
Reliability Challenges for Electric Vehicles:  
From Devices to Architecture and Systems Software 

Georg Georgakos 
Infineon Technologies 
Neubiberg, Germany 

Ulf Schlichtmann 
Institute for Electronic Design Automation 

Tech. Universität München, Germany 
 

Reinhard Schneider  
Samarjit Chakraborty 

Institute for Real-Time Computer Systems 
Tech. Universität München, Germany 

 
 
 

ABSTRACT 
Today, modern high-end cars have close to 100 electronic control 
units (ECUs) that are used to implement a variety of applications 
ranging from safety-critical control to driver assistance and 
comfort-related functionalities. The total sum of these applications 
is several million lines of software code. The ECUs are connected 
to different sensors and actuators and communicate via a variety 
of communication buses like CAN, FlexRay and now also 
Ethernet. In the case of electric vehicles, both the amount and the 
importance of such electronics and software are even higher. 
Here, a number of hydraulic or pneumatic controls are replaced by 
corresponding software-implemented controllers in order to 
reduce the overall weight of the car and hence to improve its 
driving range. Until recently, most of the software and system 
design in the automotive domain – as in many other domains – 
relied on an always correctly functioning or a zero-defect 
hardware implementation platform. However, as the device 
geometries of integrated circuits continue to shrink, this 
assumption is increasingly not true. Incorporating large safety 
margins in the design process results in very pessimistic design 
and expensive processors. Further, the processors in cars – in 
contrast to those in many consumer electronics devices like 
mobile phones – are exposed to harsh environments, extreme 
temperature variations, and often, strong electromagnetic fields. 
Hence, their reliability is even more questionable and must be 
explicitly accounted for in all layers of design abstraction – 
starting from circuit design to architecture design, to software 
design and runtime management and monitoring. In this paper we 
outline some of these issues, currently followed practices, and the 
challenges that lie ahead of us in the automotive and electric 
vehicles domain.  

Categories and Subject Descriptors 
B.4.5 [Hardware]: Reliability, Testing, and Fault-Tolerance – 
Diagnostics, Error-checking, Hardware reliability, Redundant 
design.  

General Terms 
Performance, Low Power, Design, Reliability, Verification. 

Keywords 
Electric vehicles, automotive electronics, process variations, 
aging, embedded systems, software, cross-layer.  

1. INTRODUCTION 
The volume of electronics and software in modern cars is 
increasing at a tremendous rate. Today, most of the innovation in 
the automotive domain is in the area of electronics and software 
rather than in mechanical engineering, which used to be the case 
until a few years ago. High-end cars now have reached the mark 
of close to 100 ECUs, containing almost 250 processors and 
GPUs [1]. These ECUs are connected to various communication 
buses like CAN, LIN, MOST, FlexRay and Ethernet and are used 
to run various applications related to safety-critical control, driver 
assistance and comfort-related functionalities. These applications 
sum up to several million lines of software code and are expected 
to grow at an exponential rate as more driver assistance functions 
are being introduced everyday. In fact, autonomous driving, that is 
technologically feasible since the last couple of years, is expected 
to become a reality very soon. Such applications rely on a number 
of cameras and radars that produce large volumes of streaming 
data, which needs to be processed in real-time thereby further 
increasing the need for computation power inside the car.  

Electric vehicles: In the case of electric vehicles, electronics and 
software – both in volume, as well as in importance – are even 
larger. Since battery life and hence driving range is of crucial 
importance in electric cars, a number of pneumatic and hydraulic 
controllers in such cars are replaced by software-based control in 
order to reduce the overall weight of the car. This further 
increases the need for computation power, but also introduces 
more ECUs and cabling. Current design methods in the 
automotive domain follow a federated architecture, where each 
function is implemented on a separate ECU. This enables the 
OEM (original equipment manufacturer) to outsource the different 
functions to different Tier 1 suppliers – with the role of the OEM 
being that of function integrator. But it also increases the number 
of ECUs in the car and the volume of cables needed to connect 
these ECUs. For electric cars this is especially a problem, not only 
because of the complexity and the distributed nature of the 
resulting architecture, but also because of the overall weight of the 
ECUs and the cables, which are now non-negligible. As a result, 
there is an increasing push to move towards more integrated 
architectures, where multiple software functions are integrated 
onto a single ECU. An application therefore is now distributed 
into different tasks, running on different ECUs and 
communicating via shared communication buses. Such integrated 
architectures and the move towards fewer ECUs and shorter 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
DAC ‘13, May 29 – June 07 2013, Austin, Texas, USA. 
Copyright 2013 ACM 978-1-4503-2071-9/13/05 …$15.00. 
 



cables introduce more powerful multicore ECUs that use the latest 
processor design and fabrication technologies. Further, very soon 
it will also no longer be cost-effective to use simple 
microcontrollers in the ECUs but powerful commodity processors 
from the consumer electronics domain will be used.  

The reliability problem: However, such processors from the 
consumer electronics domain are currently faced with a number of 
reliability-related problems stemming from process variations, 
aging, and radiation-induced soft errors, which could be safely 
neglected in the low-end microcontrollers in older ECUs that had 
much larger device geometries and used old fabrication 
technologies. Hence, design methods and software development 
techniques in the automotive domain always assumed a zero-
defect and fully reliable hardware layer, which is increasingly no 
longer true.  

To make matters worse, the electronics in a car are exposed to 
harsh conditions, extreme temperature variations, and often, 
strong electromagnetic fields, which further aggravates the 
reliability problem. Further, the electronics in subsystems like 
battery monitoring and management in electric vehicles are 
always “on” for the entire lifetime of the car, which is in the range 
of 10-15 years and sometimes even more. This makes issues like 
aging an important concern. Automotive being a highly cost 
sensitive domain, large safety margins to overcome these 
problems are not feasible and more integrated and intelligent 
solutions that tackle the reliability issue at multiple layers of 
design abstraction are necessary. While current processor design 
for automotive ICs is in the 65nm domain, the industry is rapidly 
moving towards processors with smaller geometries (40nm and 
below in the near future). For devices with these geometries 
power consumption is a major issue. Hence, power management 
techniques like dynamic voltage and frequency scaling – that are 
routinely used in consumer electronics devices like mobile phones 
– will have to be introduced in automotive ECUs (currently the 
power consumed by the electronics in a car is largely neglected 
and hence no runtime power management techniques are 
deployed). Once this happens, the issue of reliability will become 
a bigger challenge since the processor will have to operate at both 
high and low supply voltages, which is explained in more detail in 
Section 2.  

