0 and t∗∗ = 3. There are three time units between
EAT (g2) = 3 and LST (g2) = 6, for which three new variables
V1, V2 and V3 are introduced. The SAT formulae describing
this gate are: (I2 ≡ NOR(I1, IA)),(S2 ≡ NOR(S1, SA)),
(V1 ≡ NOR(I1, SA)), (V2 ≡ NOR(I1, SA)) and (V3 ≡
NOR(I1, SA)). The output waveform is shifted by 3 time
units. Note that this number is only used during SAT formula
construction to correctly perform alignments and is not part of
the resulting SAT formula.

g 3

I SUnfiltered Waveform

I STransition

I SPossible Glitch Start

I SGlitch Start

I SFull Glitch

I SFiltered Waveform

I S

I S

Fig. 3. Glitch filtering example

The resulting overall SAT formula (in conjunctive normal form
CNF) completely describes the timing-aware logical behavior
of all lines in the circuit. A detailed construction of the logic
functionality of a circuit as CNF using Tseitin transformation is
described in [20].

B. ATPG and simulation

To detect a fault, a test pair (v1, v2) must induce, at time unit
tobs, a value on an output o of the faulty circuit which differs
from the output’s fault-free stabilization value So. Please note,
that delay faults do not change the stabilization value of any
line in the circuit. Hence, in contrast to ATPG for other types
of faults, a specific encoding of the fault-free logic value is not
necessary.

To do so, we identify, for each output o, the variable Wo

which describes its logical value at time unit tobs. (Wo might be
either variable Io, variable So or one of the variables Vi.) We
add clauses

∨
o∈outputs(Wo ⊕ So) to the CNF and search for

a solution. If a solution is found, there is at least one output o
where the faulty value Wo does not match the fault-free value
So. The test pair (v1, v2) inducing this behavior is obtained from
the I and the S variables of the primary inputs. If no solution is
found, the fault is undetectable under the model’s assumptions.

It is also possible to use the encoding for timing simulation.
To simulate a given test pair (v1, v2), the I and S variables
of the primary inputs are set to the required values and the
SAT-solver searches for the solution. As all the other variables
are implied by the primary inputs, the solution must exist and
describe the complete timing information. It is also possible to
check whether the fault was detected. We also used this mode
to check the correctness of our implementation by comparing it
with third-party simulators.

C. Glitch filtering

We extended the basic SAT model in order to filter glitches. For
glitch filtering we consider waveforms at the output of each gate
g and remove glitches of duration less than the (minimal) delay
D(g) of g. While this feature requires a considerable number
of additional Boolean variables, it makes sure that no fault is
detected by glitches which would be filtered by the logic gates.
In addition, glitch filtering is required to match the simulation
model used in e.g. Verilog.

33

TABLE I
ROBUST SENSITIZABLE PATH ANALYSIS

PHAETON Validation Runtime

Path found Path too short Unsensitizable

Circuit Calls Detection Miss Redundant Redundant False Negative Redundant False Negative Total ATPG Simulation

b12 10000 (100.00%) 9668 (96.68%) 0 (0.00%) 0 (0.00%) 48 (0.48%) 284 (2.84%) 0 (0.00%) 0 (0.00%) 15.21 3.07 0.00
b14 10000 (100.00%) 8292 (82.92%) 0 (0.00%) 0 (0.00%) 182 (1.82%) 1456 (14.56%) 2 (0.02%) 68 (0.68%) 2615.81 1451.27 0.00
b15 10000 (100.00%) 8285 (82.85%) 0 (0.00%) 0 (0.00%) 387 (3.87%) 1138 (11.38%) 12 (0.12%) 178 (1.78%) 2242.64 794.65 0.00
b20 10000 (100.00%) 9042 (90.42%) 0 (0.00%) 0 (0.00%) 170 (1.70%) 768 (7.68%) 2 (0.02%) 18 (0.18%) 4654.66 1756.08 0.00
b21 10000 (100.00%) 8810 (88.10%) 0 (0.00%) 0 (0.00%) 158 (1.58%) 1022 (10.22%) 0 (0.00%) 10 (0.10%) 4924.25 1438.18 0.00
b22 10000 (100.00%) 8554 (85.54%) 0 (0.00%) 0 (0.00%) 303 (3.03%) 1053 (10.53%) 7 (0.07%) 83 (0.83%) 5978.20 2411.12 0.00

