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ABSTRACT
Approximate computing is an emerging design paradigm that
enables highly efficient hardware and software implementa-
tions by exploiting the inherent resilience of applications to
in-exactness in their computations. Previous work in this area
has demonstrated the potential for significant energy and per-
formance improvements, but largely consists of ad hoc tech-
niques that have been applied to a small number of applica-
tions. Taking approximate computing closer to mainstream
adoption requires (i) a deeper understanding of inherent ap-
plication resilience across a broader range of applications (ii)
tools that can quantitatively establish the inherent resilience of
an application, and (iii) methods to quickly assess the poten-
tial of various approximate computing techniques for a given
application. We make two key contributions in this direction.
Our primary contribution is the analysis and characterization
of inherent application resilience present in a suite of 12 widely
used applications from the domains of recognition, data min-
ing, and search. Based on this analysis, we present several new
insights into the nature of resilience and its relationship to var-
ious key application characteristics. To facilitate our analysis,
we propose a systematic framework for Application Resilience
Characterization (ARC) that (a) partitions an application into
resilient and sensitive parts and (b) characterizes the resilient
parts using approximation models that abstract a wide range
of approximate computing techniques. We believe that the
key insights that we present can help shape further research in
the area of approximate computing, while automatic resilience
characterization frameworks such as ARC can greatly aid de-
signers in the adoption approximate computing.
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B.7.0 [INTEGRATED CIRCUITS]: General
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Algorithms, Design
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1. INTRODUCTION
Inherent application resilience is the property of an appli-

cation to produce acceptable outputs despite some of its un-
derlying computations being incorrect or approximate. It is
prevalent in a broad spectrum of applications such as digital
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signal processing, image, audio, and video processing, graph-
ics, wireless communications, web search, and data analytics.
Emerging application domains such as Recognition, Mining
and Synthesis (RMS) [1], which are expected to drive future
computing platforms, also exhibit this property in abundance.
The inherent resilience of these applications can be attributed
to several factors: (i) significant redundancy is present in large,
real-world data sets that they process, (ii) they employ com-
putation patterns (such as statistical aggregation and iterative
refinement) that intrinsically attenuate or correct errors due
to approximations, and (iii) a range of outputs are equivalent
(i.e., no unique golden output exists), or small deviations in
the output cannot be perceived by users.

For inherently resilient applications, functionality is defined
on a continuous scale of output quality. Therefore, applica-
tions should produce outputs of acceptable quality rather than
a unique “correct” output. Approximate Computing is a new
design approach that leverages inherent resilience through op-
timizations that trade off output quality for improved perfor-
mance, energy efficiency or other metrics. Effectively, approx-
imate computing techniques relax the traditional requirement
of exact (numerical or Boolean) equivalence between the spec-
ification and implementation.

Several previous efforts have explored approximate comput-
ing in software [8,9,15] and hardware [2-8,18,19], with promis-
ing results. Software techniques typically improve performance
by skipping computations or reducing the use of costly opera-
tions such as inter-thread synchronization, whereas hardware
techniques modify the design at various levels of abstraction
to introduce tradeoffs between output quality and efficiency.
These efforts have established the significant potential of ap-
proximate computing, and there is increasing interest in its use
with the growth in inherently resilient applications. However,
several challenges still need to be addressed before approxi-
mate computing can move from its initial stages of exploration
to broader adoption.

First, the property of inherent application resilience and the
various application characteristics that contribute to it need
to be understood comprehensively across a broader spectrum
of applications. Second, designers require tools that quantita-
tively evaluate the resilience of a given application, and identify
the parts of the application that are amenable to approximate
computing. Finally, there is a need for a systematic method-
ology that can help designers to quickly evaluate various ap-
proximate computing techniques for a given application, or a
given technique across a wide range of applications.

In this work, we make two key contributions to broaden the
scope and applicability of approximate computing. The first
contribution of our work is the analysis and characterization of
inherent application resilience present in a suite of 12 widely
used recognition, mining and search applications. We demon-
strate the high degree of resilience existing in these applica-
tions that emphasizes the scope and potential of approximate
computing. We present several new insights into the nature
of application resilience and its relationship to various appli-
cation characteristics. These insights serve as guidelines for
future research in the area of approximate computing.

