
CPS Foundations ∗

Edward A. Lee
EECS Department

University of California, Berkeley
Berkeley, CA, USA

eal@eecs.berkeley.edu

ABSTRACT
This paper argues that cyber-physical systems present a sub-
stantial intellectual challenge that requires changes in both
theories of computation and dynamical systems theory. The
CPS problem is not the union of cyber and physical prob-
lems, but rather their intersection, and as such it demands
models that embrace both. Two complementary approaches
are identified: cyberizing the physical (CtP) means to endow
physical subsystems with cyber-like abstractions and inter-
faces; and physicalizing the cyber (PtC) means to endow
software and network components with abstractions and in-
terfaces that represent their dynamics in time.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
real-time and embedded systems; F.1.1 [Computation by
Abstract Devices]: Models of Computation—cyber-physical
systems; I.6.5 [Simultation and Modeling]: Model Devel-
opment[models cyber-physical interactions]; J.7 [Computers
in Other Systems][computer-based systems]

General Terms
Design, Theory

Keywords
Cyber-physical systems, embedded systems

∗This work was supported in part by the Center for Hy-
brid and Embedded Software Systems (CHESS) at UC
Berkeley, which receives support from the National Science
Foundation (NSF awards #0720882 (CSR-EHS: PRET) and
#0720841 (CSR-CPS)), the U. S. Army Research Office
(ARO #W911NF-07-2-0019), the U. S. Air Force Office
of Scientific Research (MURI #FA9550-06-0312 and AF-
TRUST #FA9550-06-1-0244), the Air Force Research Lab
(AFRL), the Multiscale Systems Center (MuSyc) and the
following companies: Agilent, Bosch, National Instruments,
Thales, and Toyota.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’10, June 13-18, 2010, Anaheim, California, USA.
Copyright 2010 ACM ACM 978-1-4503-0002-5 /10/06 ...$10.00.

1. INTRODUCTION
Cyber-Physical Systems (CPS) are integrations of com-

putation with physical processes. Embedded computers and
networks monitor and control the physical processes, usually
with feedback loops where physical processes affect compu-
tations and vice versa. As an intellectual challenge, CPS is
about the intersection, not the union, of the physical and
the cyber.

In the physical world, a central property of a system is its
dynamics, the evolution of its state over time. In the cyber
world, dynamics is reduced to sequences of state changes
without temporal semantics. The intellectual heart of CPS
is in studying the joint dynamics of physical processes, soft-
ware, and networks.

Applications of CPS arguably have the potential to dwarf
the 20-th century IT revolution. They include high confi-
dence medical devices and systems, assisted living, traffic
control and safety, advanced automotive systems, process
control, energy conservation, environmental control, avion-
ics, instrumentation, critical infrastructure control (electric
power, water resources, and communications systems for
example), distributed robotics (telepresence, telemedicine),
defense systems, manufacturing, and smart structures. It is
easy to envision new capabilities, such as distributed micro
power generation coupled into the power grid, where tim-
ing precision and security issues loom large. Transportation
systems could benefit considerably from better embedded
intelligence in automobiles, which could improve safety and
efficiency. Networked autonomous vehicles could dramati-
cally enhance the effectiveness of our military and could of-
fer substantially more effective disaster recovery techniques.
Networked building control systems (such as HVAC and
lighting) could significantly improve energy efficiency and
demand variability, reducing our dependence on fossil fu-
els and our greenhouse gas emissions. In communications,
cognitive radio could benefit enormously from distributed
consensus about available bandwidth and from distributed
control technologies. Financial networks could be dramati-
cally changed by precision timing. Large scale services sys-
tems leveraging RFID and other technologies for tracking of
goods and services could acquire the nature of distributed
real-time control systems. Distributed real-time games that
integrate sensors and actuators could change the (relatively
passive) nature of on-line social interactions. The economic
impact of any of these applications would be huge.

One approach to modeling and designing cyber-physical
systems is to “cyberize the physical” (CtP), which means
wrapping software abstractions around physical subsystems.