c3540 10000 (100.00%) 8619 (86.19%) 0 (0.00%) 0 (0.00%) 331 (3.31%) 1000 (10.00%) 7 (0.07%) 43 (0.43%) 368.29 73.29 0.00
c5315 10000 (100.00%) 8193 (81.93%) 0 (0.00%) 0 (0.00%) 108 (1.08%) 549 (5.49%) 19 (0.19%) 1131 (11.31%) 96.08 46.43 0.00
c7552 10000 (100.00%) 7879 (78.79%) 0 (0.00%) 0 (0.00%) 70 (0.70%) 611 (6.11%) 27 (0.27%) 1413 (14.13%) 99.00 40.39 0.00

p35k 10000 (100.00%) 9946 (99.46%) 0 (0.00%) 0 (0.00%) 2 (0.02%) 52 (0.52%) 0 (0.00%) 0 (0.00%) 5099.94 30.01 0.00
p45k 10000 (100.00%) 8203 (82.03%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 1697 (16.97%) 0 (0.00%) 100 (1.00%) 975.21 98.80 0.00
p78k 10000 (100.00%) 8946 (89.46%) 0 (0.00%) 0 (0.00%) 4 (0.04%) 960 (9.60%) 0 (0.00%) 90 (0.90%) 645.01 69.82 0.00
p81k 10000 (100.00%) 9281 (92.81%) 0 (0.00%) 0 (0.00%) 3 (0.03%) 716 (7.16%) 0 (0.00%) 0 (0.00%) 938.67 60.67 0.00

TABLE II
STRONG NON ROBUST SENSITIZABLE PATH ANALYSIS

PHAETON Validation Runtime

Path found Path too short Unsensitizable

Circuit Calls Detection Miss Redundant Redundant False Negative Redundant False Negative Total ATPG Simulation

b12 10000 (100.00%) 9732 (97.32%) 111 (01.11%) 0 (0.00%) 48 (0.48%) 109 (1.09%) 0 (0.00%) 0 (0.00%) 52.94 3.20 43.20
b14 10000 (100.00%) 8119 (81.19%) 1056 (10.56%) 0 (0.00%) 184 (1.84%) 641 (6.41%) 0 (0.00%) 0 (0.00%) 7130.38 3347.16 3545.08
b15 10000 (100.00%) 8468 (84.68%) 981 (09.81%) 2 (0.02%) 397 (3.97%) 142 (1.42%) 0 (0.00%) 10 (0.10%) 4819.54 1761.50 2814.32
b20 10000 (100.00%) 8166 (81.66%) 1363 (13.63%) 21 (0.21%) 151 (1.51%) 299 (2.99%) 0 (0.00%) 0 (0.00%) 25121.90 15582.80 8970.92
b21 10000 (100.00%) 8307 (83.07%) 1388 (13.88%) 2 (0.02%) 156 (1.56%) 147 (1.47%) 0 (0.00%) 0 (0.00%) 28166.30 19840.80 7818.81
b22 10000 (100.00%) 8344 (83.44%) 1197 (11.97%) 0 (0.00%) 310 (3.10%) 149 (1.49%) 0 (0.00%) 0 (0.00%) 20585.40 12877.00 7102.15

c3540 10000 (100.00%) 8372 (83.72%) 1153 (11.53%) 0 (0.00%) 335 (3.35%) 130 (1.30%) 3 (0.03%) 7 (0.07%) 378.66 124.38 209.10
c5315 10000 (100.00%) 9456 (94.56%) 328 (03.28%) 0 (0.00%) 127 (1.27%) 89 (0.89%) 0 (0.00%) 0 (0.00%) 111.36 13.65 79.81
c6288 10000 (100.00%) 7492 (74.92%) 1655 (16.55%) 2 (0.02%) 498 (4.98%) 353 (3.53%) 0 (0.00%) 0 (0.00%) 9477.55 3606.78 2962.50
c7552 10000 (100.00%) 9418 (94.18%) 312 (03.12%) 0 (0.00%) 96 (0.96%) 154 (1.54%) 1 (0.01%) 19 (0.19%) 105.79 13.38 71.38