Furthermore, in electric vehicles, conventional control systems 
with mechanical backup systems are likely to be replaced by 
solely electronic components, so called X-by-wire systems such as 
brake-by-wire or steer-by-wire.  This leads to significantly 
reduced weight and space and enables a tight integration of 
several applications. On the other hand, such systems, e.g., brake-
by-wire, are highly safety-critical and impose stringent reliability 
requirements on the used hardware and software. Hence, fault-
tolerant and reliable software and platform design will become 
inevitable key issues to realize X-by-wire systems.  

Today, processors in automotive ECUs are increasingly adopting 
multicore architectures to keep pace with growing performance 
and reliability demands. Similarly, cost and quality requirements 
necessitate efficient model-based development techniques to 
realize seamless model-based software development involving 
automatic code generation. Generally, the system design process 
is typically distributed among several layers, starting at a high-
level application layer implementing the core functionality of the 
system at a high level of abstraction, e.g., in form of Simulink 
models or as textual representations, down to the 
microarchitecture layer on which the embedded software is finally 
implemented. In this context, the specification, design, test and 

verification phases across the different layers are driven by 
various automotive standards such as OSEK/VDX, AUTOSAR, 
ISO26262, CMMI (to name but a few), each imposing individual 
constraints and requirements.  

Further, the growing complexity due to increased ECU 
consolidation and associated integration of more and more SW-
components with different levels of criticality on complex 
multicore architectures requires integrated design approaches in 
hardware and software to guarantee freedom from interference 
between SW-components and to meet specified performance 
requirements. In this context, interference between SW-
components may be due to concurrent memory accesses to shared 
memory regions or because of preemption of tasks scheduled on 
shared processing resources resulting in increased execution 
times.  

In order to realize safety-related architectures, dedicated multicore 
platforms operating in dual core lock-step mode have become 
popular. That is, two cores (master and checker) execute the same 
code while being synchronized, to detect potential errors produced 
by a faulty core. This is especially important to satisfy high 
functional safety requirements, e.g., in a braking ECU. On the 
other hand, multicore architectures of course provide parallel 
processing on multiple cores giving rise to increased 
computational performance. Similarly, dedicated hardware units 
such as DMA controllers, DSPs, and GPUs enable additional 
execution speed-up. Further, virtualization technologies are being 
studied with the goal to implement an effective layer of isolation 
between single user-level applications with different criticality 
levels. 

The communication network between the ECUs is built up of bus 
systems such as LIN, CAN, MOST, FlexRay, Ethernet and one or 
more gateways to interconnect the different network domains. 
Since gateways often represent single-point-of-failures in the 
communication network special attention needs to be paid to 
designing fault-tolerant and redundant communication 
architectures in order to improve the reliability in the entire 
network. 

Organization: In this paper we discuss the various reliability 
issues and why they arise (Sect. 2) as well as current practices to 
mitigate them (Sect. 3). Sect. 4 discusses reliability especially in 
the automotive context. The challenges that lie ahead of us are 
addressed in this paper as well in Sections 3 and 4. 

2. RELIABILITY: BACKGROUND AND 
CIRCUIT IMPACT  
This section will provide some background on the causes and 
effects for the reliability challenges that we address in this paper. 
The following section describes mitigation techniques which 
represent the current state of the art. 

Manufacturing variations have been with us since the early days 
of ICs. They are, together with the need to consider the range of 
operating conditions (supply voltage VDD and operating 
temperature T), the reason why the corner-based design 
methodology has been introduced. They happen due to 
imperfections in the manufacturing process, which either have 
fundamental physical reasons, or are a result of tradeoffs between 
manufacturing cost and quality. Typically they are variations of 
physical parameters, which in turn result in variations of electrical 
parameters. These affect circuit properties that are of interest to 
the designer (e.g., delay, static/dynamic power). Some examples 



of manufacturing variations are e.g. fluctuations in doping profiles 
of the transistor channel (resulting in variations of threshold 
voltage Vth), variations in gate oxide thickness Tox (Vth change), 
width/thickness of metal lines (changes in resistance and therefore 
wire delay as well as electromigration risk) [2][3]. 

Various classifications of these variations exist [4]. An often used 
classification refers to their spatial correlation: wafer-to-wafer (all 
parameters on one wafer are identical, but differences exist 
between wafers), die-to-die (parameters within one die are 
(essentially) identical, but differ between dies), and within-die. 
The first two classes are often referred to as global variations, 
whereas the within-die variations are also known as local 
variations. The poster-child for within-die variations is random 
dopant fluctuations (RDF) of the transistor gate channel doping, 
which affect Vth. From 32nm onwards, the number of dopant 
atoms is below 100 [5]. As the dopant atoms are deposited by 
processes, their exact number can differ significantly from one 
transistor to the next, even between adjacent transistors. 
Minimum-sized transistors are affected the most. 

The trend is that manufacturing variations increase from one 
technology generation to the next [6][7][8]. This is especially true 
for their relative values, since the nominal values of parameters 
typically decrease with successive process technology generations 
[2]. However, this is not a monotonous trend. Sometimes 
innovations in process technology, new materials or improved 
transistor structures result in a significant reduction in variations. 
But the overall trend of increasing relative variations remains. 
Especially worrying is the fact that within-die variations are 
increasing as a percentage of overall variations [9]. This is a 
problem since the standard corner-based design methodology was 
developed for wafer-to-wafer and die-to-die variations and cannot 
properly handle within-die variations. 