Our second contribution is an Application Resilience Char-
acterization (ARC) framework that (i) partitions a given appli-



Figure 1: Various sources of inherent application resilience

cation into potentially resilient parts, which may be subject to
approximate computing, and sensitive parts, which may not,
and (ii) characterizes the potentially resilient parts in greater
detail to evaluate the applicability of various approximate com-
puting techniques. For this purpose, we propose the use of “ap-
proximation models” that efficiently abstract a wide range of
approximate computing techniques to enable their quick eval-
uation. The proposed ARC methodology is realized using the
valgrind dynamic binary instrumentation framework. We be-
lieve that tools such as the ARC framework will greatly aid
designers in adopting approximate computing as an additional
avenue for design optimization.

The rest of the paper is organized as follows: We present
a qualitative analysis of application resilience in Section 2.
We describe related efforts and place our contribution in their
context in Section 3. The ARC framework is described in Sec-
tion 4 and its implementation is detailed in Section 5. Section 6
describes various insights derived from the application of the
ARC framework to our suite of benchmarks.

2. INHERENT APPLICATION RESILIENCE
Inherent Application Resilience is defined as the property

of an application to produce acceptable outputs in spite
of some of its underlying computations being incorrect (or
approximate). The various sources that contribute to inherent
application resilience are shown in Figure 1, and can be
classified into three categories.
Inputs: These applications process input data that is noisy
and redundant. The robustness to noise in the input data
and the fact that similar data is processed several times
(redundancy), often manifests as resilience to approximations.
Outputs: There does not exist a unique golden output,
i.e., a range of outputs are considered equally acceptable.
Moreover, these applications generate output for consumption
by humans, whose perceptual limitations imply that minor
variations that cannot be discerned are acceptable.
Computation Patterns: These applications employ statis-
tical computations that result in attenuation or cancellation of
errors. Moreover, due to the iterative nature of computations
in these applications, errors due to approximations in one
iteration can potentially get healed/recovered in subsequent
iterations.

3. RELATED WORK
Approximate computing has been applied to the design of

hardware building blocks such as arithmetic units and en-
tire datapaths, either through voltage overscaling [2, 3, 4] or
through logic simplification [5, 6]. A systematic approach to
apply approximate computing to hardware design at various
levels of design abstraction was presented in [7, 8]. The ap-
plication of approximate computing to programmable proces-
sors has been recently explored [9]. Approximate computing
techniques in software [10, 11, 12] have been proposed to im-
prove the performance and parallel scalability of applications
on general-purpose computing platforms. These efforts evalu-
ated specific approximate computing techniques for a limited
set of applications, leaving open the question of whether ap-
proximate computing is applicable in a broader context.

Approximate computing is related to, but distinct from
error-resilient computing, which seeks to lower the overheads

Figure 2: Overview of the ARC framework

of fault-tolerance from hardware defects or transient faults in
hardware, by exploiting error masking at the application level,
or by using low-cost algorithmic fault tolerance [13]. In ap-
proximate computing, “errors” are created intentionally, and
are typically predictable (and can therefore be modeled). Au-
tomatic error injection frameworks that study the robustness
of applications under faults have been extensively studied in
the fault tolerance community [14]. A recent effort [15] em-
ployed an automatic error injection framework to study the
resilience of signal processing applications using random bit
flips. These techniques are inadequate for evaluating inher-
ent application resilience, since they either (i) inject arbitrary
faults (e.g., random bit-flips), which often do not reflect the
nature of approximate computing techniques, or (ii) consider
any deviation from the golden numerical output of the program
as unacceptable, oblivious to the continuum of output quality
that we are concerned with.

The ARC framework proposed in this paper provides design-
ers with a tool set to easily evaluate approximate computing
for a new application. Additionally, the insights derived from
our characterization of a broad range of applications provide
guidelines for further efforts in the area of approximate com-
puting.

4. APPLICATION RESILIENCE CHARAC-

TERIZATION FRAMEWORK
In this section, we describe the proposed Application Re-

silience Characterization (ARC) framework that can be used to
quantitatively evaluate the inherent resilience of applications.
The framework, shown in Figure 2, consists of two major steps:
(i) identification of potentially resilient computations and (ii)
characterization of these computations through approximation
models.