p35k 10000 (100.00%) 7494 (74.94%) 2454 (24.54%) 0 (0.00%) 23 (0.23%) 29 (0.29%) 0 (0.00%) 0 (0.00%) 31965.00 23102.80 7585.63
p45k 10000 (100.00%) 8663 (86.63%) 792 (07.92%) 0 (0.00%) 404 (4.04%) 141 (1.41%) 0 (0.00%) 0 (0.00%) 1086.26 210.73 764.61
p78k 10000 (100.00%) 8673 (86.73%) 824 (08.24%) 2 (0.02%) 263 (2.63%) 208 (2.08%) 3 (0.03%) 27 (0.27%) 2051.45 462.19 1286.11
p81k 10000 (100.00%) 8754 (87.54%) 911 (09.11%) 0 (0.00%) 142 (1.42%) 193 (1.93%) 0 (0.00%) 0 (0.00%) 3791.07 1184.93 2225.49
p100k 10000 (100.00%) 7803 (78.03%) 1385 (13.85%) 0 (0.00%) 367 (3.67%) 445 (4.45%) 0 (0.00%) 0 (0.00%) 7970.91 3331.91 3893.40

Implementation of glitch filtering is illustrated in Figure 3.
Given gate g’s original output waveform (“Unfiltered Wave-
form”), defined by the logic function of g and the waveforms on
the inputs, all glitches of duration less than D(g) = 3 must be
removed. Therefore, five new sets of variables are introduced, and
the fifth set (“Filtered Waveform” in Figure 3), which represents
the glitch-free waveform, is used instead of the original set of
variables (“Unfiltered Waveform”). The relationship between the
new sets of variables are outlined next.

Intuitively, the first set of variables (“Transition”) denotes
the positions where the initial (unfiltered) waveform includes
transitions from 0 to 1 or vice versa. These are potential starting
times of the glitches. The set of variables “Possible Glitch Start”
is obtained from the first by removing transitions less than
D(g) time units after another transition. This step is required to
avoid incorrect identification of “spurious glitches” which will
never occur because their initiating transition will actually be
filtered itself. In the example, the second transition is spurious
and is therefore removed. The set of variables “Glitch Start”
indicates the starting time units of true (not spurious) glitches
to be filtered. It is calculated by checking, for each “Possible
Glitch Start” variable set to 1, whether there is another transition
(variable “Transition”) within D(g) time units. After that, the
actual duration of the glitch is calculated in variables “Full
Glitch”, which are then XORed with the initial waveform to
obtain the final waveform with the glitch(es) filtered. Please note
that all calculations needed for glitch filtering are encoded into
the SAT-instance and therefore directly considered by the test
generation.

D. Identification of stable timepoints

In order to improve the scalability of WaveSAT, we imple-
mented several optimizations based on the identification of time
units where no transition is possible. With this information, the
introduction of many V variables can be avoided because their
value is always identical to already introduced variables. For
example, the output waveform of gate g2 in Figure 2 contains
three variables V1, V2 and V3 with identical functionality, so
V2 and V3 can be simply replaced by V1. This technique is
particularly effective when glitch filtering is employed, as the
number of transition positions and hence the number of glitch
start points is greatly reduced. In our experiments, the number
of clauses was reduced by around 40% on average leading to an
average runtime reduction of 50% to 75%.

E. Cone of timing influence

When WaveSAT is used in ATPG mode, only the differences
at the outputs at time unit tobs are of interest. We define, for
each gate, the detection-relevant interval as the portion of the
waveform which could influence an output at tobs; the parts
of the waveform outside this interval can be excluded from
consideration. The detection-relevant interval is calculated by
a simple structural algorithm, similar to the determination of
EAT and LST . This technique nicely complements the usage
of EAT and LST , because the detection-relevant intervals are
narrow close to the circuit’s outputs and wide further away from
the outputs, while the intervals [EAT,LST] are narrow close to
the inputs and wide further away from the inputs.

34

Detection False Positive False Negative Redundant
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Robust HF Robust Non Robust FS

Fig. 4. Comparison of ITC-99 fault classifications depending on different path
sensitization requirements

When used in combination with glitch filtering, it is necessary
to extend the detection-relevant interval by the time needed
to guarantee that glitches within this interval are detected and
removed correctly.