737

44.2

An early illustration of this approach wraps the physical
measurements of a sensor network in database abstractions
[25].

A complementary approach is to “physicalize the cyber”
(PtC), which means to endow software and networking com-
ponents with abstractions suitable for physical subsystems.
The challenge is to endow software and network components
with explicit temporal semantics.

Sensor networks gather information, whereas cyber-
physical systems include both sensors and actuators with
closed-loop interactions. When closed-loop systems are con-
sidered, both the PtC and CtP approaches get more chal-
lenging. A key issue is that the formal models that we
use for understanding physical dynamics (ODEs, DAEs,
frequency-domain techniques, LTI systems, difference equa-
tions, PDEs, etc.) do not model well the behavior of software
and networks. On the other hand, prevailing cyber abstrac-
tions (procedures, objects, functions, state machines, pack-
ets, etc.) lack temporal dynamics. Once the cyber com-
ponents have well-characterized temporal dynamics, their
interaction with physical processes will be much easier to
understand. We will show below that changes to models of
physical dynamics and to the models of software and net-
works can bring them closer.

Engineers today do successfully design cyber-physical sys-
tems. As the complexity of these systems increases, however,
our inability to rigorously model the interactions between
the physical and the cyber sides creates serious vulnerabil-
ities. Systems become unsafe, with disastrous inexplicable
failures that could not have been predicted. Engineers today
are stuck with a prototype-and-test style of design, which
leads to brittle systems that do not easily evolve to handle
small changes in operating conditions and hardware plat-
forms.

We have been lulled into a false sense of confidence by the
considerable successes of embedded software, for example
in automotive, aviation, and robotics applications. But the
potential is vastly greater; we have reached a tipping point,
where computing and networking may be integrated into
the vast majority of artifacts that humans make. However,
as we move to more networked, more complex, and more
intelligent applications, the problems and risks are going
to get worse. Embedded systems will no longer be black
boxes, designed once and immutable in the field. Instead,
they will be pieces of a larger system, a dance of electronics,
networking, and physical processes.

A typical cyber-physical system will have a structure like
that sketched in Figure 1, which shows a small example with
three networked compute platforms each with its own sen-
sors and actuators. The actuators affect the data provided
by the sensors through the physical plant. In an automa-
tion application, for example, the actuators could be motion
controllers for high-speed printing presses, the sensors could
detect disruptions, and the control algorithms could include
rapid shutdown modes to prevent damage to the equipment
in case of paper jams. Such shutdowns need to be tightly
orchestrated across the entire system to prevent disasters.
Similar situations are found in high-end instrumentation sys-
tems and in energy production and distribution [8].

2. CYBERIZING THE PHYSICAL
The challenge of integrating computing and physical pro-

cesses has been recognized for some time, motivating the

emergence of hybrid systems theories [26]. Progress in that
area, however, remains limited to relatively simple systems
combining ordinary differential equations with automata.
These models inherit from control theory a uniform notion of
time, an oracle called t available simultaneously in all parts
of the system. Even adaptations to distributed control prob-
lems do this. Olfati-Saber et al. [29], for example, translate
consensus problems from computer science into control sys-
tems formulations, showing connections between such con-
sensus problems and a variety of dynamical systems prob-
lems such as synchronization of coupled oscillators, flocking,
formation control, and distributed sensor fusion. These for-
mulations, however, break down without the uniform notion
of time that governs the dynamics. In networked software
implementations, such a uniform notion of time cannot be
precisely realized. Time triggered networks [17] and time
synchronization [13] can be used to approximate a uniform
model of time, but the analysis of the dynamics has to in-
clude the imperfections. Perfect time synchronization is not
physically realizable.

