
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2004, June 7-11, 2004, San Diego, California, USA Copyright 2004
ACM 1-58113-828-8/04/0006...$5.00.

The Future of Multiprocessor Systems-on-Chips

Wayne Wolf
Department of Electrical Engineering

Princeton University
Princeton NJ 08544

wolf@princeton.edu

Abstract
This paper surveys the state-of-the-art and pending challenges
in MPSoC design. Standards in communications, multimedia,
networking, and other areas encourage the development of
high-performance platforms that can support a range of
implementations of the standard. A multiprocessor system-on-
chip includes embedded processors, digital logic, and mixed-
signal circuits combined into a heterogeneous multiprocessor.
This mix of technologies creates a major challenge for MPSoC
design teams. We will look at some existing MPSoC designs
and then describe some hardware and software challenges for
MPSoC designers.

Categories and Subject Descriptors
C.3 [Computer Systems Organization] Special-purpose and
application-specific systems. Real-time and embedded
systems.

General Terms
Design.

Keywords
MPSoC, system-on-chip, real-time, low power, embedded
software.

1. INTRODUCTION
Multiprocessor systems-on-chips (MPSoCs) have started to
enter the marketplace over the past several years and are
expected to be available in even greater variety over the next
few years. An MPSoC combines embedded processors,
specialized digital hardware, and often mixed-signal circuits to
provide a complete integrated system. MPSoCs are hard to
design partly because they implement sophisticated functions
and partly because they use such a wide variety of technologies
to do the job.

In this paper we’ll take a look at what we know about MPSoC
design and what challenges need to be solved. We will start
with a survey of the present state of MPSoC systems. We will

then look at hardware challenges and software challenges that
MPSoC designers currently face.

2. THE PRESENT
Before looking at the future of MPSoC design, we will
consider the present state of the art. After briefly discussing
the applications of MPSoCs, we will review three commercial
MPSoC designs.

2.1 Applications
Multiprocessor systems-on-chips make the most sense in high-
volume markets that have strict performance, power, and cost
goals. Communications, multimedia, and networking are
examples of markets that meet these requirements. These areas
are defined by standards that encourage large markets for
compliant products. These standards require not just large
amounts of computation but complex algorithms that cannot be
supported by simple hardware. The cost pressures inherent in
large markets, as well as the fact that many of these
applications require battery operation, put intense pressure on
cost and energy consumption that means performance goals
must be met with heterogeneous architectures.

Many embedded applications are commonly referred to as
streaming applications. Many architectures have been
designed to perform relatively simple, predictable operations
on periodic data. However, modern embedded applications
perform complex processing that does not fit the streaming
mold. Consider MPEG compression, for example, which takes
in a stream of pixels but turns that into a more complex data
set as quickly as possible. Since the goal of data compression
is to reduce the data volume, sophisticated algorithms are used
to analyze the incoming video and identify features that can be
compressed. Motion estimation is the most time-consuming
part of video compression; the most effective motion
estimation algorithms use sophisticated heuristics to search the
space of possible motion. That control ends up as branches,
changes in memory fetch behavior, and other phenomena that
do not resemble the simple, periodic behavior expected of
streaming processors.

2.2 Intel IXP2850 Network Processor
The Intel IXP2850 [1] is designed for network applications
that require packet processing, content processing, and
security. Basic packet processing requires high throughput.
Modern applications such as secure Web browsing add a great
deal of processing to the packet stream.

The IXP2850 is a heterogeneous multiprocessor. It has an
array of 16 multi threaded microengines to handle packets. An
Xscale processor handles control operations. Two

41.1

681

cryptography engines accelerate basic security algorithms. The
chip also supports multiple ports for packet ingress and egress
and a PCI interface.
The IXP2850’s software development environment includes a
simulator that allows development of the network application
without having a complete board design. The SDK also
includes libraries for commonly used operations in networking
and security.

2.3 Philips NexperiaTM

The Philips NexperiaTM Digital Video Platform [2] is an
architecture for digital video entertainment systems. It is
designed support digital television, home gateway and
networking, and set-top box applications. The first member of
this family was the Viper PNX-8500.

The architecture is shown in Figure 1. It contains two CPUs
and three busses. One CPU is a Trimedia TM32 5-issue VLIW
processor. The other processor is a MIPS PR3940 32-bit CPU.
The system includes three main busses: one for the memory
system, and one each for the MIPS and Trimedia processors. It
also includes bridges to connect the busses to each other.
The PNX-8500 contains several accelerators: a 2-D rendering
engine, MPEG-2 video decoder, image composition processor,
video input processor, scaler, and system processor. It has a
memory controller for the external DRAM interface as well as
DMA units for each processor. It also includes a variety of I/O
units, include UART, PCI, IEEE 1394, and SPDIF digital
audio output.
The MIPS core runs the operating system and control
processing tasks. It can execute man different operating
systems, such as Windows CE, WindRiver, VxWorks, and
Linux. The CPUs share some peripherals and use semaphores
to negotiate ownership of those shared resources.