The inputs to the framework are the application program, a
representative input data set and a user-defined quality eval-
uation function. The quality evaluation function processes
the output of the application and evaluates the output qual-
ity as a numerical value. The quality evaluation function is
application-specific and must be provided by the user; how-
ever the ARC framework itself is general. The outputs of the
ARC framework include a list of the resilient computations in
the application and the results of evaluating various approxi-
mation models on the resilient computations.

The overall approach taken in both steps of the ARC frame-
work is to utilize dynamic binary instrumentation to introduce
random errors or controlled approximations into specific com-
putations as the application executes, and observe the result-
ing application behavior. We next describe the two steps of
the ARC framework in detail.



4.1 Resilience Identification
Even the most resilient applications contain both resilient

and sensitive computations. Approximate computing tech-
niques should be targeted towards resilient computations while
avoiding the sensitive ones. The first step of the ARC frame-
work identifies potentially resilient computations by using Dy-
namic Binary Instrumentation (DBI) to inject errors into the
results of computations as the application executes.

Although ARC uses software implementations of applica-
tions on a general-purpose platform (due to their widespread
availability), our intent is really to evaluate the resilience of the
algorithmic computations rather than all instructions in the
software implementation. Therefore, we first partition the in-
structions in the program into computation kernels as follows.
We consider innermost loops that account for over a specified
fraction of the program’s execution time (we used 1% in our
experiments) as atomic kernels. As the program executes over
the provided input data set, we add random errors to the pro-
gram variables that are modified in a kernel and used outside it,
i.e., the kernel’s outputs. If the application crashes or hangs, or
produces an output that does not meet a relaxed output qual-
ity criterion, we mark the kernel as sensitive; otherwise, it is
marked as potentially resilient. We use unconstrained random
errors and a relaxed output quality criterion since the objective
of this step is only to identify potentially resilient kernels; in
the second step of the ARC framework, we use approximation
models and the user-provided quality evaluation function to
further evaluate and characterize these kernels.

For completeness, each instruction that lies outside the pro-
cessed loops is considered as a separate kernel. However, in our
experiments, virtually all resilient computations were found to
be kernels generated from loops.

4.2 Resilience Characterization
Once potentially resilient kernels are identified in the first

step of the ARC framework, the next step characterizes their
resilience to provide insights into the applicability of various
approximate computing techniques. The resilience characteri-
zation step uses the same strategy as the identification step i.e.,
execute the application under DBI on the provided input data,
inject errors in the kernels, and evaluate application behavior.
However, there are two key differences. First, the errors intro-
duced in the kernels are derived from approximation models
that model the effects of various approximate computing tech-
niques. The key objective of the approximation model is to (i)
quantify the resilience using generic attributes of the approxi-
mations such as error probability, magnitude and predictability
of errors introduced, and (ii) evaluate the impact of a single or a
class of approximate computing techniques on the application
output quality. Second, we use the quality evaluation func-
tion provided by the user. For a given approximation model,
a quality profile is generated that characterizes the application
output quality as a function of the model’s parameters.

The approximation models used for resilience characteriza-
tion are described in more detail in the following subsections.

4.2.1 High-level Approximation Models

Figure 3: Statistical approxi-
mation model

Any approximate com-
puting technique can be
thought of as introducing
errors in the computations
that are being approxi-
mated. However, these er-
rors are usually constrained
by design such that the
application output quality
is not drastically impacted.
To quantify an applica-
tion’s resilience at a high
level (i.e., independent of
any specific approximate
computing technique), we propose a statistical approximation

model, in which the errors produced due to approximate com-
puting techniques are modeled using a statistical distribution
(Figure 3). The statistical approximation model is parameter-
ized by three high level parameters: error probability, error
magnitude and error predictability. Error probability deter-
mines the rate at which errors are produced by the approxi-
mation, and is denoted by the area under the statistical dis-
tribution (not including the error-free case). The error mag-
nitude and error predictability constrain the numerical value
of the error and correspond to the mean and variance of the
error distribution. The ARC framework employs this model
to generate a quality profile of the application as a function of
these parameters. This model is very useful in the early stages
of the design cycle, as it gives insights into the resilience of
the application and helps narrow down design choices without
the significant effort needed to implement various approximate
computing techniques.