In addition to the assumption of a shared global notion of
time, most modeling techniques for physical systems share
a second limitation that makes it difficult to integrate these
models with cyber components. Namely, the model of time
itself does not mesh well with the cyber world. Specifically,
in widely used models of physical systems, time is repre-
sented as either a continuum, using real numbers, or as dis-
crete time, using integers. In the cyber world, neither of
these choices is suitable to describe the behavior of systems.
Software, for example, represents sequences of causally re-
lated actions that have no semantic notion of time passing.
It becomes very difficult to relate a statement like “current
time is t” with any property of the software execution.

A model of time that supports both a time continuum and
sequences of untimed causally-related actions is called su-
perdense time [27]. Superdense time is a tuple (t, n), where
t ∈ R is a real number (or an integer representing discrete
time), and n ∈ N is a natural number (a non-negative in-
teger). The natural number n admits ordered sequences of
causally related events without time passing. In particular,
whereas in standard models of physical dynamics a signal
may have the form

x : R→ R,

with a superdense model of time a signal has the form

x : R× N→ R .

This means that at a particular time t ∈ R, x may have
several values with a well-defined order, x(t, 0), x(t, 1), etc.

Moreover, if we augment the model of a signal to include
a symbol ε denoting absence of a value,

x : R× N→ R ∪ {ε} ,

then it becomes possible to model ordered discrete events
(with or without the passage of time) together with the usual
continuous or piecewise continuous signals used in standard
models of physical dynamics. Such a framework offers a
much richer formulation suitable for cyber-physical systems.

Superdense time is useful in blending syn-
chronous/reactive models such as those used in certain
safety-critical embedded software design [2] with discrete-
event models like those in PTIDES (discussed below) and
hybrid systems models that include models of continuous

738

44.2

Figure 1: Example structure of a cyber-physical system.

dynamics [21, 22]. This enables comprehensive models of
cyber-physical system designs where the software portions
are specifications amenable to code generation for so-called
“correct-by-construction” design.

3. PHYSICALIZING THE CYBER
The foundations of computing, rooted in Turing, Church,

and von Neumann, are about the transformation of data,
not about physical dynamics. For CPS we need to rethink
the core abstractions if we really want to integrate com-
puting with physical processes. In particular, the passage
of time must become a central property. Although com-
puters have become fast enough to adequately measure and
control many physical processes, modern techniques such
as instruction scheduling, memory hierarchies, garbage col-
lection, multitasking, best-effort networking, and reusable
component libraries (which do not expose temporal proper-
ties on their interfaces), introduce enormous variability and
unpredictability in the timing. Those innovations are built
on a key premise: that time is irrelevant to correctness; it
is at most a measure of quality. Faster is better, if you
are willing to pay the price. By contrast, what CPS needs is
not faster computing, but physical actions taken at the right
time. Time needs to be a semantic property, not a quality
factor.

But surely the “right time” is expecting too much, the
reader may object. The physical world is neither precise
nor reliable, so why should we demand this of computing
systems? Instead, we must make systems robust and adap-
tive, building reliable systems out of unreliable components.
While I agree that systems need to be designed to be robust,
we should not discard the reliability we have. Electronics
technology is astonishingly precise and reliable, more than
any other human invention. We routinely deliver circuits
that perform a logical function essentially perfectly, on time,
billions of times per second, for years. Shouldn’t we exploit
this remarkable achievement?

An interesting CPS challenge problem in scientific in-
strumentation is provided by the Large Hadron Collider
(LHC). The LHC requires instrumentation and control sys-
tems structured like that in fig. 1 spread over 27 km. The
challenge is that control and measurement of extremely sen-
sitive and elusive physical processes must be carried out by
networked computers. It is an extremely challenging CPS
problem.

CERN and others have developed a technology called
White Rabbit [11] to support distributed feedback control,
distributed direct signal synthesis, and a “distributed os-
cilloscpe” for controlling and observing physical processes
throughout the accelerator. To accomplish this, White Rab-
bit realizes a networked precision time protocol (PTP) based
on IEEE 1588 [12, 13, 7] and synchronous Ethernet that re-
portedly achieves clock concurrence with a standard devi-
ation of 80 picoseconds. CERN reports that two real-time
clocks in computers up to 14 km apart can agree on the
current time of day to within about 80 ps. This remark-
able achievement enables specification of distributed cyber
behaviors that are orchestrated with astonishing timing pre-
cision. Such clock concurrence demands new design tech-
niques for distributed software.