Defects during the manufacturing process are usually caused by 
impurities of the process materials or particle contamination 
during the process itself. These defects might directly cause a 
functional fail, e.g., an open of an interconnect or contact. But 
even worse they might create a weak spot in a device, such as a 
local gate oxide thinning of a MOS transistor or a partly open via 
hole. These latent faults may not be detected during initial product 
test, and transform to a functional fail or a parameter drift quite 
early during the lifetime of the device in the field. Most of the 
reliability mechanisms described in the following can be 
influenced or accelerated by these defects which are also 
described as extrinsic effects in contrast to the intrinsic behavior 
which describes the reliability mechanism in an ideal case without 
any type of an overlaying defect.  

Aging effects are changes in transistor or wire parameters over 
the lifetime of the device. Today, the following are the most 
relevant effects: 

Negative / Positive Bias Temperature Instability (NBTI / PBTI). 
NBTI affects PMOS transistors, PBTI NMOS transistors. In the 
past, PBTI was not an issue, but with the introduction of high-k 
metal gates below 40nm it is evolving into a problem as well. The 
aging happens when the transistor is in inversion (the stress 
condition), e.g. for the PMOS when the gate terminal is negatively 
biased regarding source or drain. The resulting changes in the 
transistor can be modeled as a degradation of Vth. The severity of 
the degradation depends on many factors, most importantly VDD, 
T, and percentage of the time the transistor is in inversion. 
Transistor degradation due to NBTI or PBTI can be reversed 
when the stress condition is removed. This is known as recovery. 

Recovery is taking place slower than degradation, and only 
partially reverses the previous degradation. 
 
Figure 1 and  Figure 2 show some influences on NBTI [10]. The 
circuit designer is interested in the transistor delay degradation 
caused by an aging effect such as NBTI. This delay degradation 
has two components: NBTI causes a shift of transistor Vth (Figure 
1), which then in turn results in a degradation of the  delay of the 
logic gate containing the respective transistor (Figure 2). As the 
figures show, VDD and T influence both components. However, 
VDD has different impact on the two components: the Vth 
degradation increases with increasing VDD, the sensitivity of delay 
to Vth increases with decreasing VDD. This can be especially 
critical in a scenario where different supply voltages VDD are used 
for purposes of power reduction. Assume that an IC is operated 
mostly using a high VDD value for high performance modes. This 
will result in strong transistor degradation. When the IC then 
operates with lower VDD in a low-power mode, the impact of the 
Vth shift is amplified by the increased sensitivity of delay to Vth 
changes (see Figure 2). This demonstrates that techniques for 
power reduction cannot be considered in isolation. Their effects 
on reliability due to aging need to be taken into account. 
 

 
Figure 1: Exemplary Vth shift of a PMOS transistor in a 90nm 
node caused by NBTI stress representing a realistic end of live 
scenario and a 100% duty cycle in dependence on T, VDD 

 
Figure 2: Delay degradation of a 90nm inverter in dependence 

on Vth shift and VDD at an operating temperature of 85° 
 



Hot Carrier Injection (HCI) affects both PMOS and NMOS 
transistors. Essentially, carriers (electrons or holes) are injected 
from the transistor channel into the gate oxide, resulting in a 
permanent change of the transistor characteristics, typically 
modeled as a degradation of the on-current Ion. This happens 
during the transition from the off- to the on-state of the transistor, 
so the switching frequency of the transistor strongly affects the 
degradation. The impact of HCI on digital circuits is similar to 
NBTI and PBTI as described above. 
Time Dependent Dielectric Breakdown (TDDB) affects both 
PMOS and NMOS transistors. However, the failure rate of NMOS 
transistors due to TDDB is much higher. TDDB is defined as the 
localized loss of isolating properties of the gate oxide, which leads 
to an increased gate leakage current. Typically the impact of this 
aging mechanism is modeled as a degradation of the gate current 
Ig. Unlike NBTI, there is no recovery from TDDB. There are two 
oxide breakdown (OBD) modes to distinguish: Soft breakdown 
(SBD) and Hard Breakdown (HBD). The underlying physical 
origins for both modes are the same, and they are distinguished by 
the resistance of the conducting path, or, in other words, the 
severity of breakdown. SBD has relatively higher resistance and 
lower breakdown current. In the SBD stage the transistor drifts in 
energy and delay, but is still functional. The HBD mode is always 
preceded by SBD. In the HBD case, the resistance is much lower 
and the current is exponentially higher. This fault is called 
catastrophic and results in a permanent malfunction of the 
respective circuit block. 
As the gate oxide thickness is shrinking with successive process 
technologies, transistors are becoming more prone to SBD, which 
has become one of the most important reliability issues 
threatening the further reduction of transistor feature sizes. The 
principles of scaling of gate area, oxide thickness, and voltage for 
both soft and hard breakdowns have been investigated [17]. The 
study of relation between breakdown mode and its location 
suggests that the spot, located in the gate and drain/source 
overlapping region, will have the most severe impact on circuit 
functionality [18].  On a circuit level, the impact of TDDB is 
being studied mainly on SRAM cells, as they are most sensitive to 
TDDB [19][20].  
Electromigration (EM) refers to mass transport in metal 
interconnects like wires and via holes [11]. With sufficiently high 
current densities, electrons may eventually cause atoms to move. 
Over time this can result in an increase in resistance as the 
interconnect cross-section becomes narrower. Eventually it can 
lead to an open, likely causing a catastrophic circuit failure. For a 
given current, the severity of EM increases with decreasing 
interconnect width. Therefore, EM problems can be avoided by 
sufficiently sizing wires or number of via holes. But of course this 
approach is at odds with the desire to keep wires as thin as 
possible to reduce IC area. 
Stressmigration (SM) is similar to electromigration but the mass 
transport is not due to an electron flow but due to diffusion of 
vacancies in interconnects through mechanical stress or 
temperature gradients. An agglomeration of these vacancies may 
eventually create voids under or in via holes. This also leads to an 
increase in resistance first and might eventually cause a 
permanent open of an interconnect [24]. 
 