4.2.2 Technique-specific Approximation Models
The statistical approximation model proposed to quantify

resilience may not adequately reflect a specific approximate
computing scheme. Therefore, we propose three approxima-
tion models that abstract important classes of approximate
computing techniques.
Approximation of Arithmetic Operations

Figure 4: Bit error profile for
an approximate adder [16]

Many approximate com-
puting techniques are ap-
plied to arithmetic units
such as adders [17], mul-
tipliers etc. We propose
the bit error profile model
to represent the effect of
these approximations. A
bit error profile specifies
the probability that each
bit in the output of an
arithmetic operation has an
error. During resilience
characterization with this model, the outputs of arithmetic op-
erations in resilient kernels are modified in accordance with the
chosen bit error profiles. For example, the bit error profile of an
approximate adder proposed in [16] is presented in Figure 4. A
bit error profile model may optionally specify conditional error
probabilities based on the values of the operation’s inputs.
Approximate data representation
Some approximate computing techniques exploit application
resilience by employing approximate data representations. Bit
truncation is one such commonly employed technique, where
approximations are introduced by reducing the data width used
to represent variables in hardware or software. Approximate
data representations may also utilize different number systems
such as logarithmic and residue number systems. To evaluate
such techniques, we transform the kernel’s inputs into the cho-
sen approximate data representation, perform all kernel com-
putations in the chosen representation, and transform the out-
put back to the original representation.
Algorithm level approximations
In this model, we consider approximate computing techniques
that modify the algorithm being implemented at a coarser
granularity e.g., an iteration of a loop might get skipped. We
model the impact of these techniques as computation skipping
- the kernel’s execution is skipped with a specified probability.

5. EXPERIMENTAL METHODOLOGY
In this section, we describe the experimental setup used to

implement and evaluate the proposed ARC framework. The
basic functionality of ARC framework is implemented using
valgrind, a popular dynamic binary instrumentation frame-
work. valgrind enables easy and efficient instrumentation of
a program by first translating it into an “Intermediate Rep-
resentation”(IR) that is processor independent. Any tool im-



Table 1: The applications and the data-sets used to evaluate the proposed resilience characterization methodology

Application Algorithm % Runtime
in resilient
kernels

dominant kernel (Contribution
to runtime)

Document Search Semantic Search Index 90 Dot Product Computation (86)
Image Search Feature Extraction 78 Dot Product Computation (71)
Hand Written Digit Classifi-
cation

Support Vector Machines (SVM):
Testing

94 Dot Product Computation (89)

Hand Written Digit Model
Generation

Support Vector Machines (SVM):
Training

97 Dot Product Computation (93)

Eye Detection Generalized Learning Vector Quan-
tization (GLVQ): Testing

89 Distance Computation (83)

Eye Model Generation Generalized Learning Vector Quan-
tization (GLVQ): Training

96 Distance Computation (92)

Image Segmentation K-means Clustering 74 Distance Computation(66)
Census Data Modeling Neural Networks: Multi Layer Back

Propagation
62 Matrix Vector Multiplication (42)

Census Data Classification Neural Networks: Forward Propa-
gation

79 Matrix Vector Multiplication (64)

Nutrition and Health Infor-
mation Analysis

Logistic Regression 65 Dot Product Computation (48)

Digit Recognition K-Nearest Neighbors 96 Distance Computation (92)
Online Data Clustering Stream Cluster 77 Distance Computation (68)

plemented using valgrind is allowed to instrument this IR and
the instrumented IR is then executed on the host machine. By
implementing the ARC framework using valgrind, we are able
to easily apply the framework to any application without the
need to modify the application source code.

We apply the ARC framework on a benchmark suite con-
sisting of 12 widely used recognition, data mining and search
applications, along with representative input data. All the ap-
plications are annotated with appropriate quality evaluation
functions that translate application outputs into a numerical
measure of output quality. The applications and the underly-
ing algorithms of the benchmark suite are presented in Table 1.
A detailed explanation of the applications and datasets, and
the results of resilience characterization are presented in the
supplemental section.

6. RESULTS AND INSIGHTS
We characterized the resilience of the applications in the

benchmark suite using the ARC framework and present the
results in this section. In the first step of the framework, we
identify the resilient kernels of the application. The results for
this step are presented in Table 1, column 3. It can be seen
that, across all the applications in the benchmark suite, the
fraction of the application’s run-time that is spent in resilient
kernels ranges from 67% to 96%. This demonstrates the high
degree of inherent resilience present in these applications and
underscores the potential for approximate computing. In most
of these applications, there exists a single compute kernel that
dominates the execution time. We present the dominant ker-
nels for the benchmark suites in column 4 of the Table 1, and
their contribution to program execution time.