2.4 TI OMAPTM

The TI OMAPTM architecture [3] designed to support 2.5G and
3G wireless applications. In addition to basic voice services, it

is intended for speech processing, location-based services,
security, gaming, and multimedia.

Figure 2 shows the block diagram of the TI OMAP 5910. It
includes a TI C55x DSP and an ARM9TDMI processor. The
two processors share an external DRAM interface. The chip
includes 192K Bytes of shared internal SRAM. Peripherals
include USB, I2C, UARTs, GPIOs, and four interprocessor
mailboxes.

The DSP/BIOSTM bridge supports heterogeneous
multiprocessing. The DSP Resource Manager runs on the
ARM to control tasks on the DSP. The DSP has its own real-
time OS to implement the control of DSP tasks. The bridge
supports interprocessor communication, based upon the
mailbox-interrupt mechanism.

2.5 ST NomadikTM

The ST NomadikTM architecture [4] is designed for mobile
multimedia applications. This requires supporting MPEG-4
encoding and decoding. It also requires supporting a range of
display sizes, ranging from cell phone (160 x 160) to PDA
(320 x 240 up to 680 x 480).

Figure 3 shows the block diagram of the first implementation
of Nomadik’s heterogeneous multiprocessor architecture. The
main CPU for the system is the ARM926E-JS. However, this
CPU concentrates on coordination and control; most of the
media functions are performed by application-specific
accelerators. The first version of Nomadik includes audio and

MIPS Trimedia
SDRAM

controller

bridge

I/O

ac
ce

le
ra

to
rs

bridge

bridge

bridge

I/O

Figure 1. Architecture of the Philips Nexperia PNX-8500.

C55x DSP

ARM9

memory
controller

system
DMA

controller
peripherals

DSP MMU MPU IF

bridge

Figure 2. Block diagram of the TI
OMAP5910.

ARM9

audio
accelerator

AMBAmemory
system

video
accelerator

I/
O

b
ri

d
g

es

Figure 3. Block diagram of an ST Nomadik system.

682

video accelerators. All these units are connected by an AMBA
bus.

Each accelerator is itself a small heterogeneous processor.
Both are built around ST’s MMDSP+ embedded core, which
provides 16- or 24-bit integer arithmetic and 32-bit floating
point arithmetic. The video accelerator includes an MMDSP+,
a picture input formatting unit, video codec unit, picture post-
processing unit, and interrupt controller. The video accelerator
includes two busses: one which connects the MMDSP+,
hardware units, memory, and interrupt controllers; the other
connects the hardware units to each other and to the AMBA
bus. The audio accelerator relies less on hardware units. It
includes an MMDSP+, memory, I/O units, and two internal
busses.

Nomadik uses techniques at all levels of abstraction to
minimize energy consumption: distributed heterogeneous
processors, efficient algorithms for motion estimation and
other compute-intensive steps, data compression on the bus,
embedded memory, specialized instruction sets, and aggressive
power management. Nomadik consumes 20 mW while
decoding MPEG-4 in 15 frames/sec QCIF resolution, including
MP3 audio.

Nomadik’s ARM core allows software to easily be ported to
the platform. Nomadik supports the OMAP architecture.

3. HARDWARE CHALLENGES
In order to understand the hardware challenges presented to us
by multiprocessor systems-on-chips, we need to ask ourselves
two questions: what is new about MPSoC systems and how
many different MPSoC platforms do we need?

3.1 What Is New About MPSoCs?
The first question that we must ask ourselves is how much of
the architectural technology for MPSoCs has already been
invented for machines built with lower levels of integration.
The history of computer system design shows that techniques
developed for one technology have often been translated to
newer technologies: mainframes to minicomputers to
microprocessors, etc. And parallel processing has a rich history
going back to the earliest days of computing.

However, most parallel processing systems have been
developed for scientific computing, databases, or other
applications that are very different from embedded computing
applications. Two important application characteristics will
cause us to rethink some aspects of traditional parallel
processing for MPSoCs:

• real-time operation Real-time operation requires predict-
able performance from the architecture. This does not mean
that the architecture has to be trivial, such as eliminating
caches. It does mean that the architectural elements have to
behave predictably enough so that the compiler and pro-
grammer can plan how to achieve the required computation
rates in critical parts of the system.