Soft Errors or Single Event Upsets (SEUs) cause intermittent, 
non-permanent failures in a circuit. An SEU happens when a 
charged particle strikes a semiconductor, resulting in a buildup of 
ionized material, which in turn causes a current. The charged 
particle might result from radioactive decay of packaging 

materials or from cosmic particles in the atmosphere. As the 
incidence of cosmic particles increases with height above the 
earth’s surface, in the past electronics for air and space 
applications were most at risk. However, with decreasing feature 
sizes, also electronics used in terrestrial applications are 
increasingly affected. While the literature is not uniform as to 
whether smaller feature sizes by themselves increase SEU risk, 
certainly the exponential increase in number of components on a 
chip due to shrinking feature sizes increases the risk for an IC of a 
given die size. Today, no safety-critical IC is designed without 
some sort of SEU protection anymore. 

In the past, most concern has been about particle strikes directly 
hitting a storage cell, resulting in the flip of a single bit in 
memory. Meanwhile more than one bit may flip in a memory due 
to a single event. And increasingly, single event transients (SETs, 
pulses resulting from a particle strike which then propagate 
through the circuit) are also a source of concern, since they can 
also lead to an incorrect value in a storage element (e.g. a flipflop) 
if the transient reaches such a storage element at the time it 
latches. 

Both SEUs and SETs may not necessarily cause a malfunction of 
a circuit. There are many types of masking that might happen. 
E.g. a flipped memory bit might be overwritten by a new value 
before it is accessed by a read operation. It is challenging to 
determine how much at risk a certain part of a circuit is. Research 
is conducted e.g. to efficiently determine the Architectural 
Vulnerability Factor (AVF) – which describes the masking of 
errors - of a circuit [33]. 

Electromagnetic Interference (EMI) is not a classical reliability 
issue but also requires a certain robustness of the design regarding 
high electromagnetic and pulse disturbances. They are typically 
injected or generated and distributed in complex systems 
consisting of one or several printed circuit boards, connectors and 
cables. The noise is either received from a harsh environment 
which contains radio frequency or pulse noise or is generated by 
the systems themselves mostly due to switching noise. Coupling 
of noise is due to jointly used interconnects of an emitting and 
receiving part of the system in a conducting way or through traces 
of interconnects, packages, connectors or cables acting as an 
antenna. Usually no physical destruction of the components 
occurs. Only a temporarily or permanent malfunction of the 
system is observed. 
 

A special case of interference is Electrostatic Discharge (ESD). 
The according noise pulse is in this case typically provided 
through the chip pins and caused by the handling of the chip 
during production or system assembly or by many kinds of 
overstress conditions during chip operation. An ESD exposure can 
also happen during end-user operation in case of a plug-in of 
cables and change of batteries or maintenance in an unprotected 
area. A special kind of electrostatic discharge during the chip 
manufacturing process might occur due to resist charging during 
implantation or due to plasma processes which create non-
uniformities of charge distribution across a wafer. The charge is 
coupled into the chip by antennas, simple traces of metal or 
diffusion. A corresponding discharge might lead to various 
parameter drifts of active devices, increased TDDB risk, increased 
gate leakage or immediate physical destruction of diodes, 
transistor channels or dielectrics. 

 



Above, the circuit impact of the described reliability effects was 
considered from the perspective of a digital circuit design. 
Complex SoCs may also contain analog and mixed signal circuits. 
Reliability effects that lead to a permanent physical destruction, 
do not distinguish between digital or analog circuits. However, the 
operating conditions of the devices are different, leading to 
different acceleration of the related reliability effects. In digital 
circuits MOS transistors are usually operated at full supply 
voltage levels and current flow is limited to the switching 
transients whereas in analog circuits the supply voltage of a single 
MOS transistor is usually smaller due to voltage drop at serially 
connected devices, but the current flow spans a wide range of 
different pulse shapes, up to a constant current over time. 
Reliability effects, which lead to a parameter degradation of a 
device, are more difficult to consider for analog circuits. As above 
the operating conditions are different compared to digital circuits 
and therefore also the acceleration factors. Additionally not only 
Vth and Ion drifts impact the analog circuit behavior, also 
parameters like gm and gds might suffer from aging and change the 
circuit response over time. And finally the wide variety of analog 
circuit classes shows a big difference in sensitivity to certain 
parameter changes. This is mainly due to design techniques 
utilizing relative parameters instead of absolute ones relying on a 
good matching of these parameters to cope with variations. 

3. RELIABILITY-AWARE DESIGN 
TECHNIQUES 
This section describes reliability-aware design techniques that are 
considered to be “state of the art” for advanced IC designs, and 
also gives an outlook. For the purposes of this paper, we define 
„state of the art“ as techniques that are used for designing 
automotive ICs in 65nm technology. In the rather conservative 
automotive field, major vendors are currently qualifying this 
process technology. Design activities have started in 40nm, but 
are still in early stages. The focus of the descriptions in this 
section is on broadly applicable techniques, not on approaches 
specific to automotive ICs. 
 

3.1 Device and Circuit Level Techniques  
Manufacturing variations have traditionally been addressed by 
corner-based (best case / worst case) design techniques [12]. 
Increasingly, such techniques are running out of steam, however, 
due to a number of reasons: 

 Variations are increasing. This results in ever more 
performance being lost to generous corner guard banding. 

 More parameters are being considered, resulting in an 
exponential increase in the number of corners. E.g. some 
manufacturers consider variations in wire thickness on 
different metal levels in addition to transistor speed variation. 

 Corner-based design methodologies can not cope with purely 
random within-die variations. These variations can only be 
addressed by safety-guardbands – and by the hope that they 
will typically average out if a path is long enough. 
Unfortunately, hoping for the best is not a very reliable 
design technique. To date, the industry has managed to get 
by with tweaking existing design techniques. E.g. Static 
Timing Analysis is being enhanced with various forms of 
“On-Chip-Variation (OCV)” techniques to address purely 
random within-die variations [13]. These work for the time 
being, but are really just band-aids to postpone the demise of 
established design techniques a bit further into the future. 

Statistical design techniques for digital circuits have seen a lot of 
attention in the past 10 years [4]. But most of them have not yet 
gained any significant traction in typical industrial design flows, 
with the exception of in-house flows at a few of the world’s 
largest IDMs. As the effort required to introduce such techniques 
into design flows (new tools, significantly more detailed library 
characterization required, very high computational effort required 
for some approaches) is very substantial, it remains to be seen to 
which degree statistical design techniques will see industrial 
adoption in the future. 