On average, these applications spend 83% of their run-time
in resilient kernels, out of which 74% belongs to the dominant
kernel. Therefore, the bulk of the resilience can be exploited
by focusing approximate computing design efforts on the domi-
nant kernel. In order to apply suitable approximate computing
techniques, it is important to understand application resilience
in greater detail. While the raw data (results of resilience char-
acterization) are presented in the supplemental section, we de-
vote the remainder of this section to presenting several insights
that we derived from our experiments.

6.1 Granularity of Approximation Matters
The efficiency of approximate computing techniques greatly

depends on how the application is realized (dedicated hardware
vs. software on a programmable processor). For example, con-
sider an application with vector dot product as the dominant

kernel. The dot product kernel may be resilient in the sense
that controlled approximations to its result lead to acceptable
program outputs. A hardware module that implements dot
products in an approximate manner [4] may therefore be uti-
lized. However, realizing the dot product kernel on a general
purpose processor introduces instructions for loop control and
pointer arithmetic. Introducing approximations at the granu-
larity of instructions in this software implementation may lead
to a very different conclusion about application resilience.

To study this effect, we expanded all loop kernels that were
identified by ARC into machine instructions and performed
error injection at the instruction level. On an average, we
observed that the scope of approximate computing reduces by
a factor of 57% when approximations are applied to individual
instructions within kernels. This observation is consistent with
prior efforts that have characterized application resilience at
the granularity of processor instructions [18, 19]. Therefore, it
is important to evaluate inherent application resilience in the
appropriate implementation context.

6.2 Fail Small or Fail Rare
Consider the quality profile shown in Figure 5 for the im-

age search application. This quality profile was generated us-
ing the statistical approximation model, with varying values of
error probability (error rate), error magnitude (error mean),
and error predictability (error variance). The quality profile
is presented in the form of a 3-D slice plot, where each slice
depicts the output quality for a given error rate (x-axis) and
each block in a slice represents the output quality for a specific
error mean (y-axis) and variance (z-axis). The output quality
is color coded such that white regions represent no degrada-
tion in the output quality and darker regions represent higher
degradation. In the case of image search, the output quality of

Figure 5: Resilience characterization of image search

is measured as the number of correct search results (out of the
top 25) that match the reference golden output. It can be seen



from the white regions in Figure 5 that the output quality of
the application remains acceptable in the following two cases:

• Fail small: If the magnitude of the errors introduced by
the approximations remains small, the application can
tolerate even very frequent errors (left bottom regions in
the left most slice).

• Fail rare: An approximation can introduce errors of ar-
bitrarily high magnitude and still result in acceptable
output quality as long as the errors are introduced very
rarely (right most slice in the slice plot).

This insight of “fail small or fail rare” was observed across
all applications in the benchmark suite. Therefore, designers
should aim to develop approximation schemes that are con-
strained in either the rate or the magnitude of the approxima-
tions introduced.

6.3 Computation Patterns that Enhance Re-
silience

As described in Section 2, computation patterns are an im-
portant factor that contribute to application resilience. To
quantitatively study this phenomenon, we consider the eye de-
tection application (using the GLVQ algorithm) and compare

(a) GLVQ Testing (b) GLVQ Training

Figure 6: Impact of iterative computations on application re-
silience for eye detection application

the resilience of the training phase that builds the eye detec-
tion model with the testing phase that employs the trained
model to detect eyes. Although the computation hot spot is
the same in both parts, i.e, distance computation, the training
phase employs an iterative convergence algorithm that keeps
refining the model in each iteration, while the testing phase
does not. The comparison of the quality profiles is presented in
Figure 6. It can be seen that for the same point in the approxi-
mation space, the training phase that employs iterative compu-
tations is more resilient than the testing phase, demonstrating
the contribution of iterative computations to resilience. Sim-
ilar characteristics were observed in other recognition appli-
cations such as handwriting digit recognition (Support Vector
Machines), census data analysis (Neural Networks) that con-
tain training and testing phases. The impact of computation