By applying this optimization, around 75% of the clauses can
be saved on average which leads to a runtime-reduction of 60%
to 80% even when combined with the previous optimization.

IV. EXPERIMENTAL RESULTS

We applied WaveSAT to the combinational cores of reasonably
sized ISCAS-85, ITC-99 and industrial benchmark circuits. All
measurements were performed on an AMD Opteron computer
using one 2.6 GHz-core and up to 4 GB RAM. The gate-level net
lists and the corresponding real-valued delays were obtained by
mapping original structural specifications (Verilog) to the Nangate
45nm Open Cell Library [21] using Synopsys Design Compiler.
In our experiments, we determined a duration of 20 picoseconds
to achieve high accuracy while keeping runtimes reasonable. We
validated the correctness of the experimental results using an
automated verification flow with a state-of-the-art commercial
Verilog simulator.

As SAT-solving back-end we used a single-threaded version
of the in-house SAT-solver antom [22] which supports efficient
incremental SAT-solving with and without assumptions. In
addition, we used a modified version of the preprocessor proposed
in [23], [24] where the input literals were marked as “don’t touch”.
All runtimes listed in this section are given in seconds.

In order to demonstrate the improved fault coverage achieved
by WaveSAT compared to classical path-based approaches, we
generated different SDFs for the 1000 most critical gates in the
circuit. Criticality of a gate is defined according to length of the
longest structural path through the gate. For each critical gate,
we generated 10 different small delay fault sizes between the
slack of the shortest and the slack of the longest structural path
through g.

The observation point tobs was defined to 120% of the longest
structural path. For each fault instance, we computed a suitable
path test using an improved version of the timing aware ATPG-
tool PHAETON [25], [26]. If such a test exists, we used WaveSAT
in simulation mode in order to determine if the test truly detects
the fault. If PHAETON showed that no test exists under the
given sensitization conditions, WaveSAT was run in ATPG mode
in order to prove fault redundancy.

Table I and Table II compare WaveSAT with robust and strong
non-robust path sensitization, respectively. The column “Calls”

Fig. 5. Histogram of maximal fault detection window of ITC-99 b04 benchmark
circuit

lists the number of fault instances considered. In the next columns
we give statistics on the different classifications as follows:

Path found—Columns 3 to 5 list the cases, in which PHAETON
was able to determine a path test according to the sensitiza-
tion rules. The category is partitioned into the sub classifi-
cations “Detection”, “Miss” and “Redundant”. Detection is
a true test that has been verified by WaveSAT. “Miss” and
“Redundant” represent false positives, i.e. cases in which
the simulation showed that the path chosen according to the
robustness criteria does not propagate a fault effect. For a
“Miss” a different test exists. In case of a redundant fault,
WaveSAT proved redundancy.

Path too short—Columns 6 and 7 list the cases, where PHAETON
was able to generate a path, but it was too short to detect
the fault. The sub classification “Redundant” is a verified
redundant fault. “False Negative” lists the cases where
WaveSAT could demonstrate that a test exists although
PHAETON could not find one due to too hard sensitization
criteria.

Unsensitizable—A fault is classified as unsensitizable if
PHAETON could not find a path at all. The results for
those classifications, which are listed in columns 8 and 9,
are defined as in the “Path too short” section,

The last three columns list different runtimes. “Total” gives
the total runtime for the method’s complete application including
the time needed by PHAETON to generate the paths. “ATPG”
and “Simulation” lists the times WaveSAT was run in ATPG and
simulation mode respectively.

As can be seen, neither robust nor non-robust path sensitization
yields accurate detection classification of the faults. Since robust
paths are free of hazards before the transition occurs, no
invalidation can happen. Hence, there are no false positives.
However, due to too stringent sensitization criteria, a significant
amount of false negatives is generated; up to 16.97% for p45k.
For non-robust path sensitization, the number of false negatives
is reduced to 1 or 2 percent. However, since non-robust tests may
be invalidated by glitches, a serious amount of false positives
(up to 24.54%) is introduced. Therefore, the total number of true
detections is around the same for both methods.