In analog circuit design Monte-Carlo simulations result in more 
realistic behavior than corner-based methods, with the 
disadvantage of highly increased design time. Worst-Case-
Distance methods [14] are much faster but also very complex and 
are therefore not yet established in the analog design community. 
With increasing complexity and sensitivity of the circuits towards 
variations this situation has to change in future to enable an 
efficient and accurate design process. 
 
Extrinsic faults can’t be addressed directly during the design 
process. A critical area analysis and layout post-processing like 
wire spread and fattening techniques can reduce the number of 
faults. Current strategy is to activate these latent faults with a 
burn-in stress and screen them out with a respective test program 
before final shipment. This procedure is going to be more and 
more challenging in the future because burn-in is time consuming 
and therefore quite expensive and on the other hand due to 
increased system complexity it is very challenging to find realistic 
burn-in stress scenarios which activate all possible latent faults. 
 

Aging can provide an exemplary perspective on the evolution of 
design techniques to address reliability challenges (DfR, Design 
for Reliability). In the past, many of these reliability challenges 
were not addressed specifically during design at all. Overall guard 
bands were being used in chip design, and it was assumed that 
these guard bands would cover aging effects, if any consideration 
was given to them at all. 
As a next step up in sophistication, the size of these guard bands 
was verified by measurements on individual components (usually 
transistors) under stress conditions. These measurements typically 
result in conservative worst-case values which are used to 
determine the size of guard bands. However, they usually are 
quite conservative, resulting in unnecessary design effort and/or 
increased IC area and delay. On the other hand, they might not be 
sufficient to cover extreme cases – and a single extremely slow 
path can be sufficient to render an entire IC useless. 

A major enhancement in DfR is then to perform a detailed, 
circuit-specific timing analysis incorporating aging. As transistor 
level analysis can only handle rather small circuit sizes due to the 
required computational effort, a prerequisite for such analysis is a 
modeling of aging effects at gate level and higher abstraction 
levels. Efficient and versatile techniques for such modeling have 
only recently been proposed [16]. Such specific analysis 
techniques are also a prerequisite to optimize the circuit against 
aging effects. The literature reports primarily on variations of 
optimization techniques that have been used e.g. in timing and 
power optimization before, such as pin reordering and gate 
restructuring [15]. 
Such analyses and optimizations performed during design will in 
the future need to be enhanced by run-time monitors, which 



observe an IC during operation and enable an immediate reaction 
to monitoring results. Such reactions can take various forms: 

 Issue a warning that an IC is reaching a specification limit, 
such that the corresponding ECU can be replaced. While this 
ensures safety, replacing an ECU is very costly. 

 Increase the supply voltage so that the original frequency can 
be maintained despite the aging-related degradation. This 
results in increased power consumption (and increased future 
aging as well). 

 Perform a graceful degradation of the performance of the IC 
(e.g. by reducing the workload so that the IC can perform the 
remaining functionality with a lower frequency). E.g. in a 
multi-core system, reallocate some tasks among cores so that 
an aged core can still be used despite offering lower 
performance. This requires that some spare capacity be built 
into the system. Also, reallocating task among cores, 
processors or ECUs might pose special challenges in the 
automotive domain due to certification issues. 

 
An even more advanced technique of addressing aging is to take 
recovery effects into consideration as well. For NBTI and PBTI, 
recovery takes place if the stress condition is removed. This can 
be utilized in conjunction with online aging monitors. For 
example, in a multi-core system, if strong aging is sensed in a 
specific core, tasks can preferentially be moved to other cores to 
give the strongly aged core a chance to recover. However, such 
techniques require that specific causes of aging can be identified, 
rather than just the effects of the aging be noticed. 
 

Regarding TDDB, the modeling of this aging effect has become a 
topic of much interest recently, e.g. because in ultrathin oxide 
transistors the time between SBD and HBD is very long [22], and 
the transistors can undergo even multiple SBDs [23].  Most often 
the breakdown is modeled as a voltage-dependent resistance 
between gate and drain/source to consider the worst-case 
scenario.  Based on this, an analytical model has been developed 
to simulate the TDDB-based timing degradation in combinational 
cells [28]. However the model has potential for improvement, as it 
does not  model the resistance change over time.  
 

Via manufacturing risks are addressed by inserting redundant vias 
into the circuit. In situations where a circuit contains sufficient 
space for additional vias, this has no drawbacks. When wires need 
to be enlarged to allow the insertion of additional vias, the 
tradeoff between increased manufacturing cost and improved 
reliability needs to be considered. Therefore intelligent rule based 
methods to add redundant vias only where they are necessary and 
to verify a design by identifying only really critical single vias  are 
needed in the future. 
 

Soft Errors are addressed by techniques specific to different 
circuit components. 

Memories are typically protected by parity codes or  error-
correcting codes (ECC), a special type of redundancy. 
Alternatively, transistors can be upsized, or an 8T architecture 
instead of the standard 6T SRAM cell can be introduced. 

For flipflops in the circuit logic, ECC is not easily possible. The 
standard solution for such flipflops is to harden them, e.g. by 
upsizing the transistors. Also, double or even triple modular 
redundancy (DMR, TMR) or even more sophisticated techniques 

are possible. They can be applied to individual flipflops, or to 
entire larger circuit modules. 

All of these techniques for protecting flipflops in logic against 
SEUs result in (usually significant) area and delay penalties. An 
important current research area is therefore to determine which 
flipflops are most critical to circuit operation and definitely need 
to be protected, and which other flipflops could be left without 
protection without catastrophic consequences for a circuit. The 
concept of the AVF is relevant here. Research has been reported 
using both simulation and formal techniques to determine the 
importance of a flipflop. The formal techniques are much less 
mature than simulation-based techniques today, however [29][30]. 
 