Figure 7: Impact of relative computations on resilience (Doc-
ument search application)

patterns on resilience is observed in a different form in the doc-
ument search application (implemented using Semantic Search
Indexing). In this application, the input search query and the
text documents in the database are represented in terms of vec-
tors and the score of each document is calculated by computing
the dot product of its vector with the input query. In the re-
silience characterization of this application, we observed that

if the variance of the errors introduced due to approximations
is constrained to a small value and the errors are introduced
in all the computations (rate = 1), then the magnitude of er-
rors can be arbitrarily large without the application quality
being impacted. This is because, if errors of similar magnitude
are introduced in all the computations, the numerical order of
the document scores remains unchanged. This can be seen in
the bottom region of the first slice shown in Figure 7. The
resilience in such applications can be exploited effectively by
constraining the variability of errors introduced due to the ap-
proximations.

6.4 Scale of Data Matters
Resilience is a function of scale, since redundancy in

the input data is one of the major contributors to re-
silience. In this section, we analyze the impact of the
scale of input data on application resilience. We consider
the training phase of hand-written digit recognition, and
perform experiments to evaluate its resilience by varying
the size of the input data. The results of this evalua-
tion are presented in Figure 8. It can be seen that the

Figure 8: Impact of size of in-
put data

resilience of the application
improves, as denoted by the
lower degradation in the
output quality, as we in-
crease the number of sam-
ples in the training data
set. This result quanti-
tatively demonstrates the
impact of redundancy in
input data on application
resilience. It is essential
that the design of approxi-
mate computing techniques
and their evaluation be per-
formed in the context of
representative input data
scales.

6.5 Impact of Quality Metric
Inherent application resilience stems from the fact that appli-

cation functionality is defined on a continuous scale of output
quality. For many applications, there exists a choice between
multiple metrics to measure output quality. We performed ex-

(a) (b)

Figure 9: Impact of quality metric: (a)mean centroid distance
vs. (b)percentage of mis-clustered points

periments to study how the choice of quality metric impacts the
degree of resilience. We consider the image segmentation ap-
plication implemented using k-means clustering, and compare
two commonly used quality metrics, namely (1) percent mis-
clustered points and (2) mean centroid distance. The results
are presented in Figure 9 in the form of a slice plot with white
regions representing the acceptable quality levels. We normal-
ized the ranges of these quality metrics such that degradation
in output quality of less than 1% could be deemed acceptable.
It can be seen that the quality profile corresponding to the
mean centroid distance metric has a significantly larger white
region (acceptable output quality), suggesting that the applica-
tion is able to tolerate more aggressive approximation if mean
centroid distance is the quality metric rather than percentage
of mis-clustered points. These results demonstrate that, in ad-
dition to the computation patterns and input data, the context
in which the application is used (encoded in the quality metric)
significantly impacts resilience.



6.6 Application-aware Approximation

Figure 10: Impact of applica-
tion semantics

Approximate computing
techniques can be imple-
mented and applied in
an application-aware or
application-agnostic man-
ner. In order to compare
the effectiveness of these
techniques, we consider
the image segmentation
application implemented
using k-means clustering,
and consider 2 types of
approximations, one that
skips computations ran-
domly and the other that
skips computations in an application-aware manner using
a technique called early termination [20]. The comparison,
presented in Figure 10, shows that the early termination
technique results in much better output quality compared
to random computation skipping for the same number of
computations being affected. Therefore, it is important
to understand the semantics of the application and apply
approximation techniques accordingly to optimally exploit
inherent resilience.

6.7 Synergy between Approximation Tech-
niques

Figure 11: Synergy between
algorithm level and arithmetic
operation approximations

Once the inherent re-
silience of an application is
established, it can be ex-
ploited using several differ-
ent approximate comput-
ing techniques. We per-
formed experiments to an-
alyze interactions between
approximation techniques
that are simultaneously ap-
plied to an application.
We consider hand-written
digit recognition using the
SVM algorithm and simul-
taneously apply application
aware computation skip-
ping at the algorithm level
and a voltage scaled implementation [4] of the dot product
computation. It can be observed that these two approxima-
tion techniques can be employed in a synergistic manner, i.e.
the approximations at the algorithm level can be applied on
top of approximations in arithmetic operations without fur-
ther degrading the output quality represented by vertical and
horizontal parts of the contours. However, in some regions
(curved portions of the contours), employing both techniques
together results in worse output quality compared to a sin-
gle technique. Therefore, designers should consider combining
multiple approximate computing techniques to maximally ex-
ploit application resilience.