Today’s programming models and networking abstraction
cannot directly address such distributed orchestration. CPS
needs to provide technologies for robust and predictable de-
signs with repeatable temporal dynamics (for a detailed dis-
cussion of the meanings of these terms, see [20]). This will
necessarily build on a rigorous formal model that reflects
the realities of distributed systems. The result will be CPS
designs that can be much more extensively networked, can
include more adaptive control logic, and can evolve over
time, without suffering from the brittleness of today’s de-
signs, where small changes have big consequences. Timing
must become central to distributed software design.

739

44.2

4. THE PTIDES APPROACH
My research group has previously proposed and con-

tinues to work on a model for timing-centric distributed
software called PTIDES (programming temporally-integrated
distributed embedded systems, pronounced “tides”), a model-
based programming technique for CPS [37]. PTIDES mod-
els define the interaction of distributed software components,
the networks that bind them together, and the interaction
via sensors and actuators with physical dynamics. PTIDES
bases software models on discrete-event (DE) systems [31,
3, 1, 36] which provide a model of time and concurrency.
DE models have traditionally been used to construct sim-
ulations, but PTIDES uses them as a programmer’s model
for deployable cyber-physical systems. It uses one of several
variants of DE that has a rigorous, determinate, formal se-
mantics [24, 18], and that has been shown to integrate well
with models of continuous dynamics [22]. A practical con-
sequence is to enable co-simulation of software controllers,
networks, and the physical plant. It also facilitates hardware
in the loop (HIL) simulation, where deployable software can
be tested (at greatly reduced cost and risk) against simula-
tions of the physical plant. The DE semantics of the model
ensures that simulations will match implementations, even
if the simulation of the plant cannot execute in real time.
Conversely, prototypes of the software on generic execution
platforms can be tested against the actual physical plant.
The model can be tested even if the software controllers are
not fully implemented. This (extremely valuable) property
cannot be achieved today because the temporal properties
of the software emerge from an implementation on a spe-
cific platform, and therefore complete tests of the dynamics
often cannot be performed until the final stages of system
integration, with the actual physical plant, using the final
platform.

The idea of using DE as a programming model instead of
a simulation technology was introduced in [37]. Derler et al.
[5] describe a simulator for PTIDES built on Ptolemy II [9],
and give some preliminary measurements of implementation
properties on a small network of prototype platforms using
a pre-commercial implementation of IEEE 1588 from Agi-
lent. Feng et al. [10] describe a strategy for incorporating
fault-tolerance principles into PTIDES using backtracking
techniques.

PTIDES relies on two key technology assumptions. First,
clocks on a network must be synchronized with some known
bound on the error [13]. Second, transport latencies on the
network must be bounded. Fortunately, technologies are
deployed today that satisfy these assumptions, and not just
in cutting-edge research platforms like the LHC.

An interesting example is General Electric’s MarkTMVIe
Control Platform, which has integrated high-precision net-
work time synchronization based on IEEE 1588 into its I/O
processors. To date, GE has manufactured in excess of
50,000 such units. This control platform is used for gas
and steam turbine controls, wind turbines, hydro control,
and other distributed control systems. A current challenge
for such systems is to enable distributed micro power gen-
eration coupled into the power grid. The complexity of the
control system becomes much higher, and its structure dy-
namic. PTIDES could facilitate such a transformation of
the power grid.