General techniques that are used to address many reliability issues 
are: 

 Redundancy (e.g. DMR, TMR) – typically very costly 

 Parity and error-correcting codes – cost-efficient 
implementations are typically limited to regular structures 
such as memories 

 Circuit architectures such as RAZOR [31] or Pre-Error 
Adaptive Voltage Scaling [32] 

3.2 System-Level Techniques 
Software and system-level design techniques in the automotive 
domain usually follow a cross-layer design approach. Here, high-
level models are used to specify (often various control) 
applications. Such a model-based design approach, in contrast to 
using, for example, handwritten code, allows formal verification 
and certification of the safety-critical functionality. These models 
are used to generate software code, which is then partitioned and 
mapped onto a distributed architecture consisting of various ECUs 
connected by communication buses.  

One of the major challenges in this design flow stems from the 
fact that the high-level controller models more often than not 
ignore many platform architecture details (i.e., details of the 
platform on which the synthesized code is to be implemented). In 
other words, the models make a number of idealistic assumptions 
– like control functions are computed in zero/negligible time, 
there is no delay between sensing and actuation, etc. – which are 
increasingly not true in modern distributed automotive 
architectures. Hence, control performance properties that are 
proven at the model level do not hold true in the actual 
implementation, thereby requiring considerable integration and 
debugging efforts and raising questions on the safety/reliability of 
the resulting system.  

In order to address this issue, the abovementioned design flow has 
to be suitably modified to take into account relevant platform 
architecture level details during the design of the high-level 
controller models. Similarly, the architecture design also should 
be aware of control performance and delay constraints. In other 
words, techniques from different layers of design abstraction 
should be combined together rather than designing these layers 
independently of each other. Such cross-layer design approaches 
are also discussed later in the following section.  

So far, our discussion was based on the assumption that all the 
components in the platform architecture function correctly. From 
our previous reliability-related discussions, we know that this 
assumption is increasingly not true. To cope with an unreliable 
implementation platform, the cross-layer design approach outlined 



above has to be extended to make the reliability information from 
the architecture level visible at the software and system levels. 
This way, critical parts of the computation/communication may be 
appropriately replicated or protected, and certain software or 
system-level functions may be designed to be more robust to 
architecture or device level failures/errors.  

3.3 Interaction Between Design Layers 
Protecting an IC against reliability challenges purely on individual 
layers of the design hierarchy is increasingly considered to be 
very costly and not the most efficient solution. E.g. hardening an 
IC against SEUs could be done by hardening each memory cell 
(larger transistors, 8T cell), or by providing redundancy and/or 
ECC or by computing checksums in SW. However, a growing 
consensus is evolving that the most cost-efficient techniques for 
analyzing and optimizing against reliability challenges involve 
cooperation between multiple design layers [21]. Major research 
projects are under way in Asia, Europe and the US to evaluate 
cross-layer techniques in addressing reliability (e.g. [25], [26] for 
an effort in Germany). 

“Cross-layer” refers to the idea that efforts on different levels 
(layers) of the design hierarchy are combined to achieve an 
overall optimal tradeoff between required resources and resulting 
improvement in design quality. Cross-layer approaches can be 
employed both during IC design and during IC operation. 

An example for cross-layer optimization during the design phase 
of an IC is protection against SEUs in logic. This can be achieved 
by hardening all flipflops. Possibly a more efficient cost-benefit 
tradeoff can be achieved by analyzing the design, identifying the 
most mission-critical flipflops (however this term might be 
defined) and then hardening only those. RAZOR or similar 
techniques might be implemented. Alternatively, entire critical 
modules could be replicated (DMR, TMR). 

During IC operation, the operating system could employ various 
techniques for error detection (e.g. computation of checksum) and 
error recovery (e.g. checkpointing and roll-back). There are 
obvious tradeoffs here for the resources and the time required for 
both error detection and recovery. To which degree real-time 
requirements need to be fulfilled plays an important role in 
deciding which techniques to apply.  

A specific example for cross-layer considerations is to consider 
how the execution of different instructions of a processor 
influences the results of circuit timing analysis [27]. This 
knowledge, gained during the design phase, can be used in 
multiple ways: 

 change the design such that the most critical instructions 
become less critical (likely at the expense of IC area) 

 supply the compiler with information about criticality of 
instructions such that this information can be considered 
when deciding which processor instructions to use in 
compiling a program 

 finally, consider making changes to a program during its 
execution if e.g. aging of an IC is sensed and a risk of a 
certain instruction failing soon appears. 

In general, the more information about an application is available, 
the more specific (and therefore cost-efficient) approaches can be 
chosen to improve reliability. Typically, in an embedded system 
such as most automotive ECUs are, the environment is more 
constrained than in a general purpose CPU. If higher layers of the 

design hierarchy have information on (i) usage frequencies, and 
(ii) reliability requirements, then this information may be used for 
design and analysis at the lower layers of design.  

On the other hand, e.g. reliability requirements at the device layer 
will imply thermal constraints (e.g., changes in thermal profile). 
These thermal constraints will in turn imply constraints on higher 
layers, e.g. on task mapping, task migration, and in the future 
dynamic frequency scaling. 

4. RELIABILITY IN THE AUTOMOTIVE 
CONTEXT 
Aging is becoming a major reliability concern especially for 
automotive electronics as the automotive environment poses 
specific challenges. In many consumer markets, electronics-based 
products are used only a few years before they are discarded – 
often before aging degradation becomes relevant. In automotive, 
IC manufacturers need to guarantee specified functionality for 2-5 
years operating time depending on application and temperature 
range and up to 15 years in standby mode, and desire them for 
even longer time to avoid reputational risks. At the same time, 
their ICs are sometimes used in very harsh conditions (e.g. 
temperatures up to 150°C and for special purposes also up to 
175°C at reduced life times), and almost continuous (e.g. taxis 
being used in multiple shifts; battery management electronics in 
electrical vehicles) which amplifies the aging. 

Another major concern are power saving methodologies. Up to 
now power was not a very big issue for automotive electronics 
due to the existence of a strong battery in the car, which was 
mainly used for the ignition process of the combustion engine. 
Early car electronics therefore did not utilize any low power 
design techniques. As the number of ECUs in a modern vehicle is 
now approaching 100, with a further increasing tendency, power 
meanwhile has become an important issue. Low power techniques 
as dynamic voltage scaling, several kinds of sleep and power 
down modes or even module switch-off techniques will be used 
more frequently with the drawback of increased sensitivity to 
reliability effects as described in Section 2 (see also Figure 2). 