In summary, we have characterized the resilience of a broad
set of applications using the proposed ARC framework and
quantitatively established the high degree of resilience present
in a broad range of applications. We presented key insights
that quantitatively evaluate the relationship between resilience
and various application characteristics such as computation
patterns, input data, quality metric etc.

7. CONCLUSIONS
In this paper, we proposed an Application Resilience Char-

acterization (ARC) framework for the analysis and character-
ization of resilience. We implemented the ARC framework
using the dynamic binary instrumentation tool valgrind and
applied it to a suite of 12 recognition, mining and search appli-
cations. We quantitatively established the high degree of re-

silience present in these applications, demonstrating the scope
for approximate computing techniques. We performed exper-
iments to explore the relationship between inherent resilience
and various application characteristics such as computation
patterns, scale of input data, quality metric etc. We believe
that these key insights, along with the ARC framework, can
greatly aid designers in the adoption of approximate comput-
ing.
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SUPPLEMENTAL SECTION

A. BENCHMARK SUITE: OVERVIEW AND

RESULTS

A.1 Document Search

• Algorithm: Semantic Search Index

• Source code: An industry scale implementation developed
at NEC Labs, America [21]

• Data set: A subset of Wikipedia pages, America [21]

• Dimensionality: 100

• No of pages to search: 1863573

• Quality function: No of correct results in top 25 results

• Description: This application takes a text query as in-
put and gives out the top 25 documents based on their
similarity to the input query. The input query is first
transformed into a vector of dimensionality 100. The
application contains the vector representations of all the
documents in the wiki sample. The dot product of the
query vector with a document vector computes the simi-
larity score between them. The documents are then sorted
based on their similarity score and the top 25 documents
are considered for our quality evaluation. The quality
profile of this application is shown in Figure 7

A.2 Image Search

• Algorithm: Feature Extraction

• Source code: An industry scale implementation developed
at NEC Labs, America [21]

• Data set: A database for 7700 pre-classified images taken
from NEC Labs, America [21]

• Dimensionality: 128

• No of image categories: 765

• Quality function: No of correct results in top 25 results

• Description: This application takes a query image as in-
put, analyzes its content and outputs image categories
sorted based on their similarity to the query image. In
this application, the image is first converted into a fea-
ture map that is then classified using an SVM classifier
to determine the category the image is closest to. We
consider the feature extraction step for resilience analy-
sis. The quality profile of this application is presented in
Figure 5

A.3 Handwritten Digit Recognition and Model
Generation

• Algorithm: Support Vector Machines (Training and Test-
ing)

• Source code: SVM light [22]

• Data set: MNIST database [23]

• Dimensionality: 784

• No of output classes: 10

• Training data size: 10,000

• Testing data size: 60,000

• Quality function: classification accuracy calculated in
terms of percentage of correctly classified points

• Description: This application consists of two phases. The
training phase generates the model of classification using
a labeled training data. This phase of the application
is formulated as a quadratic optimization problem and
can be solved using off-the-shelf solvers [22]. The model

generated from the training phase is used in testing to
classify a new unlabeled data point. The quality profile
of training and testing are shown in Figures 12 and 13
respectively.

Figure 12: Hand written digit recognition: SVM Training

Figure 13: Hand written digit modeling: SVM Testing

A.4 Image Segmentation

• Algorithm: K-means Clustering

• Data set: Berkeley image segmentation dataset [24]

• Source code: An open source implementation taken from
PHOENIX [25]

• Dimensionality: 3 (red, green and blue pixel values)

• No of clusters: 4

• Data size: 154401

• Quality function: Percentage of mis-clustered points and
mean centroid distance

• Description: This application takes an image as input and
segments it based on the Red, Green and Blue compo-
nents of the pixels. The algorithm start off with random
cluster centroids and assigns the pixels to centroids they
are closest to based on Euclidean distance. The centroids
are then recalculated as the mean of the points assigned
to them. These two steps are performed iteratively un-
til a convergence criterion is satisfied. The quality profile
of this application for two quality metrics, mean centroid
distance and % mis-clustered points is presented in 14 and
15.