• low-power/energy operation Most embedded applications
operate under either power (heat) or energy constraints. In
traditional supercomputers power problems have been
tackled largely by packaging and mechanical engineering,
freeing the programmer from thinking about the issue. In
contrast, power and energy constraints in MPSoCs must be

tacked at every level of abstraction. The architecture must
provide support for programmers to measure and control
energy/power consumption. Furthermore, the architecture’s
energy and power consumption characteristics must be as
predictable as possible.

A key area of concentration to handle both real-time and
energy/power problems is the memory system. Memory
systems have long been a focus of architectural optimizations
that improve average performance at the expense of a greater
variance in access times. Many MPSoC applications are
memory intensive, which amplifies the effect of those
variations in processing time. The memory system is also a
prime determinant of energy consumption.

One simple but important question is the memory system
programming model: shared or partitioned memory? Scientific
and business applications long ago embraced the shared
memory model because it greatly simplifies programming.
However, very few MPSoCs or even embedded
multiprocessors built from multiple chips use a shared memory
model for their time-critical applications. Consider, for
example, the multiprocessors used in radar, which generally
pass messages along high-speed serial links that are
incorporated into most high-performance DSPs.

There are some good reasons why the time-critical parts of
embedded applications should be built on more heterogeneous
platforms. Memory access times need not be uniform but they
must be predictable. Building a specialized memory system
allows the architect to more carefully characterize its behavior
and the effect of run-time variations. A more specialized
structure can also conserve energy. A variety of software
techniques can be used [5] to tune memory system behavior,
but architecture must work with the software to provide
predictable performance.

3.2 How Many Platforms Are There?
We also need to ask ourselves how many different MPSoC
platforms will be needed in the long term. One simple way to
determine the number of platforms would be to categorize
problems by data rate. We could then develop a multiprocessor
platform for each data rate and rely on software to customize
the platform for various applications. This approach has its
appeal—a homogeneous multiprocessor is easier to program
and could be manufactured in very large volumes.

While data rate is one useful metric for categorizing
architectures, power and energy consumption will probably
drive us to more heterogeneous architectures over the long run.
As we eliminate some functions and add others in order to
specialize the machine for a particular purpose, we make it
more useful for some applications and less useful for others.
We end up with several platforms that operate in the same
general operations-per-second range but provide substantially
different performance and energy consumption on a given
application.

A more subtle design point that could lead to more platforms is
buffering and memory management. Because many embedded
multiprocessors use heterogeneous memory systems to
efficiently meet real-time requirements, MPSoCs could use the
same set of processing elements but with different memory
architectures. An interesting problem in embedded computing
architecture is to find flexible memory architectures that can
support a variety of real-time requirements.

683

I/O is a factor that could drive us to more platforms.
Applications with similar computational loads may require
very different devices. But we can handle that to some extent
with support chips that let us reuse the core MPSoC. In the
case of analog I/O, this approach is standard. A DVD chip set,
for example, includes a digital processor and an analog support
chip, with the analog chip designed in a different technology.

4. SOFTWARE CHALLENGES
Probably the most difficult thing for hardware designers to get
used to as they move to MPSoC design is that they must worry
about software design from the beginning. The hardware
architect can’t simply create a machine and throw it over the
wall for someone else to program. The architects must
understand the application to know what can be thrown out
from the hardware and what must be left in. The architects
must also understand the characteristics of the application
software that affect real-time and low-power operation.

Software plays a critical role in MPSoC design because the
chip won’t do anything without software. But the fullest view
of software challenges relating to MPSoCs starts with the
design environment and then moves to the chip itself.

4.1 Development Environments and Tools
Development environments are necessary to allow
programmers to create code for the system, starting well before
the chip is fabricated. We normally think of the host software
when we talk about a development environment, but in fact the
development environment includes the target hardware as well.
If the development environment requires a complete chip to
operate, then software development will be intolerably
delayed. Software and hardware designers must work together
to develop methodologies that allow them to develop as much
software as possible without a working MPSoC. At least part
of the solution is a software architecture that partitions
functions such that a great deal of software can be
implemented on a subset of the architecture’s processors, using
a configuration that can be supplied by existing software and
development environment configurations.

Because MPSoCs are often designed to comply with standards,
software development does not start with a blank slate. A great
deal of the software effort is to port the reference
implementation of the standard to the platform. Because
reference implementations are usually written with
functionality, not performance in mind, porting the code
requires the use of software analysis tools.