On top of that we still have to deal with different voltage domains 
in a car. This increases the design effort for the communication 
between these domains due to low power requirements on the one 
hand and reliability requirements like EMI and aging on the other 
hand. The biggest challenge in future will be to handle the 
complexity of this problem. EMI and ESD up to now have been 
optimized for each chip separately. This methodology will not be 
sufficient for above described systems due to the strong 
interaction of the components. A modeling of each component on 
an abstract level and according high level system simulations are 
mandatory to be successful. 

As discussed previously, there exist different communication 
buses to connect the ECUs. Among these, in particular, the 
FlexRay protocol has gained wide acceptance for safety-critical 
domains as it provides the infrastructure to design reliable 
communication networks. We give some examples [34] of such 
reliability-related features in the following.  

Each FlexRay controller provides two communication channels 
for redundant data transmissions and a hardware bus guardian for 
schedule monitoring. In terms of network topologies the protocol 
offers flexible solutions such as bus, star, and hybrid structures to 
design fault-tolerant and redundant backbone architectures. The 
FlexRay frame contains two CRC fields; an 11-bit header CRC, 



and a separate 24-bit CRC which is calculated for the entire frame 
and able to detect up to five arbitrary bit errors during any frame 
transmissions. Further, eight samples per bit are available and a 
majority voting mechanism enables a filter for suppressing any 
glitches. 

In addition to the above described protocol features, switched 
FlexRay networks and frame packing techniques have been 
recently studied in [37]  and [40] with the goal to isolate babbling 
idiots and short circuits to single branches and to adopt frame 
retransmissions techniques for faulty frames, respectively. 

 

One broad category of design approaches to cope with reliability 
issues could explore tradeoffs between the accuracy of 
computations and the associated computation time. Since most of 
the applications are various controllers (implementing, e.g., 
safety-critical, driver assistance or comfort related functionality), 
control performance depends on (i) the sampling period (which in 
turn depends on the computation time or the time taken to 
compute the control law for each sample), (ii) and the accuracy of 
the computed control signal. Depending on the chosen tradeoff 
between these two at the control design stage, the architecture 
could be suitably designed. For example, during the compilation 
phase, instructions could be chosen whose accuracy/reliability is 
higher but result in a less efficient code that runs slower. 
Alternatively, certain other choices of instructions may result in 
more efficient code (i.e., smaller running time) but the outcome of 
certain instruction execution is unreliable because of the possibly 
one or more reasons that were discussed previously. Such 
reliability-aware compilation techniques have been studied 
recently [35], but they have not been combined with higher levels 
of design abstraction such as the levels at which controller models 
are designed and analyzed.  

Similarly, the above mentioned tradeoff analysis between 
sampling periods of control algorithms and the accuracy of the 
feedback control signal may be used to harden certain instructions 
whose reliable execution is essential for meeting control 
performance objectives. Again, such selective hardening of 
instructions along with custom instruction set design has been 
explored in the past from a reliability perspective [36] but has not 
been combined with model-based (control) algorithm design.  

Finally, such tradeoffs between reliability and computation time 
may also be explored in the context of cache memories. Caches 
occupy more than half of the chip area in today’s microprocessors 
and their reliability is therefore a critical design issue. Since the 
charge stored in a memory cell (such as an SRAM cell) decreases 
with each process generation, the accuracy of the information 
stored in the memory cells is becoming increasingly vulnerable to 
soft errors. Execution correctness characterization (such as those 
based on the AVF) have recently been refined using a number of 
models such as PARMA [38] and MACAU [39]. These models 
capture the effects of soft-errors such as single-bit upsets and 
temporal multi-bit upsets on a cache memory and the impact of 
protection/correction codes on the error incurred by a given 
application.  

It will be meaningful to utilize these models in conjunction with 
code reordering and cache locking techniques. By reordering the 
code of a control application, the lifetime of various variables in 
the cache memory can be modified. On one hand this influences 
the execution time of the code and on the other hand it will 
influence the accuracy of the computed control signals (because 
of the change in the vulnerability of the application to soft-errors). 

Similar tradeoffs may also be explored by locking parts of the 
cache. Cache locking has been explored in the past for improving 
the predictability of real-time applications. While caches result in 
improving the execution time of programs in the average case, 
they also introduce significant variability in the execution time, 
thereby introducing jitter in some cases and making the 
computation of worst-case execution times (WCET) more 
difficult. Cache locking makes the computation of WCET more 
straightforward, thereby increasing the predictability of the 
application at the cost of deteriorating its average case 
performance. However, cache locking has not been commonly 
used for increasing reliability. By suitably analyzing the impact of 
sampling delay and accuracy on the performance of a control 
application, appropriate cache locking mechanisms will be useful 
in the context of designing safety-critical automotive control 
software.  

5. SUMMARY 
Advances in automotive technology are increasingly driven by 
electronics and software. As the amount of electronics in cars 
increases, and automotive electronics moves to advanced process 
nodes of 40nm and below, reliability concerns become a major 
issue. These are amplified in the automotive domain, as it is both 
very cost-sensitive and safety-conscious at the same time. In this 
paper, we describe major reliability challenges and discuss both 
established and emerging techniques to handle them. We 
especially point out the need for cross-layer optimization from 
transistor level all the way to software to conquer reliability 
challenges.  

 

Acknowledgements 
This work was supported partially by the German Research 
Foundation (DFG) as part of the priority program “Dependable 
Embedded Systems” (SPP 1500 – http://spp1500.itec.kit.edu). 

6. REFERENCES 
 

[1] E. Frickenstein. Mikroelektronik fährt BMW 
ConnectedDrive. In 3. Symposium Mikroelektronik, Berlin, 
Germany, September 25-25, 2012. 

[2] S. R. Nassif. Modeling and forecasting of manufacturing 
variation (embedded tutorial). In ASP-DAC, 2001. 

[3] D. Boning and S. R. Nassif. Models of process variations in 
device and interconnect. In Design of High-Performance 
Microprocessor Circuits, A. Chandrakasan, Ed. Piscataway, 
NJ: IEEE Press, 2000. 