Figure 14: Image segmentation with mean centroid as quality
metric: K-means Clustering

Figure 15: Image segmentation with percentage of mis-
clustered points as quality metric: K-means Clustering

A.5 Eye Detection (Model Generation and Clas-
sification)

• Algorithm: Generalized learning vector quantization
(Training and Testing)

• Source code: An industry scale implementation developed
at NEC Labs, America [21]

• Data set: Set of eye and non-eye images from NEC Labs,
America [21]

• Dimensionality: 500

• No of output classes: 2

• Training data size: 6000

• Testing data size: 1467

• Quality function: Classification accuracy represented in
terms of percentage of correctly classified points.

• Description: This application consists of training and test-
ing phases. In the training phase, the classification model
is generated using a set of reference vectors which are up-
dated using a labeled training data set. For each training
vector, the closest reference vector from the same cate-
gory as the training vector is modified such that it moves
closer to the training vector. The closest reference vectors
from the other categories are updated such that they move
away from the training vector. The testing phase takes an
unlabeled data as input and computes its distance from
all the reference vectors. The input data is then labeled
with the category of the reference vector it is closest to.
The quality profiles of the training and testing phases of
this application are depicted in Figures 6b and 6a

A.6 Census Data Classification (Model Genera-
tion and Classification)

• Algorithm: Neural Networks (Training and Testing)

• Source code: Single thread version from Mapreduce
benchmark suite [26]

• Data set: UCI census database [27]

• Dimensionality: 14

• No of output classes: 2

• training data size: 32,560

• testing data size: 16,282

• Quality function: Classification accuracy represented in
terms of percentage of correctly classified points.

• Description: This application employs Neural Networks
to estimate the salary of a person based on the informa-
tion in the census database. A 3-layer neural network
is trained using back propagation algorithm to determine
the weights of connections in neural network. In the test-
ing phase, the feed forward algorithm is employed on the
trained network to determine a person’s salary. The qual-
ity profiles for the back propagation (training) and for-
ward propagation (testing) parts of this application are
presented in Figures 16 and 17

Figure 16: Census data modeling: Neural Networks Back Prop-
agation

Figure 17: Census data analysis: Neural Networks Forward
Propagation

A.7 Nutrition and Health Information Analysis

• Algorithm: Logistic Regression

• Source code: Single thread version from Mapreduce
benchmark suite [26]

• Data set: National Health and Nutrition Examination
Survey

• Data size: 17000

• Dimensionality: 15

• No of output classes: 2

• Quality function: Percentage classification accuracy

• Description: In this application, logistic regression is used
to assess the likelihood of a disease or health condition
as a function of risk factors. We use a quadratic op-
timization based implementation that generates a linear



model to minimize the error on the labeled training data.
The dot product operation between the training data and
the model is the dominant kernel computation in the
quadratic optimization. The quality profile of this ap-
plication for approximations in the dot product kernel is
presented in Figure 18

Figure 18: Health and nutritional information analysis: Logis-
tic Regression

A.8 Digit Recognition

• Algorithm: K-Nearest Neighbors

• Source code: Self implementation

• Data set: UCI digit recognition database [27]

• Dimensionality: 64

• Training data size: 3823

• Testing data size: 1797

• No of output classes: 10

• Quality function: Percentage classification accuracy

• Description: This application uses the K-nearest neigh-
bors algorithm to recognize digits from images. The algo-
rithm computes the Euclidean distance between the test
image and all training images. The training images are
ranked based on the proximity to the test image, and the
top K among them are identified. A majority vote among
these nearest training images determines the classifica-
tion. The quality profile, shown in Figure 19, illustrates
the significant amount of resilience present in the distance
computations.

Figure 19: Digit recognition: K-Nearest Neighbors

A.9 Online Data Clustering

• Algorithm: Streamcluster

• Source code: Parsec benchmark suite [28]

• Data set: simmedium dataset provided with Parsec [28]

• Dimensionality: 64

• Data size: 8192

• No of output classes: Adaptive according to the input
data

• Quality function: Mean centroid distance

• Description: Streamcluster finds the optimal number of
clusters from a stream of input points where each in-
put point is assigned to the closest cluster in terms of
Euclidean distance from the cluster centroid. For each
incoming set of points, the application employs heuris-
tics [28] to determine the optimal number of clusters. The
distance computation kernel is considered for approxima-
tion and the corresponding quality profile is presented in
Figure 20.

Figure 20: Online data clustering: Streamcluster