Bounding network delay is potentially more problematic
when using generic networking technologies such as Ethernet

and TCP/IP. However, we observe that bounded network
delay is required already today in CPS applications. This
has in fact historically forced deployments of these applica-
tions to use specialized networking techniques, such as time-
triggered architectures [17], FlexRay, Foundation Fieldbus
systems, and CAN busses. More recent developments, how-
ever, promise similar bounds on top of generic technologies.
Synchronous Ethernet and Time-Triggered Ethernet are two
such promising examples. The GE system mentioned above
uses generic Ethernet, leveraging IEEE 1588 time synchro-
nization to facilitate frame synchronization and avoid the
network collisions and buffer overflows that make bounded
communication latencies difficult.

Once we accept these two assumptions (bounded time syn-
chronization error and bounded communication latencies),
it is not hard to imagine modeling and design techniques
for CPS that embrace the integration of physical dynamics
with the dynamics of software and networks. PTIDES is a
promising illustration of such a modeling framework, though
I am certain it is not the only one that will prove interesting.
The principle it follows is that software and network com-
ponents have abstractions that makes them look and feel
like physical components. They react to stimulus in time
and produce reactions with or without latency in time. The
ability to produce reactions without latency in time is essen-
tial to accurately embrace cyber abstractions and does not
undermine the rigorous semantics because of the foundation
using superdense time. PTIDES physicalizes the cyber.

5. DISCUSSION
Real-time software is not a new problem. Neither is real-

time networking, where the phrase“quality of service” (QoS)
has been used for the practice of controlling timing. How-
ever, CPS requires that timing be a correctness criterion,
not a quality factor. Time must be part of the seman-
tics. Moreover, recent trends have drastically changed the
landscape making this perspective more realistically appli-
cable. Model-based design [14], for example, has caught
on in industrial practice, through the use of tools such as
Simulink, Real-Time Workshop, DSpace, LabVIEW, and
SCADE. Domain-specific modeling languages (DSMLs) are
increasingly being used because they tend to support higher-
level abstractions than general-purpose modeling languages
such as UML. DSMLs have been recently introduced to
represent timing behavior in the automotive initiative AU-
TOSAR for component software architectures. Also, OMG
has recently extended UML with a profile called MARTE
(Modeling and Analysis of Real-Time and Embedded Sys-
tems).

In addition, while computer architecture has traditionally
focused on improving average-case performance, there has
been a recent work on precision timed (PRET) machines
that offers new opportunities to improve temporal preci-
sion [6]. This could make the temporal analysis of cyber
models stronger, leading to systems that can be certified
at moderate cost. Moreover, the move to multicore archi-
tectures offers an opportunity in that it requires new pro-
gramming abstractions, so the community is receptive to
advances in programming models.

Bounded network latencies are required by many dis-
tributed real-time software approaches in order to guarantee
that deadlines are met. Innovations in real-time networking
are making it to mainstream industrial practice. Network

740

44.2

time synchronization is available on a variety of platforms,
with IEEE 1588 being particularly attractive for our target
application space. Real time networks such as TTA and
FlexRay [16] have also caught on, and their techniques are
starting to appear on more generic networking infrastructure
such as Ethernet.

Another trend is the acceptance of synchronous / re-
active languages, particularly SCADE [2], in safety criti-
cal applications. These languages offer concurrency models
that are much more understandable and analyzable than
those prevalent in software engineering, based for instance
on threads [19]. Recent advances in execution time esti-
mation of software [35] also help, but several obstacles re-
main [15]. Most particularly, these techniques are brittle to
changes in the program or platform arising in part from the
need for detailed manual modeling of the particular target
processor. PRET machines and new robust timing analysis
methods [33] promise to ameliorate this problem.

At a higher level, the real-time interfaces of [34] offer possi-
bilities for component architectures for software that include
temporal dynamics. Older contributions, such as the tax-
onomy of timing properties that must be expressible given
in [23] and the annotations on untimed languages given in
[28], could also provide a framework for timed event models.
Prior work on timing constructs in languages, such as Ada
and SystemC, can contribute some mechanisms, but these
languages do not emphasize the timing of I/O interactions,
and hence do not solve the CPS problems by themselves.
More recent innovations in middleware technologies, such
as ACE/TAO [32], support real-time scheduling concepts,
and have caught on in certain communities (such as avion-
ics) [30]. The Data Distribution Service, a recent OMG
standard, supports over 20 configurable Quality of Service
options. These mechanisms, however, have a very ad-hoc
flavor, and seem to insist on a prototype-and-test style of
design.