We did also extensive comparisons with completely hazard-free
and restricted functional sensitizable path sensitizations. Figure
4 shows the average over the results for the ITC-99 benchmark
circuits. The figure lists the number of “Detections”, “False
Negatives”, “False Positives” and “Redundant” faults for various
types of sensitization criteria. The number of false positives
increases with the relaxation of the pattern quality. For restricted

35

functionally sensitizable, around 63% of the detections are
actually false positives. Likewise, the number of false negatives
decreases. However, for restricted functionally sensitizable there
are still false negatives. As restricted functionally sensitizable
paths represent the latest possible stable transition, such instances
are only testable by hazards. Hence, even restricted functionally
sensitizable is too restrictive for the detection of some faults.

In a further experiment, we used WaveSAT to maximize the
detection windows of a fault. Instead of just requiring a difference
at the observation point, WaveSAT computed patterns that keep a
stable faulty signal as long as possible before and after tobs. Such
tests are resilient against invalidation due to second order effects
like e.g. model inaccuracies, dynamic pattern-dependent effects
or differnt fault sizes. Even if the timing of the circuit is changed,
the faulty circuit value is most likely visible within the whole
detection window and hence the test can tolerate invalidations.

This extension is implemented by formulating a SAT-instance
that requires a specific length for the detection window (e.g.
240 ps before and 240 ps after tobs). By performing a binary
search over the possible lengths of detection windows, the true
maximum can be obtained.

The results are given in Figure 5. The x-axis gives the length
of the stable fault detection window in picoseconds. The y-axis
shows the number of faults. As can be seen, most fault instances
fall in the area around 100 ps to 500 ps, leading to a very stable
length of the detection window. In addition it is significantly
beyond a typical delay of a gate which is around 100 ps in our
example circuits.

Compared to the method used in the previous experiments,
the runtime is increased by around a factor of 10, since for each
fault, additional SAT-instances are generated.

V. CONCLUSIONS AND FUTURE WORK

We presented the SAT-based small-delay ATPG WaveSAT,
which explicitly models accurate timing by means of waveforms
on each relevant line of the circuit. The model incorporates
individual delays for each gate (with discrete resolution) and
filtering of small glitches. Experimental results for ISCAS-85,
ITC-99 and commercial circuits show that no known definition
of path sensitization can eliminate both false positives and
false negatives at the same time. WaveSAT is also capable of
automatically generating a formal redundancy proof for small-
delay faults; to the best of our knowledge this is the first algorithm
that is both scalable and complete. In addition, fault detection
windows of maximal width can be generated.

In future, we want to extend the method to the generation of
functional tests for sequential circuits. This can be achieved by
integrating the proposed encoding with a bounded or unbounded
model checking approach. In addition, we plan to analyze the
influence of process variations on the detection capabilities of
different pattern sets.

VI. ACKNOWLEDGEMENTS

This work has been supported by the German Research Council
(DFG) under grants GRK 1103, BE 1176-15/2 and PO 1220-2/2.
We thank T. Schubert (University of Freiburg) for providing
the SAT-solver antom and support. We further thank H.-J.
Wunderlich (University of Stuttgart) for fruitfull discussions on
test invalidation.

REFERENCES

[1] G. L. Smith, “Model for Delay Faults Based upon Paths,” in Int’l Test
Conf., pp. 342–349, 1985.

[2] A. K. Pramanick and S. M. Reddy, “On the Fault Coverage of Gate Delay
Fault Detecting Tests,” IEEE Trans. on CAD, vol. 16, no. 1, pp. 78–94,
1997.

[3] W. Qiu and D. M. H. Walker, “An Efficient Algorithm for Finding the K
Longest Testable Paths Through Each Gate in a Combinational Circuit,” in
Int’l Test Conf., pp. 592–601, 2003.

[4] A. Czutro, N. Houarche, P. Engelke, I. Polian, M. Comte, M. Renovell, and
B. Becker, “A Simulator of Small-Delay Faults Caused by Resistive-Open
Defects,” in European Test Symp., pp. 113–118, 2008.

[5] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Test-Pattern Selection
for Screening Small-Delay Defects in Very-Deep Submicrometer Integrated
Circuits,” IEEE Trans. on CAD, vol. 29, pp. 760–773, May 2010.

[6] N. Devta-Prasanna, S. Goel, A. Gunda, M. Ward, and P. Krishnamurthy,
“Accurate Measurement of Small Delay Defect Coverage of Test Patterns,”
in Test Conference, 2009. ITC 2009. International, pp. 1 –10, nov. 2009.