[4] D. Blaauw, et al. Statistical timing analysis: from basic 
principles to state of the art. IEEE Transactions on  CAD, 27 
(4): 589-607, Apr. 2008. 

[5] K. Kuhn et al. Managing process variation in Intel’s 45nm 
CMOS technology. In Intel Technology Journal, 12(2): 131-
144, June 2008. 

[6] S. R. Nassif, N. Mehta, and Y. Cao. A resilience roadmap. In 
DATE, 2010. 

[7] S. R. Nassif, V. B. Kleeberger, and U. Schlichtmann. 
Goldilocks failures: not too soft, not too hard. In In Proc. of 
Reliability Physics Symposium, 2011.  



[8] K. Bernstein et al. High-performance CMOS variability in 
the 65-nm regime and beyond. In IBM Journal of Research 
and Development, 50(4.5): 433-449, 2006. 

[9] S. R. Nassif. Modeling and analysis of manufacturing 
variations. In CICC, 2001. 

[10] D. Lorenz, M. Barke, and U. Schlichtmann. Aging analysis 
at gate and macro cell level. In ICCAD, 2010. 

[11] K. N. Tu. Recent advances on electromigration in very-large-
scale-integration of Interconnects. In. J. Appl. Phys, 94(9), 
September 2003. 

[12] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and 
Systems Perspective, Addison-Wesley, 2009. 

[13] Synopsys PrimeTime Advanced OCV Technology 

[14] H. Graeb. Analog Design Centering and Sizing. Springer, 
2007. 

[15] K.-C. Wu and D. Marculescu: Aging-aware timing analysis 
and optimization considering path sensitization. In DATE, 
2011. 

[16] D. Lorenz, M. Barke, and U. Schlichtmann. Efficiently 
analyzing the impact of aging effects on large integrated 
circuits. In Microelectronics Reliability 52(8), 1546-
1552, August 2012. 

[17] M. Alam, B. Weir, and P. Silverman. A study of soft and 
hard breakdown - Part II: Principles of area, thickness, and 
voltage scaling. In IEEE Transactions on Electron Devices,. 
49(2): 239 –246, February 2002. 

[18] R. Degraeve et al. Relation between breakdown mode and 
location in short-channel nMOSFETs and its impact on 
reliability specifications. In  Proc. of Reliability Physics 
Symposium, 2001. 

[19] R. Rodriguez et al. The impact of gate oxide breakdown on 
SRAM stability. In IEEE Electron Device Letters, 23(2), 
September 2002. 

[20] B. Kaczer et al., Gate oxide breakdown in FET devices and 
circuits: from nanoscale physics to system-level reliability. In 
Microelectronics Reliability, 47(4-5), April-May 2007. 

[21] N. P. Carter, H. Naeimi, and D. S. Gardner. Design 
techniques for cross-layer resilience. In DATE, 2010. 

[22] Y.-H. Lee et al. Prediction of logic product failure due to 
thin-gate oxide breakdown. In Proc. of Reliability Physics 
Symposium, 2006. 

[23] M. A. Alam et al. Statistically independent soft breakdowns 
redefine oxide reliability specifications. In  Proc. of Int. Elec. 
Dev. Meeting (IEDM), 2002. 

[24] H. Matsuyama et al.: Investigation of stress-induced voiding 
inside and under vias in copper interconnects with “wing” 
pattern. In Proc. of Reliability Physics Symposium, 2008. 

[25] J. Henkel et al. Design and architectures for dependable 
embedded systems. International Conference on 
Hardware/Software Co-design and System Synthesis 
(CODES+ISSS), 2011. 

[26] A. Herkersdorf et al. Cross-layer dependability modeling and 
abstraction in systems on chip. In Workshop on Silicon 
Errors in Logic - System Effects (SELSE), 2013. 

[27] V. B. Kleeberger et al. Program-aware circuit level timing 
analysis. In International Symposium on Integrated Circuits 
(ISIC), 2011. 

[28] M. Choudhury et al. Analytical model for TDDB-based 
performance degradation in combinational logic. In IEEE 
Design, Automation, and Test in Europe (DATE), 2010. 

[29] R. Hartl et al. Architectural vulnerability factor estimation 
with backwards analysis. In 13th Euromicro Conference on 
Digital System Design, 2010. 

[30] S. A. Seshia, W. Li, and S. Mitra. Verification-guided soft 
error resilience. In DATE 2007. 

[31] D. Ernst et al. RAZOR: A low-power pipeline based on 
circuit-level timing speculation. In Micro-36, 2003. 

[32] M. Wirnshofer et al. On-line supply voltage scaling based on 
in-situ delay monitoring to adapt for PVTA variations. In 
Journal of Circuits, Systems, and Computers, 21(8), 2012. 

[33] S. Mukerjee et al. Measuring architectural vulnerability 
factors. In IEEE Micro, 23(6): 70-75, 2003. 

[34] Rausch, M.. FlexRay: Grundlagen, Funktionsweise, 
Anwendung. In Carl Hanser Verlag GmbH & CO. KG. 

[35] S. Rehman et al. Reliable software for unreliable hardware: 
Embedded code generation aiming at reliability. In CODES 
+ ISSS, 2011. 

[36] U. D. Bordoloi et al. Reliability-aware instruction set 
customization for ASIPs with hardened logic. In RTCSA, 
2012. 

[37] B. Tanasa et al. Reliability-aware frame packing for the static 
segment of FlexRay. In International Conference on 
Embedded Software (EMSOFT), 2011. 

[38] J. Suh, et al. Soft error benchmarking of L2 caches with 
PARMA. In SIGMETRICS, 39(1),  2011. 

[39] J. Suh, M. Annavaram, and M. Dubois. MACAU: A Markov 
model for reliability evaluations of caches under single-bit 
and multi-bit upsets. In HPCA, 2012. 

[40] P. Milbredt et al. Switched FlexRay increasing the effective 
bandwidth and safety of FlexRay networks. In 15th 
International Conference on Emerging Technology and 
Factory Automation (EFTA), 2010. 

 

 