In embedded applications such as industrial control, com-
ponent technologies such as International Electrotechnical
Commission’s IEC 61131 have emerged for programming
PLCs and have been extended to distributed control systems
(e.g. IEC 61499). The latter extensions have not proved sat-
isfactory because of non-determinism in implementations.
The same standard-compliant application running in two
different implementations of the runtime environment may
result in different behaviors [4].

In summary, although there is a great deal of prior work
to draw upon, a concerted effort that directly confronts the
CPS challenges by rebuilding the foundations has the best
promise for the future. The goal must be to enable harness-
ing technology for the betterment of society. Our inability to
manage the increasing complexity of cyber-physical systems
is an unnecessary obstacle.

6. ACKNOWLEDGEMENTS
I thank the following people for ideas that I have included

in this paper: David Culler, John Eidson, Rajesh Gupta,
Sanjit Seshia, and Stavros Tripakis.

7. REFERENCES
[1] F. Baccelli, G. Cohen, G. J. Olster, and J. P. Quadrat.

Synchronization and Linearity, An Algebra for
Discrete Event Systems. Wiley, New York, 1992.

[2] G. Berry. The effectiveness of synchronous languages
for the development of safety-critical systems. White
paper, Esterel Technologies, 2003.

[3] C. G. Cassandras. Discrete Event Systems, Modeling
and Performance Analysis. Irwin, 1993.

[4] G. Cengic, O. Ljungkrantz, and K. Akesson. Formal
modeling of function block applications running in IEC
61499 execution runtime. In 11th IEEE International
Conference on Emerging Technologies and Factory
Automation, Prague, Czech Republic, 2006.

[5] P. Derler, E. A. Lee, and S. Matic. Simulation and
implementation of the ptides programming model. In
IEEE International Symposium on Distributed
Simulation and Real Time Applications (DS-RT),
Vancouver, Canada, 2008.

[6] S. A. Edwards and E. A. Lee. The case for the
precision timed (PRET) machine. In Design
Automation Conference (DAC), San Diego, CA, 2007.

[7] J. C. Eidson. Measurement, Control, and
Communication Using IEEE 1588. Springer, 2006.

[8] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and
J. Zou. Time-centric models for designing embedded
cyber-physical systems. Technical Report
UCB/EECS-2009-135, EECS Department, University
of California, Berkeley, October 9 2009.

[9] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu,
J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong.
Taming heterogeneity—the Ptolemy approach.
Proceedings of the IEEE, 91(2):127–144, 2003.

[10] T. H. Feng and E. A. Lee. Real-time distributed
discrete-event execution with fault tolerance. In
Real-Time and Embedded Technology and Applications
Symposium (RTAS), St. Louis, MO, USA, 2008. IEEE.

[11] G. Gaderer, P. Loschmidt, E. G. Cota, J. H. Lewis,
J. Serrano, M. Cattin, P. Alvarez, P. M. Oliveira
Fernandes Moreira, T. Wlostowski, J. Dedic,
C. Prados, M. Kreider, R.Baer, S.Rauch, and T.Fleck.
The white rabbit project. In Int. Conf. on Accelerator
and Large Experimental Physics Control Systems,
Kobe, Japan, 2009.

[12] IEEE Instrumentation and Measurement Society.
1588: IEEE standard for a precision clock
synchronization protocol for networked measurement
and control systems. Standard specification, IEEE,
November 8 2002.

[13] S. Johannessen. Time synchronization in a local area
network. IEEE Control Systems Magazine, pages
61–69, 2004.

[14] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty.
Model-integrated development of embedded software.
Proceedings of the IEEE, 91(1):145–164, 2003.