[7] S. Goel, N. Devta-Prasanna, and R. Turakhia, “Effective and efficient test
pattern generation for small delay defect,” in VLSI Test Symposium, 2009.
VTS ’09. 27th IEEE, pp. 111 –116, may 2009.

[8] A. Krstic, K.-T. Cheng, and S. Chakradhar, “Primitive delay faults:
Identification, testing, and design for testability,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, vol. 18, pp. 669
–684, jun 1999.

[9] K. Christou, M. Michael, and S. Neophytou, “Identification of Critical
Primitive Path Delay Faults without any Path Enumeration,” in VLSI Test
Symposium (VTS), 2010 28th, pp. 9 –14, april 2010.

[10] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Effects of Delay Models
on Peak Power Estimation of VLSI Sequential Circuits,” in Int’l Conf. on
CAD, pp. 45–51, November 1997.

[11] N. K. Jha and S. K. Gupta, Testing of Digital Systems. Cambridge University
Press, 2003.

[12] S. Reddy, Models in Hardware Testing, ch. 3. Springer, 2010.
[13] P. McGeer and R. Brayton, Integrating Functional and Temporal Domains

in Logic Design. Kluwer, 1991.
[14] Y.-M. Kuo, Y.-L. Chang, and S.-C. Chang, “Efficient Boolean Characteristic

Function for Timed Automatic Test Pattern Generation,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 28,
pp. 417 –425, march 2009.

[15] P. Maurer, “Two New Techniques for Unit-Delay Compiled Simulation,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on, vol. 11, pp. 1120 –1130, sep 1992.

[16] D. Tadesse, D. Sheffield, E. Lenge, R. Bahar, and J. Grodsteint, “Accurate
Timing Analysis using SAT and Pattern-Dependent Delay Models,” in
Design, Automation Test in Europe Conference Exhibition, 2007. DATE
’07, pp. 1 –6, april 2007.

[17] Y. Sato, S. Hamada, T. Maeda, A. Takatori, Y. Nozuyama, and S. Kajihara,
“Invisible delay quality - SDQM model lights up what could not be seen,”
in Test Conference, 2005. Proceedings. ITC 2005. IEEE International, pp. 9
pp. –1210, nov. 2005.

[18] A. Czutro, I. Polian, M. Lewis, P. Engelke, S. M. Reddy, and B. Becker,
“Thread-Parallel Integrated Test Pattern Generator Utilizing Satisfiability
Analysis,” International Journal of Parallel Programming, vol. 38, pp. 185–
202, June 2010.

[19] S. Eggersgluess and R. Drechsler, “As-Robust-As-Possible Test Generation
in the Presence of Small Delay Defects using Pseudo-Boolean Optimization,”
in Design, Automation Test in Europe Conference Exhibition (DATE), 2011,
pp. 1 –6, march 2011.

[20] T. Larrabee, “Test pattern generation using Boolean satisfiability,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 11, pp. 4 –15, jan 1992.

[21] “Nangate 45nm Open Cell Library.” http://www.nangate.com.
[22] T. Schubert, M. Lewis, and B. Becker, “antom — Solver Description,” in

SAT Race, 2010.
[23] S. Kupferschmid, M. Lewis, T. Schubert, and B. Becker, “Incremental

Preprocessing Methods for Use in BMC,” Formal Methods in System Design,
pp. 1–20, 2011. 10.1007/s10703-011-0122-4.

[24] N. Eén and A. Biere, “Effective Preprocessing in SAT through Variable and
Clause Elimination,” in In proc. SAT’05, volume 3569 of LNCS, pp. 61–75,
Springer, 2005.

[25] M. Sauer, A. Czutro, T. Schubert, S. Hillebrecht, I. Polian, and B. Becker,
“SAT-based Analysis of Sensitisable Paths,” in IEEE Design and Diagnostics
of Electronic Circuits and Systems, pp. 93–98, April 2011. Best Paper
Award in the Test Category.

[26] M. Sauer, J. Jiang, A. Czutro, I. Polian, and B. Becker, “Efficient SAT-Based
Search for Longest Sensitisable Paths,” in Asian Test Symp., November
2011.

36