A great deal of the performance analysis for MPSoC designs is
done using execution traces. A trace is gathered from an
existing system, or perhaps synthesized, and then used to drive
a simulation. The simulation is monitored to evaluate a variety
of characteristics: execution time, memory system behavior,
subsystem utilization, etc.

While trace-driven design can be very powerful, it also
represents the first software difficulty in the MPSoC design
process. System designers need to be able to collect
interesting, realistic traces of their system to feed simulators.
This requires either a working system of some sort—perhaps
an existing chip, perhaps a software design running on a
general-purpose processor—or a reliable way of generating
synthetic traces. In some cases, standards dictate input formats

to the extent that plausible input sequences can be constructed.
In other cases, traces must be gathered from executing
systems.

The designers also need to invest the time to build simulation
models that can make use of the traces. The proper simulation
tools depend on the level of abstraction to be modeled.
SystemC is popular for system-level modeling, while
SimpleScalar [6] is a well-known CPU simulator.
SimpleScalar is designed to be quickly reconfigured to
different CPU characteristics; however, there is still some
work to be done to create easy-to-configure highly accurate
simulators for heterogeneous multiprocessors.

4.2 Operating Systems and Middleware
A great many real-time operating systems (RTOSs) have been
created for embedded computing systems. However, most
commercial RTOSs have been developed for the industrial,
automotive, or other markets that permit large images and
emphasize functionality. MPSoCs, in contrast, generally
require their core functions to be implemented in a very small
amount of software, both for performance and memory
limitations. MPSoCs will make extensive use of middleware
that provide advanced features like Internet access on top of
their microkernels.

The operating system and middleware must provide several
categories of services, including scheduling, memory
management, I/O management, and communication. The exact
division between OS and middleware is a choice for software
architects, but MPSoCs clearly need to execute some key
functions very efficiently. Interprocessor communication
primitives, for example, must execute in a very small number
of cycles in order to meet real-time performance goals as well
as energy consumption goals. The OS and middleware should
be optimized to take advantage of the features of the
heterogeneous multiprocessor to provide the necessary mix of
high-performance, time-critical functions with less-critical
operations.

4.3 Embedded System Security
Any type of programmable system has potential security
problems. However, as MPSoCs start to include Internet
connections, they will become vulnerable to a variety of
security attacks. When MPSoCs are used in safety-critical
applications, such as cars and airplanes, those security
problems must be a central concern of the system architects.
Even in non-safety-critical systems, such as home
entertainment systems, poor security on the MPSoC can make
the chip unusable in practical systems.

As Phil Koopman has pointed out, traditional computer
security methodologies and systems are designed to protect
transactions. However, MPSoCs that are used in real-time
systems must secure the continuous operation of that real-time
control function. Attackers may try to disrupt the MPSoC’s
real-time characteristics in a variety of ways, such as quality-
of-service attacks. The MPSoC must be designed from the
ground up for secure operation. Software and hardware
architects must work together to provide the proper system
modes and operations that allow the chip to do its job with a
minimum threat from the outside.

684

5. CONCLUSIONS
Multiprocessor systems-on-chips have a bright future. They
are being incorporated into some of the key electronic products
of the next decade. We can learn a lot about the design of
MPSoCs by studying traditional computer system designs.
However, the real-time and low-power/energy characteristics
of embedded computing applications provide some unique
challenges that should keep MPSoC designers busy for quite
some time.

Acknowledgments
Thanks to Ahmed Jerraya, Alain Mellan, Faraydon Karim,
Santanu Dutta, Pierre Paulin, and Phil Koopman for fruitful
discussions about multiprocessor systems-on-chips.

References
[1] Intel, “Product Brief: Intel IXP2850 Network Processor,”

2002, Available at http://www.intel.com.

[2] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A
Multiprocessor SOC for Advanced Set-Top Box and Digital
TV Systems,” IEEE Design and Test of Computers,
September/October 2001, pp. 21-31.

[3] Justin Helmig, “Developing core software technologies for
TI’s OMAPTM platform,” Texas Instruments, 2002.
Available at http://www.ti.com.

[4] Alain Artieri, Viviana D’Alto, Richard Chesson, Mark
Hopkins, and Marco C. Rossi, “NomadikTM Open
Multimedia Platform for Next-generation Mobile Devices,”
STMicroelectronics Technical Article TA305, 2003,
available at http://www.st.com.

[5] Wayne Wolf and Mahmut Kandemir, “Memory system
optimization of embedded software,” Proceedings of the
IEEE, 91(1), January 2003, pp. 165-182.

[6] Doug Burger and Todd M. Austin, “The SimpleScalar
Toolset, Version 2.0,” University of Wisconsin-Madison
Computer Sciences Department Technical Report #1342,
June 1997.

685