[15] R. Kirner and P. Puschner. Obstacles in worst-case
execution time analysis. In Symposium on Object
Oriented Real-Time Distributed Computing (ISORC),
pages 333–339, Orlando, FL, USA, 2008. IEEE.

[16] H. Kopetz. Real-Time Systems : Design Principles for
Distributed Embedded Applications. Springer, 1997.

[17] H. Kopetz and G. Bauer. The time-triggered
architecture. Proceedings of the IEEE, 91(1):112–126,
2003.

[18] E. A. Lee. Modeling concurrent real-time processes

741

44.2

using discrete events. Annals of Software Engineering,
7:25–45, 1999.

[19] E. A. Lee. The problem with threads. Computer,
39(5):33–42, 2006.

[20] E. A. Lee. Computing needs time. Communications of
the ACM, 52(5):70–79, 2009.

[21] E. A. Lee and H. Zheng. Operational semantics of
hybrid systems. In M. Morari and L. Thiele, editors,
Hybrid Systems: Computation and Control (HSCC),
volume LNCS 3414, pages pp. 25–53, Zurich,
Switzerland, 2005. Springer-Verlag.

[22] E. A. Lee and H. Zheng. Leveraging synchronous
language principles for heterogeneous modeling and
design of embedded systems. In EMSOFT, Salzburg,
Austria, 2007. ACM.

[23] I. Lee, S. Davidson, and V. Wolfe. Motivating time as
a first class entity. Technical Report MS-CIS-87-54,
Dept. of Comp. and Infor. Science, Univ. of Penn,
Aug. (Revised Oct.) 1987.

[24] X. Liu and E. A. Lee. CPO semantics of timed
interactive actor networks. Theoretical Computer
Science, 409(1):110–125, 2008.

[25] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tag: A tiny aggregation service for ad-hoc
sensor networks. In ACM Symposium on Operating
System Design and Implementation (OSDI), 2002.

[26] O. Maler, Z. Manna, and A. Pnueli. From timed to
hybrid systems. In Real-Time: Theory and Practice,
REX Workshop, pages 447–484. Springer-Verlag, 1992.

[27] Z. Manna and A. Pnueli. Verifying hybrid systems.
Hybrid Systems, pages 4–35, 1992.

[28] A. K. Mok. Annotating ada for real-time program
synthesis. In IEEE Conference on Computer
Assurance (COMPASS). IEEE, 1987.

[29] R. Olfati-Saber, J. A. Fax, and R. M. Murray.
Consensus and cooperation in networkedmulti-agent
systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[30] J. L. Paunicka, D. E. Corman, and B. R. Mendel. A
CORBA-based middleware solution for UAVs. In
Fourth International Symposium on Object-Oriented
Real-Time Distributed Computing, pages 261 – 267,
Magdeburg, Germany, 2001. IEEE.

[31] P. Ramadge and W. Wonham. The control of discrete
event systems. Proceedings of the IEEE, 77(1):81–98,
1989.

[32] D. C. Schmidt, D. L. Levine, and S. Mungee. The
design of the TAO real-time object request broker.
Computer Communications, 21(4), 1998.

[33] S. A. Seshia and A. Rakhlin. Game-theoretic timing
analysis. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD), pages 575–582. IEEE Press, 2008.

[34] L. Thiele, E. Wandeler, and N. Stoimenov. Real-time
interfaces for composing real-time systems. In
EMSOFT, Seoul, Korea, 2006. ACM Press.

[35] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenstr. The
worst-case execution-time problem - overview of
methods and survey of tools. ACM Transactions on

Embedded Computing Systems (TECS), 7(3):1–53,
2008.

[36] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of
Modeling and Simulation. Academic Press, 2nd
edition, 2000.

[37] Y. Zhao, E. A. Lee, and J. Liu. A programming model
for time-synchronized distributed real-time systems. In
Real-Time and Embedded Technology and Applications
Symposium (RTAS), Bellevue, WA, USA, 2007. IEEE.

742

44.2

